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Abstract. Aerospace structures require high strength and low mass, which has led to an 

increase in the use of composite materials by its industry. These materials result from the 

combination of two or more base materials in a way that one or more of the composite’s 

properties are superior to either of the individual ones. A type of material that presents those 

desired attributes is the honeycomb sandwich panels and, as the industry is relying more and 

more on them, their accurate characterization for the given application is of extreme 

importance. In this paper, the wave and finite element (WFE) approach is applied and the 

wave parameters of a homogenized honeycomb sandwich panel model for aerospace 

applications are presented and numerical details discussed. The wave approach differs from 

the more usual modal analysis (MA) by focusing in properties such as the dispersion 

relations, wave modes, phase and group velocities, and energy transmission. Although MA 

with the aid of finite element modelling (FEM) is a widely used technique, as the frequencies 

of interest increase, the computational cost also increases. Moreover, the size of the elements 

also limits the maximum frequency that can be accurately characterized. On the other hand, 

the WFE method requires the model of a single period of a periodic structure, which can be 

obtained from any commercial FE software, benefiting from the available element libraries, 

reducing the computational cost when applied to a wider frequency range. The numerically 

obtained parameters are compared to an analytical model and show agreement with the 

theory. 
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1  INTRODUCTION 

The aerospace industry depends heavily on the use of strong and rigid yet lightweight 

materials for its components whenever possible. This naturally led the industry to use 

composites of various kinds, including honeycomb sandwich structures. A sandwich 

composite is a layered construct with at least three distinct phases: two external thin faces of 

high strength, and a thick but light core enclosed in the middle. One alternative found to make 

the core weight as little as possible and still maintain its strength is by constructing it in a way 

that it has hollow spaces, called cells, while keeping a bi-dimensional structure to support 

itself. It is found that the most efficient structure possible in terms of mass to strength is a 

hexagonal honeycomb, so named for its similarity to the structures found in beehives as seen 

in Fig. (1). 

 

  

(a) (b) 

FIGURE 1. Geometry of sandwich honeycomb panels: (a) core cell shape and (b) layered construction 

(HexWeb Honeycomb Attributes and Properties) 

 

The design of aerospace structures have a great emphasis on efficiency, therefore the use of 

numerical and computational models is very important that during the initial phase of the 

project, to allow for some adjustments and optimizations in the design. However, predicting 

the dynamic behaviour of these materials can be a difficult task, especially when one attempts 

to do so at mid to high frequencies. Furthermore, such structures tend to possess orthotropic 

properties, increasing the difficulty in predicting its dynamic response (Schwingshackl et al., 

2006). 

The finite element analysis (FEA) computational cost becomes too expensive for mid and 

high frequencies. A different approach with great potential is the wave method, that focuses in 

properties such as the dispersion relations, wave modes, phase and group velocities, and 

energy transmission. Unfortunately, wave methods require analytical models that can become 

unviable in most non-trivial cases. 

The wave and finite element (WFE) approach combines the use of FEA, and its extensive 

library of conventional finite elements, and the wave approach, that allows the propagation of 

waves to a single section of a periodic structure to be expanded and obtain the dynamic 

behavior of the entire structure. 
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In this work, the WFE approach is used to obtain the wave parameters of a satellite structural 

sandwich honeycomb panel for frequencies of up to 10kHz to demonstrate the efficiency of 

the method in characterizing the dynamic properties of a structure in mid and high 

frequencies. 

This paper is presented in seven parts, first an introduction to present a general idea of the 

WFE method and this paper objectives. On chapter 2 the general description as given by the 

manufacturer of the panel is provided. Chapter 3 gives a general idea of the wave parameters 

that are used to characterize a structure with the wave approach. In chapter 4 the theoretical 

and mathematical concepts that allow the use of the WFE are briefly presented. Chapter 5 

describes the finite element modeling used to numerically model the panel. In chapter 6 the 

results are discussed and in chapter 7 some conclusions are presented as well as some future 

work. 

2  DESCRIPTION OF THE PANEL 

The structure under analysis is a rectangular sandwich panel of dimensions 670 mm length by 

300 mm wide and 10 mm thick, made with 2024 T3 aluminium face sheets and HexWeb 

CRIII 5056 hexagonal aluminium honeycomb core with ¼‟‟ cell size and 0.001‟‟ perforated 

foil thickness. Along the thickness the panel is layered with a 0.3 mm face sheet, 9.4 mm core 

and a 0.3 mm face sheet.  

3  WAVE PARAMETERS 

A brief description of some wave parameters used to designate some elements of the 

structural dynamics is presented in this section. A travelling wave can be characterized by a 

displacement field of the form 

 (   )   ̃  (     )  (1) 

where  ̃ is the wave complex amplitude, which tells us both the maximum displacement and 

the phase,   is the phase change over time and   is the wavenumber, that describe the 

behaviour of the wave over distance. While the frequency must be a real value, the 

wavenumber   can be described with a complex value, of the form        , where   is 

called the attenuation constant, and defines how the amplitude decreases over distance, while 

  is the phase constant and defines the phase change over distance. 

According to its wavenumber a wave can be classified as propagating, for a purely real 

wavenumber; attenuating, for a complex wavenumber; or evanescent, for a purely imaginary 

wavenumber. The special behaviour of these waves can be visualized in Fig. 2. 
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Figure 2. Types of waves by wavenumber: (a) propagating; (b) attenuating; and (c) evanescent.  

The relation between   and   is termed the dispersion relation (Fahy and Gardonio, 2007) 

and it depends on both the type of wave and the medium through which the wave propagates. 

If such relation is linear, the spatial form of the wave will be conserved throughout its 

propagation and the wave mode are called non-dispersive. On the other hand, the wave will 

be distorted throughout its propagation and be called dispersive.  

From these basic properties, it is possible to define phase and group velocity. The former is 

the relation between frequency and wave number and describes the velocity which a wave 

moves in relation to a given referential. It is given by 

   
 

 
  (2) 

It can be seen that if the wavenumber is purely imaginary, so it will be the phase velocity, 

therefore the evanescent waves will not be able to transport energy. Due to their immobility, 

some authors may prefer to not call them waves and instead refer to them as „near fields‟ 

(Fahy and Gardonio, 2007). 

The latter, group velocity   , is the speed at which energy is transported by a wave. It can be 

obtained from the dispersion curve by  

   
  

  
  (3) 

For non-dispersive waves, the phase velocity will be equal to the group speed. 
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4  FINITE ELEMENT ANALYSIS 

4.1 Dynamic Stiffness Matrix and the transfer matrix 

Considering a one-dimensional periodic structure with an infinite number of cell, numbered 

 , with the relation between displacement and forces as given by Fig. 3. 

 

 

Figure 3. Forces and displacements in a cell 

Assuming harmonic movement, the equation of motion is  

(         )     (4) 

where K,   e   are respectively the stiffness, inertia and damping matrices obtained from a 

Finite Element model,   the nodal forces vector and   the nodal displacement vector. Defining 

the dynamic stiffness matrix  ̃  (         ), and rewriting the equation in terms of 

left (L), right (R) and interior (I) degrees of freedom, it is possible to obtain 

[

 ̃   ̃   ̃  

 ̃   ̃   ̃  

 ̃   ̃   ̃  

] [

  

  

  

]  [
 
  

  

]  (5) 

Appling a dynamic condensation procedure (Duhamel et al., 2006), the internal DOF‟s can be 

eliminated, resulting in 

[
      

      
] *

  

  
+  [

  

  
]  (6) 

It is possible to relate the displacement and forces of any cell to its neighbours through the 

transfer matrix T and equilibrium and continuity conditions such that 
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 ]  [

  
 

   
 ]  [

  
   

  
   ]  (7) 

and applying periodicity conditions and assuming that free waves propagates as Bloch waves, 

     [
  

 

  
 ]   [

  
 

  
 ]  [

  
   

  
   ]  (8) 

it follows that 

 *
  

  
+   *

  

  
+  (9) 

which is an eigenproblem of the type 

       *
  

  
+     (10) 

The propagation constants and free waves will be respectively the eigenvalues and 

eigenvectors of the eigenproblem above. 

The eigenproblem can be formulated in a polynomial form as (Hinke et al., 2004) 

[             
 

 
   ]      (11) 

or 

[             
 

 
   ]      (12) 

which can also be written as: 

           
       (13) 

where               ,            and               

For the two-dimensional problem, the equivalent equation polynomial problem is written as 

(Manconi, 2008) 

[(       )     (       )     (       )    
  (    

   )  
         

       
  (       )   (       )   

     
   

     ]   , 

(14) 

for which there are propagation constants    and     in the   and   directions. Each 

propagation constant is related to its respective wavenumber    and   . They are restrained 

by the following relation 
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   (15) 

It follows that 

    (  )          (16) 

where   is the direction of propagation. Therefore Eq. (4) can be rewritten as a function of   , 

analogously to Eq. (13), i.e., the two-dimensional problem can be effectively written as one-

dimensional one, in which case 

                   

   (               )  (               ) 

                   

(17) 

4.2 Zhong’s Method 

Numerical issues can appear if the transfer matrix T is ill-conditioned, which usually is the 

case when a large number of wave modes is calculated. Zhong applies the sympletic 

properties of the transfer matrix to find the solution to the eigen equation and find the 

wavenumbers in a better conditioned way(Zhong and Williams, 1995). Rather than using the 

transfer matrix that relates the displacement and forces through the equation 

 *
  

  
+   *

  

  
+  (18) 

it uses two other matrices L and N, such that        and obtaining  

 *
  

  
+    *

  

  
+  (19) 

Since Eq. (19) only uses displacements, the formulation is numerically more robust. Through 

the sympletic properties of the matrix, it is possible to show that  

(         )          (20) 

where   (  
 

 
). Since finding the results of Eq. (20) means finding the eigenvalues and its 

inverses, solving for   is a further step to a better-conditioned problem as the absolute values 

will be closer of each other. 

The linearization of Eq. (13), can be done by the following possibilities 

( [
   
    

]  [
   

    
]) (

 
  )     (21) 
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( [
   

    
]  [

      

    
]) (

 
  )     (22) 

From all of the possible linearizations, these are chosen because we can define 

  [
  

       
]      (23) 

  [
  

     
]  (24) 

where 

    (               ) 

    (               ) 
(25) 

Summing Eqs. (21) and (22), a form equivalent to Eq. (20) can be found such 

[
        

       
]    [

   

    
]   (26) 

Therefore, the Zhong‟s method can be applied to a 2D problem. 

5  HONEYCOMB SANDWICH PANEL MODEL 

The sandwich honeycomb panel under analysis made of aluminum faces and honeycomb 

core, Fig 4. The finite element model of the plate section was built using the ANSYS element 

library, element type SOLID185, a 3D solid with eight nodes, and three DOF‟s, translations in 

the  ,   and   directions, per node. The periodic section is 0.1 mm wide in both   and   

directions. The sandwich faces are 3 mm thick isotropic aluminum sheets.  

 

Figure 4. Picture of the sandwich panel hung on nylon treads with attached reflective tapes 

Twenty six elements are used to mesh the section, three for each face and twenty for the core, 

as shown in Fig. 5. Only a small fraction of the panel needs to be taken into account in this 
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model, which contrast with usual modal approach that requires a FE model hundreds of times 

larger than this one. For lower frequencies, it is expected that the internal structure of the core 

will not greatly affect the wave modes and so the core was homogenized into an equivalent 94 

mm thick orthotropic solid. The panel material properties were found from an Experimental 

Modal Analysis (de Sousa et al., 2016) and are presented in Tabs. 1 and 2. The element 

implementation at the ANSYS software requires some amendments such that the Honeycomb 

core‟s shear modulus in the xy plane should be set to zero (HexWeb Honeycomb Attributes 

and Properties) and the poison ratio     should be close to 1 for small displacements (Gibson 

and Ashby, 2001).  

 

Figure 5. Plate section mesh. 

 

Table 1. Face sheet material properties. 

Property Nomenclature Value Dimension 

Young modulus E 68e9 N/m² 

Poisson ratio   0.35 dimensionless 

Density   2780 kg/m³ 
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Table 2. Homogenized core material properties. 

Property Nomenclature Value Dimension 

Young modulus 

   1.24e6 

N/m²    0.7e6 

   1.8e6 

Shear modulus 

    1e-6 

N/m² 

 
    220e6 

    103e6 

Poisson ratio 

    0.6 

dimensionless     0.35 

    0.35 

Density   0.08 kg/m³ 

6  RESULTS AND DISCUSSION 

In this section, the wavenumbers and wavemodes are calculated using the stiffness and mass 

matrices obtained from the FE model of a small segment of panel, as shown in the previous 

section, and results are obtained from a Matlab routine. Figures 6 and 7 shows the panel‟s 

dispersion relations up to a frequency of 10 kHz for both x and y directions, respectively. 

From these results, it can be seen that for lower frequencies, the panel behaves as a simple 

orthotropic plate, with one bending mode, dispersive curve, and two perpendicular 

longitudinal modes, non-dispersive curve. 

From Figs. 6 and 7, it can also be seen that the wave propagation on both directions are very 

similarly, as it is expected due to the panel symmetry. The longitudinal modes are mainly 

influenced by the face properties and are nearly identical for both cases. The bending modes 

rely mostly on the orthotropic core‟s properties and results from x and y directions differ 

significantly after 1 kHz, but retaining a similar dispersion curve shape throughout.  

For the x direction, at the frequency of 4,395 Hz a complex wave mode becomes fully real. 

This frequency is called the cut on frequency and means that a mode that was non-

propagating starts to propagate, i.e. to transport energy. This particular case further creates 

two branches with different wavemodes. Surprisingly, as the dispersion relation of the branch 

with smaller wavenumber has negative inclination, its group velocity is also negative, 

meaning that the energy will travel in the direction opposite to that of the phase velocity. This 

phenomenon happens until the cut off frequency of 5,325 Hz, after which this branch of the 

wave mode ceases to transport energy, i.e. becomes evanescent. For the y direction, the cut on 

frequency of the complex mode happens later at 4,740 Hz, while the cut off frequency 

remains the same.  
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Figure 6. Dispersion relations in the x direction. ___for purely real or purely imaginary 

wavenumbers, _._ for complex wavenumbers 

 

 

Figure 7. Dispersion relations in the y direction. ___for purely real or purely imaginary 

wavenumbers, _._ for complex wavenumbers 
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7  CONCLUDING REMARKS 

In this work, the wave and finite element (WFE) approach was applied and the wave 

parameters of a homogenized honeycomb sandwich panel model for aerospace applications 

were presented and some numerical details discussed. 

By using WFE it was possible to use a single section of the structure, meshed in 26 3D 

SOLID185 ANSYS elements, to obtain the wave parameters of the structure for reasonably 

high frequency. The fact that there are commercial software with extensive element libraries 

greatly facilitates the modeling and use of the WFE. Additionally, it allowed a simple 

configuration of the unique properties obtained experimentally. 

For low frequencies, it is observed that the panel behaves as a simple plate and an equivalent 

structure could be made using a single material, up to 5kHz, however, for higher frequencies 

new and more complex wavemodes appear. 

A preliminary analysis of the panel was performed and in the future a full analysis of the 

wavemodes and experimental validation of the wavenumbers will be performed. 
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