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Abstract. A formulation for error estimation is developed for the bending problem of composite
laminated plates based on the Mindlin-Reissner kinematic model discritized by the Generalized
Finite Element Method (GFEM). The error estimation process starts with an upper bound in en-
ergy norm, which is obtained following the basic CRE (Constitutive Relation Error) framework
of the Ladevèze formulation, that is, the estimate is obtained from a statically admissible stress
field computed at element level in a Neumann problem where the element boundary forces are
equilibrated. The authors have previously shown that an accurate description of the in plane
stresses in a laminate is essential to obtain an accurate approximation to the transverse shear
stresses at the layers interfaces. Since important failure modes in laminated composite plates,
like the delamination, are linked to the transverse stresses, it is essential to develop both, ac-
curate post-processing procedures to compute improved transverse stresses, and also estimate
techniques for the discretization errors. The first condition is adequately satisfied by GFEM.
Therefore, the aim of the present work is to extend the general CRE technology to develop
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formulations to estimation of errors in Quantity of Interest (QI) identified preferably with the
stress field in the laminated plate problem. One of the steps necessary in the CRE procedure is
the computation of and admissible stress field in each element, in a Neumann problem where
the boundary forces have been previously equilibrated. For a GFEM basis with high order
enrichment, adequate procedures have to be sought. Here we use one single higher order fi-
nite element, based on displacement FEM, to obtain an approximation to the equilibrated field.
The formulation is implemented for arbitrary degree of the basis, which allows an arbitrarily
close approximation to the equilibrium condition. The sharpness of the QI’s error bounds is
increased with the accuracy of the primal and dual global energy norm of errors. In the present
work we investigate the effectiveness of a local GFEM p-enrichment as a tool to improve the
approximability of the model in capturing the local gradients which characterizes response of
the dual loading. The GFEM p-enrichment is implemented in a simple and straightforward way,
as opposed to some other possible forms of enrichment, e.g. local h-refinement or a sub-domain
approach. Numerical tests are performed to asses the effect of the different parameters in the
modeling over the errors in the quantities of interest.

Keywords: Strict error bounds estimation, Generalized Finite Element Method, Admissible
stress field, Element Equilibrated Technique, Laminated plate Mindlin model.

1 INTRODUCTION

One of the goals of the Finite Element Method (FEM), or its generalized form (GFEM), in
the structural mechanics consists in providing relieble and accurate estimates to be used in anal-
ysis and design in the different branches of industry, for example the automobilistic industry,
aeronautics, naval, power plants, etc. In the first years of the FEM development, the commu-
nity was satisfied of merely being able to obtain a numerical approximation of the solution for
the problem at hand, but soon after the 1980’s, investigations were started aimed to estimate
also bounds for the errors commited in the numerical models. More recently, several indus-
trial fields have already made mandatory the execution of an error estimate to every numerical
model. Coarse energy estimates have already become available in most large commercial FEM
codes.

Among the many techniques and procedures developed to estimate errors in FEM simula-
tions, we can consider, possibly, only a few large families of methods: those based on equili-
brated residuals, (Oden & Prudhomme, 2002), the patch-based flux-free method, (Parés et al.,
2006; Barros et al., 2013), and those based on Constitutive Relation Error,(Ladevèze & Pelle,
2005), hypercircle, (Prager & Synge, 1947), besides many other variations and combinations.
These forms have been, since their origin, based on consistent mathematic analysis. In paral-
lel, there are the methods derived from the ZZ method (Zienkiewicz & Zhu, 1992), associated
with smoothing of stresses obtained in super convergent points. These methods are more ade-
quate to the post processing of low order finite elements and, only recently, became object of
improvements (Dı́ez et al., 2006).

The Constitutive Relation Error method was first proposed by Ladevèze in 1975, initially
for the post-processing of FEM results in linear problems, and have been developed further for
dynamic and material non linear problems (Ladevèze & Rougeot, 1997; Pelle, 1995; Ladevèze
& Chamoin, 2010) for example. Apparently this was the first general purpose method to provide
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a strict upper bound for the FEM error, although in 1947 Prager had already developed a method
based on hypercircle to give error estimates (Prager & Synge, 1947).

In laminated orthotropic plates it is known (Mendonça et al., 2011) that the transverse
shear stresses are poorly estimated by the low order FEM. The extraction method based on
transverse stress integration only provide acceptable transverse estimate if the in plane stresses
are computed from a FE basis of high order. The GFEM provides a straightforward and simple
way to generate p-enrichment in a coarse mesh. Therefore, the GFEM p-enrichment becomes
in important tool to generate high order approximation over the plate surface, which provides
improved estimates for the transverse shear stresses.

Some research have been done in the development of error estimators for homogeneous
isotropic plate FEM models. Benoit in 1999 obtained error bounds in energy norm for the
Kirchhoff kinematic model. For the error estimates for Mindlin model, it can be noticed the
work of Carstensen in 2006. Da Veiga in 2013 performed error analysis for the MITC plate
elements.

The objectives of the present paper are the following: (a) to formulate the global energy
error estimate for the laminated plate bending model, based on the Constitutive Relation Error
formulation, adapted to the GFEM technique; (b) to formulate the dual problem for the error
in quantity of interest. In both steps, it is sought to investigate the effects of p-enrichment in
several sub-steps involved, which are, for example, the enrichment of the GFEM basis, of the
1-D polynomial basis used to represent the equilibrated tractions along each element edges, the
effect of the basis degree used in the solution of the finite element model for the admissible
stress field problem at elements level.

The overall main goal is investigation of the effectiveness of local GFEM p-enrichment
as a tool to improve the approximability of the model in capturing the local gradients which
characterizes response of the dual loading. The GFEM p-enrichment is implemented in a simple
and straightforward way, as opposed to some other possible forms of enrichment, e.g. local h-
refinement or a sub-domain approach.

Besides the evaluation of the p-enrichment in the dual problem, other evaluations are also
performed. The sensibility of the Constitutive Relation Error (CRE) method for a posteriori
error estimate in certain types of Quantities of Interest was also evaluated with respect to the
degrees polynomial reproducibility used in each of the hierarchic sets of basis functions used in
the different stages of the method. The basis degrees tested are the following: (1) The degree d
of the FEM basis of the triangle Lagrange functions used for the equilibrium problem in each
isolated element problem; (2) The degree e of the 1D polynomial function used on the elements
edges to represent the equilibrated resultant forces. All tests were performed with QI’s defined
as moments of a stress components over a given element. As a novelty, these moments are not
only average usually, but they are defined from polynomial weight functions of arbitrary degree
g. The tests were done with weights of degrees zero and one.

2 REFERENCE PROBLEM: THE LAMINATED PLATE BENDING
Let us consider the general conditions of a static linear problem of a anisotropic laminated

plate occupying a volume V = Ω × I ∈ R3 × R, where Ω represents the reference (mean)
surface, with cartesian coordinates x = (x, y). The boundary of the reference surface is des-
ignated as Γ. I is the domain along the the transverse direction, defined as I = {z, such that
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z ∈ [−H/2, H/2]}, where H is the laminate thickness. The boundaries of the plate are defined
by the surfaces z = ±H/2 and are designated as S+ and S−, and the lateral surface L, defined
by (x, z) such that x ∈ Ω and z ∈ I .

The plate is subjected to volumetric body load b = b(x, z), surface distributed load q =
q(x) applied over the upper surface S+, and lateral surface loads f applied at the part of the lat-
eral border L designated as Lf . Here we restrict the distributed load to have only the transverse
component, that is, in cartesian coordinates, q = {0, 0, qz). The rest of the boundary conditions
are: (a) free surface at S−; (b) Dirichlet boundary conditions u = ū at the part of the lateral
surface designated as Lu. The vectors b, f , q and u ∈ R3.

The kinematic relations for the First Order Shear Deformation Theory (Mindlin’s Model)
can be represented as

ux(x, z) = u0
x(x) + zψx(x), uy(x, z) = u0

y(x) + zψy(x), uz(x, z) = w(x). (1)

Where u0
x and u0

y are generalized in plane displacement components of a point in the reference
surface, ψx, ψy are warp functions and w is the transverse displacement of the reference surface.
The tests described in this paper can be done more clearly, without loss of generality, restricting
the model to simple bending, that is, transverse loading on symmetric laminate. Therefore, the
finite element solution of the equilibrium bending problem is: given qz, χ̄m and Qn , obtain
zh that satisfies

∫
Ω

zh · Σh(u
∗
h) dΩ−

∫
Ω

q · u∗
h dΩ−

∫
Γf

t̄ · u∗
h dΓ = 0, for any u∗

h ∈ V arh, (2)

where the symbols were adapted from the general problem to the bending case as

Σh =

 κ

γc

 , zh =

 Mh

Qh

 , Mh =


Mx

My

Mxy


h

, Qh =

 Qy

Qx


h

,

q =


qz

0

0

 , t̄ =


Qn

Xm

Y m

 and uh =


w

ψx

ψy


h

. (3)

The constitutive relation for the laminate, when restricted to bending, will be represented
in compact form as z = CΣ where C is the constitutive matrix for the laminate at the reference
surface coordinate x.

3 GFEM DISCRETIZATION

Let us consider an usual FEM regular mesh of elements of domain Ωe defined such that
Ωe ⊂ Ω and ∪Ωe = Ω. The mesh is defined by a set of nodes n = 1, ..., nno of coordinates
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xn = (xn, yn), and define the patch Pn as the union of all elements that share node n, whose
domain is ΩPn Let us define a set of partition of unity (PoU) functions φ(x) = {φ1, φ2, · · · ,
φn, · · · , φnno}, where φn is associated with patch Pn such that φn(xn) = 1 and it has compact
support on ΩPn.

The GFEM general foundation consists in obtaining a set of approximation functions by
enriching the PoU set by adequate functions. In many cases these are singular or high gradient
regular functions defined around a localized region on the domain. However, for the goals of
this paper, it is more adequate to use the most traditional setting of GFEM, based on enrichment
given by a simple complete set of monomials defined in global coordinates. In this way the tests
will give results more clearly in a controlled set of problems. Therefore, we use the set of nodal
monomials En = {1, x̄, ȳ, x̄2, x̄ȳ, ȳ2, x̄3, x̄2ȳ...}, where x̄ and ȳ are normalized coordinates,
arbitrarily defined as x̄ = (x−xn)/Lxn and ȳ = (y−yn)/Lyn and Lxn and Lyn are characteristic
lengths of the patch Pn. The set of all nodal monomials is E = {E1, E2, ..., En, ..., Enno}. A set
of enriched approximation functions is generated as

N(x) = φ(x)E = {φ1E1, φ2E2, · · · , φnEn, · · · , φnnoEnno}. (4)

Non homogeneous enrichment can be easily defined, using a different set En for each patch.
The set N(x) is used to discretize the generalized displacement components uh, for example,
w(x) = N(x)W, where W is a convenient set of nodal coefficients of the approximation. After
that, the usual displacement based FEM formulation follows naturally.

It is possible to prove that the set of approximation functions N(x) is capable of approx-
imating precisely any complete polynomial equation up to degree p, over a patch Pn, if the
patches of all the nodes q in Pn are enriched with complete sets Eq of monomials of degree p.
Throughout the text, we will refer to a set of GFEM basis degree p.

The usual form of the PoU used is the C0(Ω) shape functions used in FEM. Most com-
monly, the linear piecewise functions. This gives origin to what we call C0-GFEM, in oposition
to the smooth versions, called Ck-GFEM, (Mendonça et al., 2011; 2013) where the PoU func-
tions are Ck(Ω) continuous, where k is a positive integer. The formulation for error estimate
described here is adequate for both GFEM forms.

4 CONSTITUTIVE RELATION ERROR ESTIMATOR

Let us consider three pairs of solution:

1. The pair (uex,zex), which is the exact solution of the complete set of conditions: the
equilibrium condition (2), the constitutive equations and the kinematic relations eq.(1)
and u ∈ Kim;

2. The approximate FE solution pair (uh,zh), with uh ∈ Kimh and zh such that Mh =
Dκ(uh) and Qh = Eγc(uh). Thus, the discretization error is defined as eu = uex − uh;

3. An admissible solution (ûh, ẑh), that can be derived from (uh,zh). It is admissible in the
sense that ûh ∈ Kimh, (it is kinematically admissible) and ẑh satisfies (2) (it is statically
admissible).
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It is considered two measures of the discretization error: a global error, based on the energy
norm and a local one defined with respect to a given quantity of interest. The global error is
defined as

Egl = ‖eu‖Kim,Ω = ‖zex −zh‖S,Ω (5)

where the norms are defined as

‖•‖Kim,Ω =

(∫
Ω

CΣ(•) : Σ(•) dΩ

)1/2

and ‖•‖S,Ω =

(∫
Ω

• : C−1 • dΩ

)1/2

. (6)

The Constitutive Relation Method (CRE) adopted in this work uses an admissible solution
to derive a strict, computable upper bound of the global errorEgl. First, the quantityECRE(v,z)
is defined as

ECRE(v,z) ≡
(

1

2
‖z−CΣ(v)‖2

S,Ω

)1/2

for ∀(v,z). (7)

It is proved in Ladevèze & Pelle (2005) that

‖uex − ûh‖2
Kin,Ω +

∥∥zex − ẑh

∥∥2

S,Ω
= 2E2

CRE(ûh,ẑh), (8)

such that ECRE produces an upper bound as Egl ≤
√

2ECRE(ûh,ẑh). The computation of
ẑh can be performed by different techniques, but probably the most versatile are the element
equilibration technique (Ladeveze & Pelle, 2005) and the flux-free technique (Parés et al., 2006;
Dı́ez et al., 2006). For the admissible displacement, usually one simply takes ûh = uh.

5 UPPER AND LOWER BOUNDS ON ERROR OF QI - from CRE

Consider that the quantity of interest (QI) is a linear functional L(u) of the displacement
field, defined in the form

Q(u) = L(u) ≡
∫

Ω

(
σ̃Σ : ε(u) + z̃Σ : Σ(u) + f̃Σ · u

)
dΩ, (9)

where σ̃Σ, z̃Σ and f̃Σ are operators (called extractors) with dimensions of stresses, resultant
stresses and force respectively, arbitrarily chosen to provide the quantity one has interest, and
can be given in explicit or implicit form. z̃Σ is adequate to identify quantities of interest of
generalized deformation of the reference surface, that is, {κx, κy, κxy, γyz, γxz}T , σ̃Σ is adequate
to identify deformation components, that is, {εx, εy, γxy, γyz, γxz}T and f̃Σ identifies generalized
displacements of a point in the reference surface, that is, {w, ψx, ψy}T . In the next section they

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
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will be adapted to identify the more useful quantities of interest of stresses, {σx, σy, τxy, τyz,
τxz}T at a given point (x, z) in the volume, resultant stresses {Mx, My, Mxy, Qy, Qx}T and
distributed forces {q, mx, my}T , respectively.

Next, the following adjoint problem is defined, which uses L(u) as a weak form loading:
find the displacement-resultant stress pair (ũ,z̃) which satisfy

Kinematic conditions: ũ ∈ Kin and ũ(x) = 0, for ∀x ∈ Γu,

Equilibrium condition:
∫

Ω

z̃ · Σ(u∗)dΩ = L(u∗), for ∀u∗ ∈ U0,

Constitutive relation: z̃(x) = CΣ(ũ(x)) for ∀x ∈Ω. (10)

The structure of the adjoint problem is the same as the reference problem, but with a dif-
ferent loading. At this point, one has two problems, with two approximate solutions, and it is
necessary to estimate the discretization errors on each approximation. Using the CRE methodol-
ogy, one obtains FE approximations for each problem, which does not satisfy local equilibrium,
and from then, one generates admissible solutions, which satisfyes all conditions except the
constitutive relation. Diagrammatically, one has:

Reference problem: (uh,zh) (FE approx.) −→ (ûh,ẑh) (admissible),

Adjoint problem: (ũh,z̃h) (FE approx.) −→ (̂̃uh, ̂̃zh) (admissible). (11)

The admissible stresses are computed from the prolongation condition which, for the
adjoint problem is the left equality of:

∫
Ω

̂̃zh ·Σ(u∗)dΩ =

∫
Ω

z̃h ·Σ(u∗)dΩ = L(u∗). (12)

With the two approximate admissible solutions of (11), the Theorem 1 below is stated, as
a modification of a theorem in ref. (Ladevèze & Chamoin, 2010) that was enunciated in the
frame of linear elasticity and here it is adapted to relate quantities of interest of stresses and
resultant stresses which are characteristic of the laminated plate model. Thus, the bounds for
the discretization error in quantity of interest are estimated from the following theorem.

Theorem - Consider Qex the unknown exact value of the QI and Qh the computed FE
approximation of it. One has the following inquality:

|Qex −Qh −Qhh| ≤ ECRE(ûh,ẑh)︸ ︷︷ ︸
E

ECRE

(̂̃uh, ̂̃zh

)
︸ ︷︷ ︸

Ẽ

, where (13)

Qhh ≡
∫

Ω

(
ẑh −CΣ(ûh)

)
·C−1 ̂̃zm

h dΩ+L(ûh−uh) and ̂̃zm

h =
1

2

(̂̃zh + CΣ(̂̃uh)) . (14)
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——–

The inequality (13) can be written as

|Qex −Qh −Qhh| ≤ E Ẽ,

−E Ẽ ≤ Qex −Qh −Qhh ≤ E Ẽ,

Qhh − E Ẽ︸ ︷︷ ︸
ηLQ

≤ Qex −Qh ≤ E Ẽ +Qhh︸ ︷︷ ︸
ηUQ

(15)

such that one obtains the desired bounds ηLQ and ηUQ for the discretization error of the quantity
of interest. Also, one can obtain bounds for the QI itself: ηLQ +Qh ≤ Qex ≤ ηUQ +Qh.

From (15), the average of the error in the QI is

(Qex −Qh)m ≡
1

2

(
ηLQ + ηUQ

)
= Qhh. (16)

This shows explicitly the role of Qhh as the center of the range between the lower and
upper bounds of the error, which is given by the product E Ẽ. This term, E Ẽ, is the only one
present in the previous error estimate formulations prior to the work Ladevèze & Chamoin in
2010, which included the term Qhh. Part of the goals of the present work is to investigate the
efficiency of this estimation.

6 SOME DETAILS ON THE USE OF THE EXTRACTORS

Consider that we want to have an error estimate of a given resultant stress component,
z1(x), at all x ∈ΩΣ, where ΩΣ ⊆ Ω is an arbitrary region of the domain, for example, a chosen
finite element of the mesh or some smaller region in the element or still a region encompassing
a group of elements of partes of then. The definition in (9) makes use of an integral over the
domain. This formal structure can be adapted in the following way. Let us consider, for the
sake of clarity of description, only two of the three extractors in in (9), the in plane components
of σ̃Σ and f̃Σ, and decompose σ̃Σ with help of the material property matrix

Q(u) = L(u) ≡
∫

Ω

(
ε̃Σ · σ(u) + f̃Σ · u

)
dΩ. (17)

σ ={σx, σx, τxy}T are the in plane stresses at a point (x, z) in the volume and Sk is the material
matrix of the layer k which contains the coordinate z. For bending, ε = zκ. Let us consider a set
of continuous basis functions defined over ΩΣ, represented as N(x) = {f1, f2, · · · , fk, · · · , fn},
where fk(x) has compact support on ΩΣ. If we are interested in the error estimate of a given
stress component of σ, that is, σp, p = 1, 2, 3, we define a set of n deformation extractor vectors
ε̃pΣg, g = 1, 2,· · · ,n, such that its only non zero entry is fk(x), at position p. For example, for
σx, p = 1, the set becomes
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Suzana Moreira Ávila (Editor), ABMEC, Brası́lia, DF, Brazil, November 6-9, 2016



Paulo de Tarso R. Mendonça,Ludovic Chamoin, Clovis S. de Barcellos

ε̃1
Σ1 = {f1(x), 0, 0}T , ε̃1

Σ2 = {f2(x), 0, 0}T , ε̃1
Σg = {fk(x), 0, 0}T ,

... (18)

ε̃1
Σn = {fn(x), 0, 0}T , etc, if x =(x, y)∈ ΩΣ and fg = 0 if (x, y)6∈ ΩΣ.

The functions fk(x) must form a complete set, whether polynomial, trigonometric or other.
The set ε̃pΣg produce n moments of the QI:

Lg(u) =

∫
ΩΣ

ε̃pΣg · S
kε(u)dΩΣ,

=

∫
ΩΣ

ε̃pΣg · σ(u)dΩΣ, g = 1, 2, · · · , n. (19)

It is clear that Lg(u) is the QI of the moments of σx(x) with respect to the function fg. If
one computes FE approximations for all of these moments, and the respective bounds of error
accordingly to (15), one has, in simplified notation, for a given moment k,

LgQ ≤
∫

ΩΣ

fg ∆σx dΩΣ ≤ U g
Q. (20)

∆σx(x) =(σxex−σxh) is the unknown pointwise error in the stress component. It is possible to
arbitrate another set of basis functions N̄(x) = {f̄1, f̄2,· · · , f̄g, · · · , f̄m} to discretize the error
in the stress component, such that, for any x ∈ ΩΣ,

∆σx(x) = σxex − σxh ' N̄(x)∆S,

= f̄l(x)∆Sl, l = 1, 2, ..., n, (21)

where N̄(x, y) is a set of m basis functions on ΩΣ and ∆S is the correspondent set of unknown
coefficients.

Substituting this approximation in (20) and performing the integration, one obtains

LgQ ≤
[∫

ΩΣ

fg N̄ dΩΣ

]
∆S ≤ U g

Q, for g = 1, 2, ..., n,

LgQ ≤
[∫

ΩΣ

fg f̄l dΩΣ

]
︸ ︷︷ ︸

Ggl

∆Sl ≤ U g
Q, l = 1, ...n,

LgQ ≤ Ggl ∆Sl ≤ U g
Q, (22)

LQ ≤ G ∆S ≤ UQ, (in vector form)
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G is a n×m matrix, whose components are

Ggl =

∫
ΩΣ

fg f̄l dΩΣ. (23)

(If the set of functions chosen for fg and f̄l are the same and linearly independent, G will
be square, symmetric and positive definite.) Equation (22) defines two algebraic problems
G ∆S = LQ and G ∆S = UQ. If n ≥ m, the solution is unique and (22) becomes

p ≤ ∆S ≤ q, (24)

where p = G−1LQ and q = G−1UQ are coefficient vectors of the errors bounds, associated
with the basis N̄.

These coefficients are next used to combine the terms in the basis N̄ to generate the point-
wise error of ∆σ1:

N̄p ≤ N̄ ∆S ≤ N̄q,
f̄lpl ≤ f̄l ∆Sl ≤ N̄lql, (25)

LQ(x) ≤ ∆σx(x) ≤ UQ(x).

In this way, we have obtained LQ(x) and UQ(x), the bounds for the pointwise error of the
component σx at the point x ∈ ΩΣ. It should be noted that, even if the bounds for the error
in each moment of QI are strict, the same cannot be said from the bounds in (25), due to the
approximation done on the error of the stress, eq. (21), whose accuracy is dependent of the size
of basis N̄. In all tests we used the triangular Lagrangian basis functions for both N̄ and N. It
is possible to obtain bounds for the pointwise error of a stress component, at any position in an
arbitrary region ΩΣ. The region is taken here to be an entire arbitrary element in the mesh.

7 ASPECTS ON THE EQUILIBRATED ELEMENT TECHNIQUE

The equilibrated element technique for the FEM is well established after some decades,
Oden & Prudhomme (2002) and Ladeveze & Pelle (2005), but here we summarize some of its
main steps in order to be able to describe some particularities of its application to the GFEM
when it is implemented with hierarchic polynomial enrichment.

Given the FEM or GFEM results, the general steps for construction of an equilibrated
resultant force field, ẑh (x), x ∈ Ω, are the following.

1. For each element E, construction of a resultant forces field on the element edges which
satisfies interelement continuity with neighboring elements, and is it equilibrated with the
loading and internal forces in the element;

2. For each element E, construction of an statically admissible resultant force field ẑh (x),
x ∈ΩE .
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The core of the technique is the prolongation condition which, in the laminated plate prob-
lem can be expressed in the following way. Given an approximate solution Mh, Qh obtained
by the displacement based finite element method, with an approximation basis functions set
ϕij(x) where i = 1, 2, ...number of approximation functions in direction j, for j = 1, 2, 3 for
w, θx, θy respectively. One seeks an equilibrated field ẑh = {M̂h,Q̂h}, as a prolongation of the
finite element solution in the sense: For any approximation function ϕij(x) of the finite element
model, and for any element E of the mesh, it is imposed that

∫
ΩE

ẑh · Σ(u∗j (ϕik) ) dΩE =

∫
ΩE

zh · Σ(u∗j (ϕik) ) dΩE, (26)

where j indicates the components of the triad of generalized bending displacements in û: u∗ ={
w∗, w∗, θ∗y

}T . In this way, the equilibrated forces in the element are set to have the same
deformation energy in bending as the the FEM approximation, due to the linearity of (26) with
respect to ϕij . Observe that ϕi1 = {ϕi;0;0}T or ϕi2 = {0;ϕi;0}T or ϕi3 = {0; 0;ϕi}T .

Then we obtain an expression for the boundary tractions

∫
∂ΩE

T̂ · u∗j
(ϕik) dΓ =

∫
ΩE

zh · Σ(u∗j (ϕik) ) dΩE −
∫

ΩE

q · u∗j (ϕik) dΩ︸ ︷︷ ︸
Dj

E(i,k)

. (27)

where, to simplify, we consider only transverse distributed load qz, such that q = {qz, 0, 0}T
and boundary tractions T on the element are related to the generalized force by

T ≡


Qn

Xm

Ym


∂E

=


nx ny

nx ny

ny nx





Mx

My

Mxy

Qx

Qy


. (28)

nx and ny are the cartesian components of the normal vector on the boundary, outward to the
element.

The right hand side of (27) is known and is represented byDj
E(i, k). Due to this decoupling

of ûj , eq.(27) generates three algebraic equations, one for each direction j, which produces the
values of the corresponding component of the equilibrated boundary traction T̂j in the element
E. Then (27) can be written as

∫
∂E

T̂jϕik dΓ = DE(i, j, k), for node i, component j, element E. (29)
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For a triangular element, all functions ϕik are zero on the edge opposite to the node i.
Therefore, th integral at the left hand side, on the boundary of the En-th (n = 1, 2, · · · , N )
element connected to the node i, is defined only by the two edges issuing from node i. The
value on each edge r = 1, 2 is designated by brn(i, k) (interface density projection), that is

brn(i, j, k) ≡
∫

Γr
En

T̂jϕik dΓ, (30)

where ΓrEn
, for r = 1, 2, are the edges of the element En connected to the node i. Also, the

right hand side of (29) is

DEn(i, j, k) ≡
∫

ΩE

zh · Σ(u∗j (ϕik) ) dΩE −
∫

ΩE

q · u∗j (ϕik) dΩ. (31)

y

x

Target element TE1

Ω1

12

3

Figure 1: GFEM mesh in the laminate, showing the target element TE1 for QI and the associated surround-
ing subdomain Ω1. In the detail, local node numbers of TE1.
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Figure 2: Estimated energy norm of error in primal problem from CRE versus the degree d of the FEM
basis in the equilibrium problem. eCRE =

√
2ECRE , and EEX is the exact energy norm of error. p = 2,

e = 5.

8 RESULTS

The test problem chosen is the classical problem of the square laminated plate, simply
supported, subjected to a transverse distributed load, with symmetric layer stack. The advantage
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of this model is that it possesses complete exact solution for the Mindlin kinematic model,
(Dobyns, 1981), for all types of response: displacements, stress components and strain energy.
The data are the following: sides a = b = 200 mm, total thickness H = 50 mm, three equal
orthotropic layers oriented at [0◦,90◦/0◦] of equal thicknesses h, and elastic properties E1 =
175 GPa, E2 = 7 GPa, G12 = G13 = 3.5 GPa, G23 = 1.4 GPa, ν12 = ν23 = 0.25, k = 1.0,
where the subscripts 1 and 2 indicate the principal orthotropic material directions, such that
direction 3 coincide with global axis z and 1 with x in layers 1 and 3. The applied load is
transverse sinusoidal distributed load given by q(x, y) = q0 sin(πx/a) sin(πy/b), with q0 =
0.001 N/mm2.

A single mesh is used, with three noded triangular elements, shown in Figure 1. For the
purpose of the tests, the quantity of interest is defined over one single element, denominated
target element, TE1, indicated in the figure. The region designated as Ω1 around TE1 is enriched
for the approximate solution of the dual problem. The definition of the QI is made with use of
weight functions which are selected as the triangular Lagrangian functions associated with the
TE1. The results are shown only for constant and linear weight functions, which are associated
with the intrinsic nodes 1,2 and 3 shown in Figure 1 for TE1.

2 3 4 5 6
d

0.6

0.8

1

1.2

1.4

Q
I/Q

I E
X

QI, node 3  sigmaY
D = 5, p = 2, e = 5, g = 1

GFEM
Lower bound
Upper bound
Average

Figure 3: QI for node 3 of the target element TE1, defined with linear weight function, for σy , versus the
degree d of the FEM basis in the equilibrium problem. D = 5, p = 2, e = 5.

The goal of the present paper is to evaluate the sensibility of the Constitutive Relation
Error (CRE) method for a posteriori error estimate in certain types of Quantities of Interest,
with respect to the degrees polynomial reproducibility in each of the hierarchic sets of basis
functions used in the different stages of the method. These basis degrees are the following:

1. p = 2, 3, ..., 9 is the degree of the GFEM basis in the primal global problem. An uniform
enrichment is adopted to simplify the observations;

2. D = 2, 3, 4, 5 is the degree of the GFEM basis in the dual problem, at the region around
the QI element (subdomain Ω1 indicated in Figure 1). (Here there are results only for QI
target element TE1, of Figure 1, not for TE1).

3. d = 2, ..., 9 = FEM basis degree (triangle Lagrange functions) for the equilibrium problem
in each isolated element problem;

4. g = 0, 1 = degree of the set of polynomials used as weight functions in the definition of
the QI, the functions fk(x) in (19).
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The first test is the the effectivity index for the primal problem, shown in Figure 2, for
eCRE/EEX versus d, where eCRE =

√
2ECRE is the estimated upper bound of error in energy

norm of the primal problem normalized by EEX , the exact GFEM error in energy norm. It was
kept fixed the degree p = 2 in the GFEM model and degree e = 5 in the 1D polynomial for the
equilibrated resultant forces on the element edges. It is seem that eCRE/EEX grows asymptot-
ically to abound about 1.8. Small values of d seems to generate, in this specific problem, more
accurate approximations, although it is known that only the asymptotic value is a guaranteed
upper bound. Different problems show that small values of d produce effectivity indices smaller
than one.

Next we start with the evaluations for the QI’s. In all results only one entity is chosen, the
stress component σy integrated over the target element TE1. In some of the results the weight
function fk(x) in (19) is the unity constant, that is, a polynomial of degree g = 0, and other
in other results g = 1 is used, where the polynomial is one of the linear Lagrangean functions
associated with one of the three nodes of the element TE1.

2 3 4 5
D

0.5

0.75

1

1.25

1.5

Q
I/Q

I E
X

QI, node 1  sigmaY
p = 2, e = 5, g = 1

QI1 GFEM
QI LBound, d = 6
QI UBound, d = 6
QI average, d = 6
QI LBound, d = 2
QI UBound, d = 2
QI average, d = 2

Figure 4: QI of the target element TE1, defined with linear weight function for node 1, for σy , versus the
degree D of the dual GFEM basis. p = 2, e = 5.

Figure 3 shows the evolution of the QI defined with linear and constant weight functions,
for σy, versus the degree d of the FEM basis in the equilibrium problem. The estimates are
normalized by QIEX , the exact value of the QI. It is observed and asymptotic behavior of the
bounds with growth of d, similar for both types of weight functions, with g = 0 or 1. In both
cases the range of the bounds with respect to the average is about±30 %. The curve indicated as
“Average” is obtained directly as the average of the upper and lower bound values. Considering
(15), the results denoted as QI upper and lower values are computed as

QIL = Qh +Qhh − E Ẽ,

QIU = Qh +Qhh + E Ẽ, (32)

such that the average is

QIm ≡
1

2
(QIL + QIU) = Qh +Qhh. (33)
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The results in Figures 3 and the ones that follows show a striking accuracy of the estimation
of the QI by the average of the bounds, for all values of d. This is a direct result of the term Qhh

of the formulation, which issues from the framework of the hypercircle theorem.

Figure 4 evaluates the effect of D, the degree of the GFEM basis in the region around the
target element TE1 in the dual problem. Also, the influence of values of d, the degree of the
FEM basis in the element equilibrium problem. Two extreme values are tested, d = 2 and 6,
with linear weight function associated to node 1 of the TE1 in the QI definition.

The results consistently show good approximation with the exact solution of the values of
QI obtained from the average of the error bounds, for all values of D. It must be noticed that
the values shown for D = 2 means that the basis used in the dual problem is the same used
in the primal problem. Even in this case we can obtain meaningful results for the bounds and
for the average estimate of the QI. This case corresponds to the most inexpensive option for the
analysis, that is, the stiffness matrices for both primal and dual problems are the same and need
to be factorized only once.

Figure 5 searches the asymptotic behavior of the bounds with d, where, differently from the
other graphs, the equilibrium problem on each element is solved with polynomials of degrees
extending up to d = 9. It is seen that a basis degree d equal to about 6 is reasonably sufficient
to approximate well the equilibrated stress field in each element. Results for d = 1 are only
illustrative, because the primal problem is solved in this case using GFEM of degree p = 2,
and the equilibrated resultant forces on each element’s boundary represent a loading which is
clearly too complex to to allow a FEM solution that approximates well an equilibrated stress
field using a FEM basis of degree only d = 1. Thus, the bounds are set much more apart than
the cases of larger values of d. However, even in this case, the average value is well behaved.
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GFEM
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Figure 5: QI defined with node 3 weight function over the target element TE1, for σy , versus the degree d of
the FEM basis in the equilibrium problem. D = 5, p = 2.

The range of the error bounds are equal to the productE Ẽ between the CRE energy norms
of error estimates in the primal and dual problems respectively. Figure 6 show the evolution of
both contributions along the basis degree of the equilibrium problem d. For the dual problem,
the loading is for a QI associated with a linear weight function for local node 3 of the TE1. On
the right vertical axis the errors are normalized by EP

CREAver and ED
CREAver respectively for tha

primal and dual problems, which are defined as
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EP
CREAver = ECRE(ûh,ẑm

h ), and ED
CREAver = ECRE

(̂̃uh, ̂̃zm

h

)
, (34)

where ECRE in both cases are computed according to (7) and ẑm
h and ̂̃zm

h are the averages of
equilibrated resultant forces computed according to (14) as

ẑm
h =

1

2

(
F̂h + CΣ(ûh)

)
, and ̂̃zm

h =
1

2

(̂̃zh + CΣ(̂̃uh)) . (35)

The errors for primal and dual problems are several orders of magnitude different. For
example, for d = 9, we obtain the following values for the primal problem: EP

CRE = 8.11 ·
10−4
√

Nmm, EP
CREAver = 11.9 ·10−3

√
Nmm, such thatEP

CRE/E
P
CREAver = 0.0677, and for the

dual problem: ED
CRE = 63.5

√
Nmm, ED

CREAver = 78.6
√

Nmm, such that ED
CRE/E

D
CREAver =

0.807.

Considering the ECREAver as reference, it can be seen that the global GFEM discretization
error in the dual problem is one order of magnitude larger than the primal one. The degree
used in the GFEM basis in the dual problem is D = 5 only over the region Ω1 around the target
element TE1 (the gray region shown in Figure 1). The global error depends on the discretization
in the region around the target element where the localized dual loading is applied. In Figure 7
we test the effect of applying especial enrichment over regions of two sizes around the element.
The first is on the nodes of the Ω1 and in the second case, the enrichment of degree D is applied
only on the three nodes of the TE1. In the second case, the transition region is composed by all
elements around TE1, that is, on this vicinity, the basis functions of approximation are not able
to represent completely polynomials of degree D, because the nodes that are not in TE1 are
enriched only with the polynomials of the primal problem, in the present case, of degree p = 2.
First, we observe the higher rate of convergence when the enriched region is larger. Second, the
relative errors are smaller, as expected.
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Figure 6: CRE energy norms of error estimates for primal and dual problem associated with node 3 of the
target element TE1, for σy , versus the degree d of the FEM basis in the equilibrium problem. D = 5, p = 2.

The lower and upper bounds for the set of QI´s issued from the three linear weighting
functions associated with the target element are used to obtain pointwise values of the stress
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component used in the definition of the QI, σy in the present case, over all points on the target
element. We obtain (a) an estimate from the lower bound, that is, σy(x) = UQ(x) + σh(x),
(b) an estimate from the upper bound, that is, σy(x) = LQ(x) + σh(x), (c) and, similarly, an
estimate from the average of the bounds: σy(x) = 1

2
[LQ(x) + UQ(x)] + σh(x), for ∀x ∈ ΩTE1.
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Figure 7: CRE energy norms of error estimates for dual problem with QI associated with node 3 of the
target element TE1, for σy . d = 6, p = 2, g = 1. Results for enrichment of dual problem over subdomain Ω1

and over only element TE1.

9 CONCLUSIONS
A formulation for error estimation in quantity of interest was developed for the bending

problem of composite laminated plates based on the Mindlin-Reissner kinematic model dis-
critized by the Generalized Finite Element Method (GFEM). The error estimation is based on
upper bounds in energy norm obtained by the basic CRE (Constitutive Relation Error) frame-
work, that is, the estimate is obtained from a statically admissible stress field computed at
element level in a Neumann problem where the element boundary forces are equilibrated. For
a GFEM basis with high order enrichment, an adequate procedures had to be sought, consisting
in the use of one single higher order finite element, based on displacement FEM, to obtain an
approximation to the equilibrated field. The formulation is implemented for arbitrary degree of
the basis, which allows an arbitrarily close approximation to the equilibrium condition.

The strategy used to sharpness the QI’s error bounds was to model the dual problem using
a GFEM p-enrichment with polynomial enrichment functions over a local region around the
dual loading in the same mesh used in the primal numerical problem. Therefore the additional
cost to solve the dual problem with respect to the primal one is small, because the factorized
initial stiffness matrix can be re-used. The GFEM p-enrichment is implemented in a simple
and straightforward way, as opposed to some other possible forms of enrichment, e.g. local
h-refinement or a sub-domain approach. Results showed that this strategy can be effective to
obtain accurate estimates for the average of the quantity of interest obtained from the estimates
of upper and lower bounds. The bounds themselves are not ideally sharp. The size of their
range is due to the difficulty of the p-enrichment to approximate well concentrated solutions
with high gradients.

Besides the evaluation of the p-enrichment in the dual problem, the sensibility of the Con-
stitutive Relation Error (CRE) method for a posteriori error estimate in certain types of Quan-
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tities of Interest was also evaluated with respect to the degree d of the Lagrangian triangular
function basis used in the FEM for the equilibrium problem in each isolated element problem.
Results show that for all degrees above 1, the estimated energy norm of the error is larger than
the exact error norm. Small values of d seems to generate, in this specific problem, more accu-
rate approximations, although it is known that only the asymptotic value is a guaranteed upper
bound. The asymptotic value for the estimated error norm seems to be reasonable attained with
degrees d = 4 or 5. It is worth noticing that the use of a single displacement based finite element
of high order seems to be very effective to obtain acceptable admissible stresses to be used in
the upper bound computation. Although the displacement based FE cannot produce perfectly
equilibrated stress fields, a simple hierarchic coding can provide stress fields arbitrarily close
to the local equilibrium in the element. This seems to be much simpler option than the hybrid
formulations.

All tests were performed with QI’s defined as moments of a stress components over a
given element. These moments were not only average, as usually it is done, but defined from
polynomial weight functions of arbitrary degree g. The tests were done with weights of degrees
zero and one.
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