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Abstract. In the context of dynamic analysis of structures, one of the limitations of the Finite
Element Method (FEM) is the difficulty of approaching the high frequencies. This lack of preci-
sion becomes more significant as the loading excite modes with higher frequencies. Aiming at
address this problem one may use the Finite Element Method Generalized / Extended (GFEM
/XFEM) to enrich the approximation space and better represent these high frequency modes.
Despite the excellent properties of GFEM / XFEM as high accuracy, application versatility and
excellent convergence rates, there are aspects that still limit its applicability as the numerical
instability associated with this enrichment process even in well-placed boundary value prob-
lems. GFEM/XFEM matrices may be ill-conditioned, which may result in a accuracy loss, and
even resulting in numerically singular matrices. In this work two proposals are presented to
circumvent the GFEM sensitivity problem. Examples of one-dimensional transient analysis are
presented and results are discussed analyzing the effects of adopting the preconditioning of
enrichment functions strategy.

Keywords: Dynamic Analysis, GFEM, Partition of Unity, Conditioning, SGFEM.

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering

Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016



GFEM stabilization techniques applied to transient dynamic analysis

1 INTRODUCTION

The Generalized Finite Element Method (GFEM) is a Galerkin method applied to subdo-
mains. In this method, some enrichment functions that reflect particular characteristics of the
problem are added to improve the quality of approximation. To simulate the propagation of
cracks, for example, it can be used functions that contain singularities or discontinuities. Sim-
ilarly, for problems of structural dynamics it may be used functions containing trigonometric
terms since this type of functions are usually associated with analytical solutions.

GFEM was applied to dynamic analysis is presented in Arndt (2009) and Torii (2012).
Arndt (2009) addressed enrichment methodologies for modal analysis of framed structures.
The approach’s efficiency in obtaining excellent results in terms of frequency spectrum has been
shown. However, applying successive layers of enrichment results in increased sensitivity of
the numerical problem. Thereafter, Torii (2012) extended GFEM studies in dynamics, applying
it to the two-dimensional domains and involving modal and transient analyzes.

Based on these studies, Shang (2014) extends the studies of GFEM to elastoplastic dynamic
transient analysis proposing solutions for numerical difficulties present in the FEM approach.
The results obtained are satisfactory but, nevertheless, the numerical sensitivity problem is still
present.

Addressing numerical sensitivity problems that arise in the application of enrichment pro-
posals, two alternatives are adopted such as presented in Weinhardt et al. (2015): application of
the concepts of the Stable Generalized Finite Element Method and application of precondition-
ing changes in enrichment functions.

Stable GFEM was first proposed by Babuška & Banerjee (2012) to adress ill-conditioning
issues associated to systems of equations arising from the GFEM application. This solution
consists on a subtle modification of enrichment functions prior to its association to the Partition
of Unity. Babuška & Banerjee (2012) still present the mathematical foundation that ensures the
conditioning of these preconditioned systems are as good as those resulting from FEM. In this
paper, we present an extension of this proposal to the transient analysis, continuing the work
presented by Weinhardt et al. (2015).

Following the idea that small changes in enrichment functions can change the numerical
conditioning of the problem without significant loss of accuracy properties of the GFEM, this
article presents the effects of a subtle change in the functions used for one-dimensional analysis
such as presented by Arndt (2009). This proposal has been proved to be very effective in
improving the stability for the modal analysis and so it’s presented for transient analysis.

2 METHODOLOGY

Trigonometric Enrichment

For free vibration problem has proposed by Arndt (2009) a block of enrichment functions
to the problem of dynamic analysis with GFEM. This group of functions consists of building a
couple of clouds, a sine and a cosine, subordinated cover of enriched node. These clouds are
written in the domain of element as two pairs of sine and cosine functions. The basic domain is
considered to ξ ∈ [0, 1].
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Sine cloud:

γ1j = sin(βjLeξ) (1)
γ2j = sin(βjLe(ξ − 1))

Cosine cloud:

ϕ1j = cos(βjLeξ)− 1 (2)
ϕ2j = cos(βjLe(ξ − 1))− 1

Where Le is the length of the element and βj = jπ is a hierarchical enrichment parameter
proposed by Arndt (2009) to j function levels.

2.1 SGFEM-based Stabilization
Stable Generalized Finite Element Method (SGFEM) was firstly proposed to address nu-

meric conditioning issues of GFEM Babuška & Banerjee (2012). This methods consists in
the application of a subtle modification of enrichment function prior to its inclusion in GFEM
approximation space, see Gupta et al. (2013); Li (2014).

In the SGFEM, the enrichment function are modified as described in Eq. 3, as presented
by Babuška & Banerjee (2012):

ϕ̃i(x) = ϕi(x)− Iω(ϕi(x)) (3)

where,

• ϕ̃i: i-th stabilized enrichment function

• ϕi: i-th enrichment function

• Iω(ϕi(x)): linear interpolant of the i-th enrichment function subordinated to support ω

The proposed stabilization of the first level of enrichment is shown in Fig.1.

Figure 1: Stabilization process for the first level of enrichment functions.
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2.2 Heuristic Modification Stabilization

Note that the variation in the enrichment parameter β1 implies different characteristics of
approaching, as already pointed out by Arndt (2009) and Torii (2012). However, the gain in ac-
curacy for certain frequencies does not appear to be associated with numerical stability gain. In
fact, apparently there is a certain trade-off between accuracy and numerical stability, regarding
the choice of the parameter β1.

A second point of interest is the observation of βj family of parameters. Parameters de-
scribed by βj are intrinsically related with enrichment functions and, consequently, with rela-
tions between the enriched functions present in the approximation space base. Thus, evolution
of βj influences the numerical characteristics of the approximation, such as stability. Therefore,
we sought a change in the enrichment function group to stabilize its continuous application,
avoiding the construction of approach spaces that tend to linear dependence.

The proposed modification is basically the change parameter formation rule βj enrichment
parameter, resulting in a subtle modification of each level of enrichment.

Recalling that parameter βj is calculated by βj = jαπ, it was proposed a modification,
creating new stabilized parameters β̄n given by:

β̄j =

[
2 (j − 1) +

β1
π

]
π j ≥ 1 (4)

It’s interesting to note that β̄1 = β1, since:

β̄1 =

[
2 (1− 1) +

β1
π

]
π =

[
0 +

β1
π

]
π = β1 (5)

This implies that there is no difference between approximation taken by this approach and
the standard trigonometric enrichment first level of enrichment.

2.3 Transient Bar Problem

The trigonometric enrichment in the context of GFEM applied to one-dimensional tran-
sient analysis was discussed earlier by Torii (2012) and Shang (2014) covering several exam-
ples. This work will continue the discussion by presenting the application of p refinement with
stabilization proposals set out in three enlightening examples. Stabilization alternatives in tran-
sient analysis, such as HHT used by Shang (2014), were avoided in order to keep focus on
the analysis of the interactions of the enrichment process and the stabilization proposals of this
work.

For the following examples, transient analysis arises in the application of the Newmark
Method, as described in Bathe (1996), using mass and stiffness matrices generated by the ap-
plication of GFEM with different approaches. Parameters were setted such as

√
E
ρ

= c = 1,
neglecting damping, and adopting a uniform mesh of 20 finite elements. For the time discretiza-
tion, the 20 seconds analysis interval was divided in 2000 steps of 10−2 seconds.

The model considered for the three examples consists of a bar with a clamped end and the
other free end where the load is applied as shown in Fig. 2. Trigonometric enrichment was
adopted using β1 = 3π

4
due to its performance in modal analysis as presented by Weinhardt

et al. (2015).
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Figure 2: Clamped-free bar subject to time dependent force applied in the end.

2.4 Loading Cases

Two loading cases were chosen to test stabilization techniques. Those are as follow:

• Heaviside loading - abrupt loading that remains over time (example 3.1). Due this type
of loading, discontinuities on the velocity field wil occur, see Monteiro (2009)

• Impulse loading - short time loading (example 3.2). Due this type of loading, hi high
displacements gradients will be present, see Monteiro (2009)

Loading cases are exemplified in Fig. 3.

(a) (b)

Figure 3: (a) Heaviside Loading, (b) Impulse Loading

3 RESULTS

Displacements, velocities and accelerations are presented for both loading cases in the
following examples.

3.1 Heaviside Loading

The external load is applied abruptly with a value of 1N and maintained until the end of
analysis, featuring a Heaviside force. The graphs of displacement and velocity, over time, of
the free end are shown below for different approximation strategies.
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Figures 4 and 5 presents transient response due to Linear FEM, one enrichment layer
GFEM and SGFEM.

Figure 4: Transient Analysis - Displacements at the free end.

Figure 5: Transient Analysis - Velocities at the free end.
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In order to complement the analysis the acceleration results are shown in Fig. 6 and Fig. 7.

Figure 6: Transient Analysis (p-refinement) - Accelerations at free end (apenas FEM)

Figure 7: Transient Analysis (p-refinement) - Accelerations at free end (FEM, GFEM e SGFEM).
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Analytical refinement is applied, reaching 4 enrichment levels for the three approaches:
GFEM, SGFEM e Heuristic Modification. Results are presented in Fig. 8 and Fig. 9.

Figure 8: Transient Analysis (p-refinement) - Displacements at the free end.

Figure 9: Transient Analysis (p-refinement) - Velocities at the free end.
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Figures 10 and 11 presents results corresponding to acceleration field over time.

Figure 10: Transient Analysis (p-refinement) - Accelerations at free end (GFEM, SGFEM e Heuristic Mod-
ification)

Figure 11: Transient Analysis (p-refinement) - Accelerations at free end (GFEM e Heuristic Modification).
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Results aiming to highlight the stabilization proposal are presentend in Fig.12 and Fig.13,
taking up to p-refinement to high-order.

Figure 12: Transient Analysis (High-order p-refinement) - Displacements at the free end.

Figure 13: Transient Analysis (High-order p-refinement) - Velocities at the free end.
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Acceleration results are presented in Fig. 14.

Figure 14: Transient Analysis (p-refinement) - Accelerations at the free end.

The first loading case was studied and responses were presented for displacements, ve-
locities and acceleration. Firstly, the approximation was made by one level of enrichment,
concerning both GFEM and SGFEM, and Linear FEM. Figure 4 show that displacements are
relativately accurated, even for Linear FEM approximation. However, velocity field presents
reasonable pertubation as shown in Fig. 5. This results were expected since the loading provoke
a velocity discontinuity over time, see Monteiro (2009). One may note that GFEM presents the
most stable solution among this three alternatives. In acceleration terms, the response is pre-
dominantly spurious for the three approaches since its approximation is significantly difficult
using continuous functions.

Applying 4 levels of enrichment, it was compared GFEM, SGFEM and the Heuristic Mod-
ification. Displacements responses for the three alternatives are pretty close, as shown in Fig.
8. However, velocities presented considerably different behaviours as Heuristic Modification
resulted in better approximation and SGFEM’s response rapidly deteriorated over time.

Numerical stability problems are highlighted in the approximation of acceleration field
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shown in Fig. 10 and Fig. 11 where one may note that SGFEM has its answer drastically
deteriorated as the analysis advances in time. GFEM also suffers significant deterioration, but
more limited. Meanwhile, the Heuristic Modification demonstrated a more stable behaviour,
although having a response with some disturbance.

Testing the stability of the proposed Heuristic Modification, Fig.12 and Fig.13 show the
results of application of 20 levels of enrichment. Apparently that high order p-refinement did
not result in significant gains in accuracy for both displacements and velocities. However,
it is worth noting that the application that many enrichment levels did not compromised the
stability of the numerical approach, following the trend shown in modal analysis as presented
by Weinhardt et al. (2015).

Applying a modal superposition method can take advantage of these characteristics to ex-
tract eigenvalues generated by modal analysis to build the transient response with less effort.
The acceleration field of this example corresponds to the second derivative of the displacement
field which is of class C0 and hence is discontinuous. Thus, the numerical approach is consid-
erable difficulty, since the problem model is based on displacements.

3.2 Impulse Loading

The external load is applied with a value of 1N in the time range from 0 to 10−2 seconds
featuring a impulse loading. The graphs of displacements and velocities of the free end are
given below for different approximation strategies.

Figures 15 and 16 presents transient response due to Linear FEM, one enrichment layer
GFEM and Adapted SGFEM.

Figure 15: Transient Analysis - Displacements at the free end.
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Figure 16: Transient Analysis -Velocities at the free end.

Analytical refinement is applied, reaching 4 enrichment levels for the three approaches:
GFEM, SGFEM e Heuristic Modification. Results are presented in Fig. 17 and Fig. 18.

Figure 17: Transient Analysis (p-refinement) - Displacements at the free end.
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Figure 18: Transient Analysis (p-refinement) - Velocities at the free end.

Results aiming to highlight the stabilization proposal are presentend in Fig. 19 and Fig. 20,
taking up to p-refinement to high-order.

Figure 19: Transient Analysis (High-order p-refinement) - Displacements at the free end.
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Figure 20: Transient Analysis (High-order p-refinement) - Velocities at the free end.

The second loading case was studied and responses were presented for displacements and
velocities. Acceleration were omitted since its poorly approximated using continuous func-
tions. Firstly, the approximation was made by one level of enrichment, concerning GFEM and
SGFEM, and FEM. As shown in Fig.15 and Fig.16, displacements response has large oscilla-
tions for Linear FEM and a more accurate behavior for alternative enriched. On the other hand,
the answer in terms of velocities present great disturbance for the three alternative approaches.

Applying 4 levels of enrichment, it was compared GFEM, SGFEM and the Heuristic Mod-
ification, as show in Fig.17 and Fig.18. The corresponding approximations for displacements
are considerably close and more accurate than the previous results, and the Heuristic Modifica-
tion resulted in a fairly accurate approximation for the first time steps. However, the velocities
response for SGFEM presented a pretty deteriorated behaviour over time.

Testing the stability of the proposed Heuristic Modification, Fig.19 and Fig.20 show the
results of application of 20 levels of enrichment. Apparently that high order p-refinement did
not result in significant gains in accuracy for both displacements and velocities. However,
it is worth noting that the application that many enrichment levels did not compromised the
stability of the numerical approach, following the trend shown in modal analysis as presented
by Weinhardt et al. (2015).

4 CONCLUDING REMARKS

This paper discussed issues relevant to the stability of the Generalized Method of Finite
Elements applied to dynamic analysis. One-dimensional bar examples were presented contem-
plating transient analysis. The formulation of trigonometric enrichment was based on proposals
of Arndt (2009) and Torii (2012).

Seeking to address the stability issue, were studied two stabilization alternatives. The first
was based on an adaptation of the Finite Element Method Generalized Stabilized, initially pro-
posed to problems falling within the system of equations for a resolution by Babuška & Banerjee
(2012). The second proposal was the modification of the parameter β present in trigonometric
functions GFEM enrichment proposed by Arndt (2009) and Torii (2012).
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For transient analysis it was used the Newmark method with the taking advantage of the
mass and stiffness matrices generated by GFEM. Although the results presented inherent distur-
bances of Newmark method, it was possible to compare the proposals for approximation among
each other, and the second proposal stabilization stood out in most examples. The possibility
of making high-order return fines with consequent improvement in response without affect-
ing the CFL stability condition (Courant-Friedrichs-Lewy, see Moura & Kubrusly (2012)) was
presented.

The results of this work, along with Weinhardt et al. (2015), point out that there are ways
to overcome instability problems in GFEM applied to dynamic analysis, since simple proposals
were able to positively impact the approaches. Therefore it is expected that further studies dis-
cuss GFEM stability issues in dynamic analysis, elucidating the nature of encountered problems
and the construction of more accurate and stable approximations.
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