

QUANTIFICAÇÃO DA INCERTEZA DA VIDA DE PLACAS DE AÇO SOB À FADIGA VIA POLINÔMIOS DE HERMITE

Nelson Afanador García

Francisco Evangelista Junior

Fábio Comes de Castro

nafanadorg@aluno.unb.br; nafanadorg@ufpso.edu.co

fejr@unb.br

fabiocastro@unb.br

Universidade de Brasília

Programa de Pós Graduação em Estruturas e Construção Civil, Prédio SG 12, primeiro andar, Campus Darcy Ribeiro, Universidade de Brasília, 70910-900, Brasília, Distrito Federal, Brasil.

Abstract. O objetivo deste trabalho é quantificar a incerteza no número de ciclos para falha por fadiga de componentes entalhados por meio do uso de polinômios de Hermite multidimensionais. A metodologia deformação-vida de estimativa de vida à fadiga é adotada e considera-se como variáveis aleatórias as propriedades do material e os níveis do carregamento aplicado. O uso de séries de polinômios de Hermite multidimensionais permitiu a predição da aleatoriedade do vetor de saída (número de ciclos para falha). Demonstra-se que um polinômio de Hermite multidimensional é capaz de estimar de forma adequada a propagação das incertezas associadas às variáveis de entrada. Os resultados sugerem que incertezas nas propriedades do material e no carregamento podem resultar em variações significativas no número de ciclos para falha de componentes sujeitos à falha por fadiga.

Keywords: Polinômio de Hermite Multidimensional, Fadiga, Quantificação da incerteza, Metodologia deformação-vida

1 INTRODUÇÃO

A análise das incertezas associadas às propriedades do material, aos níveis do carregamento e às dimensões de membros estruturais é de fundamental importância na quantificação da confiabilidade de projetos mecânicos. Há dois métodos comumente usados para estimar a propagação da incerteza nos parâmetros do modelo: o método analítico e o método de Monte Carlo. No método analítico (Ghanem e Spanos, 2003; Adomian, 1980) a incerteza na saída é representada explicitamente como funções de incerteza nas variáveis de entrada. O método de Monte Carlo (Doll e Freeman, 1986; Iman e Conover, 1980) envolve um número suficientemente grande de simulações do modelo com uma amostra das variáveis aleatórias de entrada, estimadas mediante as funções de densidade de probabilidade, $f_{\boldsymbol{X}}(x)$, com grande custo computacional e tempo. É necessário utilizar outros métodos computacionais mais eficientes para estimar a incerteza em modelos complexos, que utilizem um número significativamente reduzido de soluções.

Recentemente, emergiu uma nova técnica aproximada e mais barata chamada Polinômios de Hermite Multidimensional ou Polinômios de expansão de caos, PEC (Blatman e Sudret, 2008; Phoon e Huang, 2007; Xiu, 2009). Os PEC podem ser classificados dentro de dois enfoques: formulação intrusiva e formulação não intrusiva; na formulação intrusiva a incerteza é expressada explicitamente dentro da análise do sistema, sob investigação (utiliza o método de Galerkin (Sudret e Der-Kiureghian, 2000)), na formulação não intrusiva o PEC são usados para criar superfícies de resposta (chamados método de superfície de resposta estocástico (Isukapalli, 1999) sem interferir na análise do sistema (S-K. Choi e Canfield, 2007).

A literatura não reporta nenhum estudo de caso que quantifique a incerteza da vida à fadiga de componentes mecânicos usando PEC. Esta pesquisa analisa a aleatoriedade das variáveis, como materiais e ao carregamento no número de ciclos para falha, N_f , sob a metodologia deformação-vida utilizando PEC num enfoque não intrusivo. Os coeficientes do polinômio foram determinados usando o método da colocação probabilístico (Tatang, 1995; Sudret, 2007). A principal contribuição desta pesquisa foi a quantificação da propagação da incerteza dos parâmetros do material e o carregamento através da determinação da f_X (x).

2 POLINÔMIOS DE EXPANSÃO DE CAOS

A variável aleatória $u(\theta)$ está definida no espaço probabilístico (Θ, F, P) expandida em uma base polinomial multivariada que segue uma função de distribuição de probabilidade. Em que, o espaço probabilístico é definido como uma tripla (Θ, F, P) formada por um conjunto Θ (chamado espaço amostral), uma σ -álgebra F (chamado eventos) em Θ e uma medida positiva P nessa σ -álgebra tal que a probabilidade $P(\Theta)=1$. O polinômio multivariado pode ser escrito como um processo aleatório $u(\theta)$, como é apresentado na Eq. (1),

$$u(\theta) = \sum_{i=0}^{\infty} a_i \Psi_i \left[\boldsymbol{\xi} \left(\theta \right) \right]$$
 (1)

em que a_i são os coeficientes determinísticos desconhecidos, $\xi_i(\theta)$ é um conjunto de variáveis aleatórias normais padronizadas distribuídas idêntica e independente e Ψ_i (ξ_{i1} , ξ_{i2} , ξ_{i3} , ξ_{i4} , ..., ξ_{in}) são polinômios Hermite que forma uma base ortogonal $L^2(\Theta, F, P)$ no qual é um espaço de Hilbert das variáveis aleatórias com variância finita.

O conjunto de polinômios ortogonais multidimensionais é comumente chamado caos homogêneo de grau p, a dimensão i e θ representa os resultados no espaço de possíveis resultados de eventos aleatórios. Outra forma de representar os polinômios ortogonais multidimensionais segundo Ghanem e Spanos (2003) é mostrado na Eq. (2),

$$u(\theta) = a_0 \Gamma_0 + \sum_{i_1=1}^{\infty} a_{i_1} \Gamma_1(\xi_{i_1}(\theta)) + \sum_{i_1=1}^{\infty} \sum_{i_2=1}^{i_1} a_{i_1 i_2} \Gamma_2(\xi_{i_1}(\theta), \xi_{i_2}(\theta)) + \sum_{i_1=1}^{\infty} \sum_{i_2=1}^{i_1} \sum_{i_3=1}^{i_2} a_{i_1 i_2 i_3} \Gamma_3(\xi_{i_1}(\theta), \xi_{i_2}(\theta), \xi_{i_3}(\theta)) + \cdots$$

$$(2)$$

em que Γ_p (ξ_{i1} , ξ_{i2} , ξ_{i3} , ..., ξ_{ip}) denota os polinômios de Hermite de ordem p em termos das variáveis aleatórias normais independentes multidimensionais $\boldsymbol{\xi} = [\xi_{i1}, \ \xi_{i2}, \ \xi_{i3}, \ ..., \ \xi_{ip}].$

Há uma relação entre as funções Γ_p (ξ_{i1} , ξ_{i2} , ξ_{i3} , ..., ξ_{ip}) e $\Psi_i(\boldsymbol{\xi})$ um a um. A soma na Eq. (1) é realizada de acordo com a ordem do polinômio de Hermite, enquanto que a Eq. (2) se faz um recontagem, iniciando com os polinômios de ordem menor.

É possível construir os polinômios de Hermite de qualquer dimensão e grau usando a função de probabilidade normal padronizada ou um algoritmo.

2.1 Construção de Polinômios de Expansão de Caos

Os polinômios de Hermite podem ser gerados a partir da função de densidade de probabilidade normal padronizada, como pode ser visto na Eq. (3) para cada grau e dimensão segundo Ghanem e Spanos (2003),

$$\Gamma_p(\xi) = (-1)^p e^{\frac{1}{2}\xi^T \xi} \frac{\partial^p}{\partial \xi_{i_1}, \dots, \xi_{i_n}} e^{-\frac{1}{2}\xi^T \xi}$$
(3)

em que Γ_p (ξ_{i1} , ξ_{i2} , ξ_{i3} , ..., ξ_{ip}) denota os polinômios de Hermite de ordem p em termos das variáveis aleatórias normais independentes multidimensionais $\boldsymbol{\xi} = [\xi_{i1}, \ \xi_{i2}, \ \xi_{i3}, \ \dots, \ \xi_{ip}]$.

Na literatura é possível encontrar algoritmos que permitam a construção dos polinômios de Hermite de ordem n+1 em termos das ordens dos polinômios anteriores, como é apresentado na Eq. (4).

$$H_{n+1}\left(\xi\left(\theta\right)\right) = \xi H_n\left(\xi\left(\theta\right)\right) - n H_{n-1}\left(\xi\left(\theta\right)\right) \tag{4}$$

A serie da Eq.(2) pode ser truncada num número finito de termos N e \hat{u} é uma resposta aproximada, Eq. (5) que vai depender do número de termos do truncamento N,

$$u(\theta) \approx \widehat{u}(\theta) = \sum_{i=0}^{N-1} a_i \Psi_i \left[\xi(\theta) \right]$$
 (5)

em que o número de termos do truncamento N numa expansão de ordem p envolvendo n variáveis aleatórias é dada pela Eq. (6).

$$N = \frac{(n+p)!}{n! \, p!} \tag{6}$$

Na determinação dos coeficientes a_{α} existem vários métodos que podem ser utilizados dependendo do tipo de formulação utilizada no modelo matemático.

2.2 Determinação dos coeficientes de polinômios de expansão de caos

Se distinguem duas classes de métodos para a determinação dos coeficientes; o método intrusivo e não-intrusivo.

A propagação da incerteza na simulação computacional do modelo via polinômios de caos com um enfoque intrusivo, onde todas as variáveis dependentes e os parâmetros aleatórios na equação que governa são substituídos por seus polinômios de expansão de caos gera um sistema de equações determinísticas a ser resolvido. Este procedimento precisa fazer modificações do código computacional (determinístico) existente. O método não intrusivo é mais simples na teoria, porem uma formulação não intrusiva para problemas complexos pode ser de difícil implementação e um alto custo computacional segundo Hosder e Walters (2010).

Entre os métodos não - intrusivos destacam-se: método da projeção (Keese e Matthies, 2005 Ghiocel e Ghanem, 2002; Maitre et al., 2001), método da colocação estocástica (Xiu, 2009; Xiu e Hesthaven, 2005), método da regressão não-intrusiva (Blatman e Sudret, 2011; Blatman e Sudret, 2010; Berveiller et al., 2006; Isukapalli, 1999). O método da regressão não-intrusiva ou método da colocação estocástica com regressão desenvolvido por Isukapalli, será utilizado nesta pesquisa. A quantidade e qualidade dos pontos de colocação para cada variável aleatória padronizada definirá a qualidade da aproximação.

2.3 Seleção dos pontos de colocação

A seleção dos pontos de colocação de um polinômio de caos de dimensão n e de ordem p correspondem às raízes do seguinte polinômio, ou seja, p+1, de cada uma das variáveis de entrada (Webster et al., 1996; Tatang, 1995; Villadsen e Michelsen, 1978). O conjunto de pontos de colocação são eleitos de todas as combinações possíveis $(\xi_{1,1}, \xi_{2,1}, \xi_{3,1}, \cdots, \xi_{n,1})$, $(\xi_{1,2}, \xi_{2,2}, \xi_{3,2}, \cdots, \xi_{n,2}), \cdots, (\xi_{1,N}, \xi_{2,N}, \xi_{3,N}, \cdots, \xi_{n,N})$, com a maior probabilidade. O número de pontos de colocação selecionados devem ser o dobro do número de coeficientes desconhecidos a serem estimados nos polinômios de caos, para obter um estimador robusto do coeficiente (Isukapalli, 1999).

Um diagrama de fluxo relacionado por (Isukapalli, 1999; Huang et al., 2009) é dado na Fig. 1, em que se indica os passos a seguir no modelo da colocação estocástico com regressão.

Os PEC é um método espectral, (Blatman, 2009; Huang et al., 2009; Ghanem e Spanos, 2003; Isukapalli, 1999; Papoulis, 1991; Phoon e Huang, 2007) que permite a propagação da incerteza das variáveis aleatórias de entrada através da construção de funcionais não lineares dependentes da solução (Ghanem e Spanos, 2003; Le-Maitre e Knio, 2010) à variável aleatória de saída. Isto facilita a quantificação da incerteza da saída através de $f_X(x)$ (Tatang, 1995). A convergência da solução aproximada é medida por comparação dos PEC de diferentes graus segundo Isukapalli (1999) ou entre PEC e SMC (Le-Maitre e Knio, 2010; Sudret, 2007), assegurando a precisão dos resultados. A convergência espectral vai depender da alta diferenciabilidade das funções de Hermite contido em cada variável aleatória normal padrão segundo Xiu (2010).

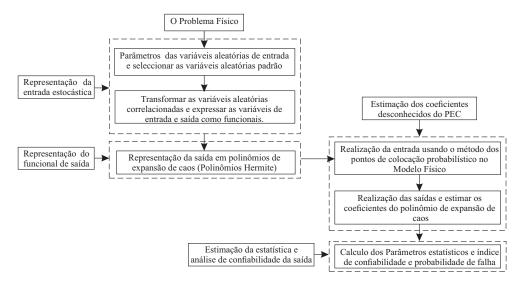


Figura 1: Diagrama de fluxo do método da colocação baseado em regressão. Adaptado de Isukapalli (1999) e Huang et al. (2009)

3 ANÁLISE DE FADIGA EM CORPOS ENTALHADOS SOB CARRE-GAMENTO DE AMPLITUDE CONSTANTE

Foi realizada uma análise probabilística da vida estimada à fadiga pela metodologia deformação-vida no cenário de componentes entalhados sob carregamento de amplitude constante, usando PEC e a SMC, como uma forma de avaliar os resultados obtidos da simulação com PEC. Na metodologia deformação-vida implementada, a relação de (Neuber, 1961) foi utilizada para estimar as tensões e deformações na raiz do entalhe e a relação de (Morrow, 1965) para calcular o número de ciclos para falha.

O estudo foi conduzido em uma placa com dois entalhes laterais semi-circulares submetida à força axial de amplitude constante (Bannantine et al., 1989; Socie et al., 1984). A configuração da placa é mostrada na Fig. 2, onde K_t é o fator de concentração de tensões elástico, K_f é o fator de concentração de tensões à fadiga e t é a espessura da placa. A placa foi fabricada em um aço AISI 4340 cujas propriedades mecânicas cíclicas estão listadas na Tabela 1, em que, σ_0 é a tensão de escoamento e σ_u , é o limite de resistência á tração. As amplitudes da força aplicada e o número de ciclos para a falha á fadiga observados em laboratório estão listados na Tabela 2.

 σ_f' (MPa) b (-) ϵ_f' (-) c (-) n' (-) 1165 -0,081 1,142 -0,67 0,123 H' (MPa) σ_0 (MPa) σ_u (MPa)

Tabela 1: Propriedades cíclicas do aço AISI 4340.

(-) adimensional

1162

648

786

O número de ciclos para falha segundo a metodologia de Neuber–Morrow foi estimado utilizando os PEC. Uma análise similar empregando-se simulação de Monte Carlo foi realizada com o objetivo de comparar os resultados e a quantidade necessária de simulações utilizadas por PEC e SMC. Os parâmetros aleatórios considerados na modelagem via PEC e SMC são apresentados na Tabela 3.

Utilizando os PEC foram estimadas os ciclos de vida pela metodologia Neuber-Morrow, além disso, foi avaliada por simulação de Monte Carlo usando a mesma metodologia com o fim de comparar os resultados e a quantidade necessária de simulações utilizadas por PEC e SMC. Os parâmetros aleatórios considerados na modelagem via PEC e SMC são dados na Tabela 3.

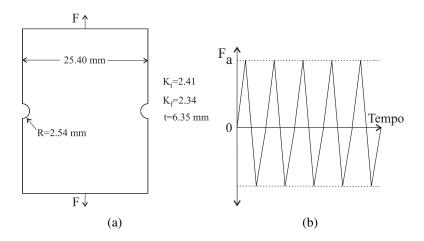


Figura 2: Placa com dois entalhes laterais semi-circulares (a) submetida a carregamento de amplitude constante (b).

As tensões que foram aplicadas e os ciclos de vida observados na placa estudadas por Socie et al. (1984) e Bannantine et al. (1989) estão indicadas na Tabela 2.

Tabela 2: Resultados dos ensaios de fadiga sob carregamento de amplitude constante.

F_a (kN)	N_f (ciclos)

F_a (kN)	N_f (ciclos)
88,96	62
71,17	635
62,28	1300

A fim de estimar o número de ciclos para falha que o corpo de prova pode resistir aplicando um carregamento constante foi necessário modificar o programa desenvolvido por . A modificação consistiu em incorporar os PEC e SMC na estimação do número de ciclos para falha, N_f , ou seja, estabelecer um polinômio de quarta dimensão (para quatro variáveis aleatórias inicialmente) e um grau adequado com o alvo de simplificar as operações e expressar N_f em função das variáveis aleatórias padronizadas de entrada. O grau obtido do polinômio foi comparado com os resultados obtidos pela simulação de Monte Carlo, com o objetivo de estabelecer o melhor grau do polinômio.

Varáveis Aleatórias	μ	V
H' (MPa)	1162	0,15
n' (-)	0,123	0,15
σ_f' (MPa)	1165	0,15
ϵ_f' (-)	1,142	0,15

Tabela 3: Parâmetros aleatórios considerados na análise probabilística de vida à fadiga.

Estabelecido o PEC que representa o sistema mecânico descrito anteriormente é possível via simulação de Monte Carlo estabelecer a função de densidade de probabilidade da variável de saída, N_f , as diferentes estatísticas e a probabilidade de falha estimada com a metodologia Neuber-Morrow.

Para achar o PEC foi necessário apenas 70 simulações e o melhor grau foi estabelecido como o terceiro. A precisão do PEC foi comparada entre SMC para 1.000.000 de dados e 12.000 simulações para PEC, ou seja, PEC só precisou de 1,2% das simulações realizadas com Monte Carlo. Os resultados mostrados nas Figs. 3(a)–(c) mostram que os métodos PEC e SMC resultaram em uma distribuição de probabilidade Lognormal e que as funções $f_{\boldsymbol{X}}(x)$ são similares.

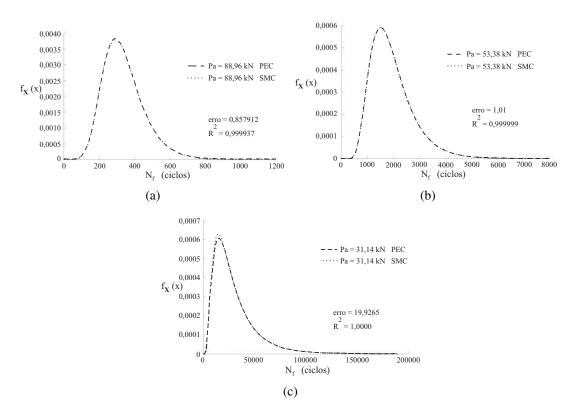


Figura 3: Função de densidade de probabilidade da vida de fadiga com carregamento constante (a) Pa=88,96 kN, (b) 53,38 kN, (c) 31,14 kN

É possível mediante PEC dado o vetor de médias, os coeficientes de variação e as distribuições de probabilidade encontrar a probabilidade de falha da placa com dois entalhes laterais semi-circulares utilizando a metodologia deformação-vida adotada pelo presente trabalho. A probabilidade de falha para o número de ciclos, $N_f=62$, observado em laboratório, é indicada na Eq. (7).

$$P\left[N_f < 62\right] = 4.7791E - 07\tag{7}$$

As funções de densidade de probabilidade foram utilizadas para achar a média e desvio padrão do PEC e a probabilidade de falha, assim como a média e desvio padrão da SMC. Os resultados estão listados na Tabela 4 e mostram que os PEC podem ser usados sem perda de acurácia.

Tabela 4: Probabilidade de falha à fadiga para placa entalhadas sob carregamento de amplitude constante

F_a (kN)	$N_{f_{Obs}}$ (ciclos)	$N_{f_{PEC}} \ \mu$	V_{PEC}	$P\left[N_{f_{Obs}} < N_{f} < N_{PEC}\right]$	$N_{f_{SMC}} \atop \mu$	V_{SMC}
88,96	62	338	0,3436	56,55E-02	338	0,3454
71,17	635	696	0,3668	17,72E-02	696	0,3676
62,28	1300	1104	0,3867	29,04E-02	1104	0,3867

É possível estender o estudo ao caso de carregamento variável a fim de estabelecer a probabilidade de falha de uma placa com dois entalhes laterais semi-circulares, como parte da validação do PEC.

4 MODELAGEM DE FADIGA EM CORPOS ENTALHADOS SOB CAR-REGAMENTO DE AMPLITUDE VARIÁVEL

Foi realizado diversas análises probabilísticas do número de ciclos para falha considerandose incerteza em 4 propriedades do material, porém a aleatoriedade no carregamento não foi considerado. Nesta seção o carregamento será considerado aleatório desde a primeira componente do vetor de carregamento SO, até os quatro primeiros componentes do vetor de carregamento (S1, S2, S3).

A continuação são apresentados os parâmetros aleatórios de entrada analisados, vide a Tabela 5 além de $S0_4=-310$ MPa; $S0_5=310$ MPa; $S0_6=-172$ MPa; $S0_7=172$ MPa; $S0_8=-241$ MPa; E=73.100 MPa; b=-0,113; c=-0,713 e $K_f=2,4$ e os resultados obtidos para 8 variáveis aleatórias para o caso de estudo de uma placa com furo central cujo material é uma liga de alumínio 2024-T351 submetida um carregamento variável.

Estabelecido o PEC que representa o sistema mecânico descrito anteriormente é possível via simulação de Monte Carlo estabelecer a função de densidade de probabilidade da variável de saída, N_f , as diferentes estatísticas e a probabilidade de falha estimada mediante a metodologia Neuber-Morrow.

Tabela 5: Parâmetros aleatórios considerados na análise probabilística dos ciclos de vida do corpo de prova com 8 variáveis aleatórias.

Variáveis Aleatórias	μ	V
H' (MPa)	662	0,15
n' (-)	0,070	0,15
σ_f' (MPa)	927	0,15
ϵ_f' (-)	0,409	0,15
$S0_1$ (MPa)	1200	0,20
$S0_2$ (MPa)	-69	0,20
$S0_3$ (MPa)	345	0,20
S0 ₄ (MPa)	-310	0,20

Para achar o PEC foi necessário 90 simulações e o melhor grau foi estabelecido como o segundo; a precisão do PEC foi comparada com a SMC para 1.000.000 de dados por variável contra 50.000 simulações do PEC, onde PEC apenas precisou de 5% das simulações de Monte Carlo. Os métodos PEC e SMC resultaram em uma distribuição de probabilidade Lognormal com funções $f_X(x)$ similares, conforme mostrado na Fig. 4.

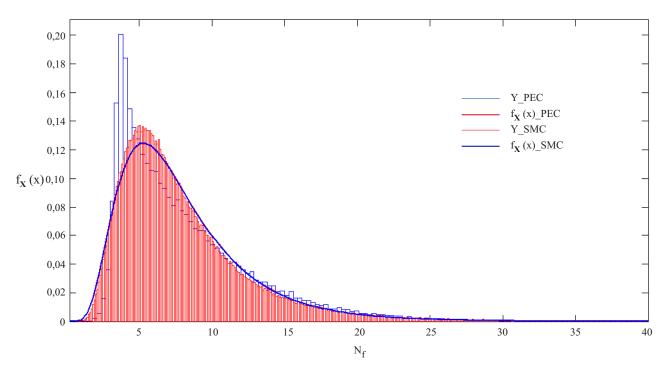


Figura 4: Função de densidade de probabilidade à fadiga com carregamento variável para o corpo de prova e 8 variáveis aleatórias.

É possível mediante PEC, para o vetor de médias, os coeficientes de variação e as distribuições de probabilidade dados, determinar a probabilidade de falha da chapa de aço com dois entalhes laterais semi-circulares, submetida à fadiga considerando 8 variáveis aleatórias e utilizando a metodologia deformação-vida. A probabilidade de falha é indicada na Eq. (8), para o número de ciclos de vida à fadiga estimada para os valores meios das variáveis de entrada (Determinístico).

$$P\left[N_f < 6.97\right] = 50.25E - 02\tag{8}$$

Enquanto que, a média e o desvio padrão estimados via PEC são, 8,04 e 4,71 ciclos de vida à fadiga, respectivamente, enquanto que por SMC a média e o desvio padrão estimados foram de 8,07 e 4,92 ciclos de vida, observando-se uma semelhante distribuição dos resultados pelos dois procedimentos.

5 CONCLUSÕES

Este trabalho demostrou a eficiência do uso do polinômio de Hermite Multidimensional para simular variáveis estocásticas de entrada (propriedades do material e nível de carregamento aplicado) com um custo computacional reduzido, a fim de determinar a resposta de saída (número de ciclos para falha por fadiga) da metodologia deformação-vida de estimativa de vida à fadiga. Esta pesquisa demostrou que a variação nas variáveis aleatórias de entrada do material causa uma propagação importante da incerteza através do modelo analítico de 2,4 vezes a variação de entrada considerada.

A quantificação de incerteza do número de ciclos para falha por fadiga, N_f , é sensível à aleatoriedade do carregamento principalmente, mais que à incerteza nas propriedades do material. Considerando a aleatoriedade do material e o carregamento é possível ter variações que podem chegar ao 58,6 %, considerando variações do 15 e 17 % respectivamente. Os resultados demonstraram amplamente a diminuição do tempo computacional com pouca ou nenhuma perda de precisão utilizando os Polinômios de Hermite Multidimensional

AGRADECIMENTOS

Os autores agradecem à Faculdade de Tecnologia da Universidade de Brasília, Brasil; ao programa de Pós-Graduação em Estruturas e Construção Civil pelo apoio e a Coordenação de aperfeiçoamento de pessoal de nível superior - CAPES.

REFERENCES

Adomian, G. (1980). Applied Stochastic Processes. First. Vol. 1. New York: Academic Press.

Bannantine, J., J. Comer e J. Handrock (1989). *Fundamentals of metal fatigue analysis*. New York, State United: Prentice Hall.

Berveiller, M., B. Sudret e M. Lemaire (2006). "Stochastic finite elements a non-intrusive approach by regression". Em: *European Journal of Computational Mechanics* 15.1-3, pp. 81–92.

- Blatman, G. (2009). "Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis". Mestrado em Engenharia Civil. Clermont-Ferrand: Universite Blaise Pascal, p. 222.
- Blatman, G. e B. Sudret (2008). "Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach". Em: *Comptes Rendus MÃl'canique* 336.6, pp. 518–523.
- (2010). "An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis". Em: *Probabilistic Engineering Mechanics* 25.2, pp. 183–197.
- (2011). "Adaptive sparse polynomial chaos expansions based on Least Angle Regression". Em: *Journal Computational Physics* 230.6, pp. 2345–2367.
- Doll, J. e D. Freeman (1986). "Randomly Exact Methods". Em: *Science* 234.4782, pp. 1356–1360.
- Ghanem, R.G. e P.D. Spanos (2003). *Stochastic Finite Elements: A Spectral Approach*. United State: Dover Publications.
- Ghiocel, D. e R. Ghanem (2002). "Stochastic Finite Element Analysis of Seismic Soil Structure Interaction". Em: *Journal Eng. Mechanics* 128.1, pp. 66–77.
- Hosder, S. e R. Walters (2010). "Non-Intrusive polynomial chaos methods for uncertainty quantification influid dynamics". Em: 48th AIAA Aerospace sciences meeting including the new horizons forum e aerospace exposition. Orlando, USA.
- Huang, S., B. Liang e K. Phoon (2009). "Geotechnical probabilistic analysis by collocation based stochastic response surface method an EXCEL add in implementation". Em: *Georisk* 3.2, pp. 75–86.
- Iman, R. e W. Conover (1980). "Small Sample Sensitivity Analysis Techniques for Computer Models, with an Application to Risk Assessment". Em: *Communications in Statistics-Theory and Methods* 9.17, 1749âĂŞ1842.
- Isukapalli, S. S. (1999). "Uncertainty Analysis of Transformation Models". PhD thesis. New Jersey, United State: The State University of New Jersey, p. 141.
- Keese, A. e H. Matthies (2005). "Hierarchical parallelisation for the solution of stochastic finite element equations". Em: *Journal Computers and Structures* 83.14.
- Le-Maitre, O.P. e O.M. Knio (2010). Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics. London, UK: Springer.
- Maitre, O. et al. (2001). "A stochastic projection method for fluid flow I basic formulation". Em: *Journal of Computational Physics* 173.3, pp. 481–511.
- Morrow, J. (1965). "Cyclic plastic strain energy and fatigue of metals". Em: *ASTM STP* 378.1.1, p. 45.

Neuber, H. (1961). "Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law". Em: *Journal of applied mechanics* 28.1, pp. 544–550.

Papoulis, A. (1991). *Probability, Random Variables, and Stochastic Processes*. First. Vol. 1. New York: McGraw-Hill.

Phoon, K.K. e S.P. Huang (2007). "Uncertainty Quantification Using Multi-Dimensional Hermite Polynomials, ASCE 2007, pp. 1?10." Em: *J. ASCE* 1.1, pp. 1–10.

S-K. Choi, R. Grandhi e R. Canfield (2007). *Reliability-based structural design*. London: Springer.

Socie, D., N. Dowling e P. Kuranth (1984). "Fatigue life estimation of notched members". Em: *ASTM STP 833* 833.1, pp. 284–299.

Sudret, B. (2007). "Uncertainty propagation and sensitivity analysis in mechanical models: Contributions to structural reliability and stochastic spectral methods". PhD thesis. Clermont Ferrand, France: UniversitÃl' Blaise Pascal, p. 173.

Sudret, B. e A. Der-Kiureghian (2000). *Stochastic Finite Elements and Reliability: A State of the Art Report*. Rel. téc. University of California, Berkeley.

Tatang, M. (1995). "Direct Incorporation of Uncertainty in Chemical and Environmental Engineering Systems". PhD thesis. Cambridge, MA: Massachusetts Institute of Technology, p. 141.

Villadsen, J. e M. Michelsen (1978). Solution of differential equation models by polinomial approximation. Englewood Cliffs, NJ.: Prentice-Hall.

Webster, M., M. Tatang e G. McRae (1996). *Application of the Probabilistic Collocation Method for an Uncertainty Analysis of a Simple Ocean Model*. Rel. téc. MIT Joint Program on the Science e Policy of Global Change Reports Series No. 4, Massachusetts institute of Technology.

Xiu, D. (2009). "Fast Numerical Methods for Stochastic Computations A Review". Em: *Communications in Computational Physics* 5.2-4, pp. 242–272.

— (2010). *Numerical Methods for Stochastic Computations*. New Jersey: Princeton University Press.

Xiu, D e J S Hesthaven (2005). "High Order Collocation Methods for Differential Equations with Random Inputs". Em: *SIAM J. Sci. Comput.* 27.3, pp. 1118–1139.