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Abstract. Technics for damage and fatigue detection has become an essential part of 

Aeronautic industry safety. The duration of service lives of such vehicles can be considerably 

extended by systematic monitoring of small, possibly undetected, damages to their structures. 

In this paper, we propose damage detection in airplane structures via modal analysis. By 

using Finite Element Method numerical models, developed in commercial software, as a first 

step, we make comparisons of the free vibration frequencies of undamaged models and 

models where we deliberately introduce damage. We observe the difference in frequency 

values. In future work we will propose numerical damage indicators based on the modal 

analysis. 
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1  INTRODUCTION 

Structural Health Monitoring (SHM) has become an essential technique in Aerospace 

industry. The duration of service lives of aircrafts and space vehicles can be considerably 

extended by systematic monitoring of small, possibly undetected, damages to their structures. 

Also, this monitoring can prevent accidents and contribute to flying safety. A historical 

example of such undetected damage is the 1950’s infamous Comet 1 British jet airliner. 

In this paper, we propose ways of monitoring damage in airplanes via modal analysis by 

using Finite Element modeling, as a first step in this direction. The idea is to find a 

noninvasive a nondestructive method to evaluate possible damage present on aeronautical 

vehicles. 

We make comparisons between airplane structures by adopting internet available real FE 

elements models of airplanes, and determining its free vibrations frequencies and modes for 

the undamaged situation. Next, we deliberately introduce damage (simulated by holes, 

changes in Young’s module etc.) in the structures and new modal analyses are performed. 

The afore mentioned comparative modal analysis shows that the free vibrations 

frequencies of a damaged aircraft parts are less than those of an undamaged one. We conclude 

that the damage, depending on its extents, results in changes in the free vibrations 

frequencies. In future work, we will test some numerical indicators, described in the literature, 

based on modal analysis, to discover damage. We also intend to investigate which of the 

obtained modes are useful for the analysis we are performing and which modes present 

inconsistent results. 

2  THEORETICAL DEVELOPMENT 

In this work, we are interested in the free undamped vibrations of aeronautical structures, 

to enable us to determinate the natural frequencies and vibration mode shapes. The equations 

of motion of free undamped vibrations are: 

[M]{U´´} + [K]{U} = {0                                                                                                     (1) 

 

where,  

 [M] - System Mass Matrix. 

 {U´´} - Accelerations Vector. 

 [K] - System Stiffness Matrix.  

 [U] - Displacements Vector.  

 

Differently from a system with only one degree of freedom, Eq. (1) is represented with 

matrices and vectors for we are dealing with several degrees of freedom. The order of the 

matrices will depend on the number of degrees of freedom adopted in the system. For 

instance, for a system with N degrees of freedom, the matrices will have the order of NxN and 

the vectors Nx1 (Juliani, 2014). 

Considering the free vibration motion, in the same way as in a system with one degree of 

freedom, the dynamic response can be expressed as: 
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{U(t)} = {Û}cos(ωt - ϴ)                                                                                                      (2)                                                                                 

 

Deriving for the second time Eq. (2) and substituting in Eq. (1) we generate the 

eigenvalues and eigenvectors problem: 

 

[[K] – ω2[M]{Û}] = {0}                                                                                                      (3) 

 

where: 

 ω2  - Eigenvalues that represent the squares of the circular frequencies (rad/s); 

 {Û} - Eigenvectors that represent the corresponding dimensionless displacements 

(shape) of their respective modes (Clough and Penzien, 2003).  

 

Equation (3) is a set of algebraic linear homogenous equations and the non-trivia solution 

of the equation is only possible if (Anderson and Naeim, 2012): 

 

      |[K] – ω2[M]| = 0              (4)  

 

The determinant in Eq. (4) results in a N-th order polynomial equation, having as 

unknown the parameter ω2. The N roots represent the natural frequencies of the N modes of 

vibration adopted in the system (Clough and Penzien, 2003). The smallest frequency value 

calculated corresponds to the first vibration mode, the second to the second vibration mode 

and so on, successively. 

To obtain the vibration modes we solve: 

      [En]{Ûn} = {0}                                                                                                                   (5) 

 

where 

 

      [En] = [K] – ωn
2[M]             (6) 

 

Matrix [En] varies with each frequency and so it is different for each mode. This way, for 

each ωn, a vibration mode may be calculated with Eq. (5). But, in this system, one of the 

equations is redundant, so the vibration modes are found by arbitrarily giving a value to one 

of the displacements (usually unitary).  

With the advances of computation and the use of programs, all the formulation presented 

here can be rapidly solved using iterative methods, whose description is out of the scope of 

this paper. 
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3  FEM MODELS AND NUMERICAL RESULTS 

3.1 Tubular spar 

First, we present, in Fig.1, a tubular carbon composite spar of an airplane model 

developed by students of the Federal University of ABC, Santo André, SP, Brazil. Its external 

diameter is 12 mm and the internal one is 10 mm. 

 

Figure 1: Composite tubular spar 

Experimental tests carried out by the students, following D790-02 (Flexural Properties of 

Composites) Code, obtained Young’s module to be 450MPa. Measured density is 2800 

kg/m3. 

Figure1 shows a fictitious damage artificially introduced in the spar as a small cut, L =1 

mm thick, on the upper surface of the tube. We call D the depth of the cuts and show, in Table 

1, the variation of the frequencies of the first 6 modes as a function of this value. Frequencies 

were determined via ANSYS FEM commercial program and are displayed in Hz. 

Table 1 

 No damage  D=3mm D=4.5mm D=6mm 

Mode 1 3,5014 3,0174 2,8471 2,4935 

Mode 2 3,5014 3,1786 3,1423 3,0675 

Mode 3 21,851 19,068 18,672 18,262 

Mode 4 21,852 19,718 19,738 19,727 

Mode 5 60,781 53,523 53,254 54,264 

Mode 6 60,783 55,061 55,29 55,983 

 

 

3.2 Wing model 

Next, we present a full FEM model of a real experimental airplane 4 meters long wing 

represented in Fig. 2. The material is 7050 aluminum. The spar is a 120 mm diameter tubular 

section with 3.18 mm wall thickness. 
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Figure 2: The wing model 

 

The considered fictitious damage is set to be a small variation in the aluminum’s Young’s 

module near the root or the spar, the area indicated by dark ribs in Fig.2. Table 2 presents the 

variation of the first and second natural frequencies with some percentage negative variation 

of the metal module. Frequencies were determined via ANSYS FEM commercial program. 

Table 2 -  Frequency per damage percentage (Hz) 

Damage 0% 5% 10% 15% 20% 

Mode 1 5,44 5,38 5,31 5,24 5,16 

Mode 2 5,64 5,57 5,50 5,42 5,34 

 

Figure 3 shows graphically this variation of the frequencies with some percentage loss of 

the Young’s module of the material. 
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Figure 3: Frequency variation with Youing’1s module percent losses  

 

3.3 Full wing and aircraft models 

Finally, we present results of two FEM studies of large airliners. One is a full wing and 

another full aircraft model. 

Figure 4 presents the first mode of free undamped vibrations of a full aluminum wing, in 

its original non damaged configuration. As we introduce artificial damage in the model, its 

first 5 frequencies vary, as shown in Table 3. These introduced damages are located in three 

positions along the wing: near its biding to the fuselage, in the center and at the tip of the 

wing. 

Figure 5 displays the first mode of free undamped vibrations of a full aircraft model, in its 

original non damaged configuration. As we introduce artificial damage in the model, its 10 

first frequencies vary, as shown in Table 3. The first 6 modes are, of course, the rigid body 

modes, to be neglect in our study. These introduced damages are located in two positions: at 

the wing, near its biding to the fuselage, and in the aircraft tail. 
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Figure 4: First vibration mode of an undamaged aluminum wing model 

 

 

 

Figure 5: First vibration mode of an undamaged full aircraft model 



FEM MODAL ANALYSIS FOR DAMAGE DETECTION IN AIRPLANE STRUCTURES 

CILAMCE 2016 

Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering 

Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016 

Table 3 

Modes 
Natural Frequencies (Hz) for 7050 - t7651 

Non-Damaged 
Wing 

Damage Near the Binding 
Spot 

Damage on the 
Center 

Damage on the Free 
Side 

1 33.588 33.409 33.528 33.615 

2 47.602 47.598 47.595 47.599 

3 79.055 79.113 78.474 79.11 

4 93.063 92.973 92.77 93.088 

5 131.04 131.02 131.04 131.03 

 

Modes 
Natural Frequencies (Hz) for 7050 - t7651 

Non-Damaged Model Wing damaged Model Tail Damaged Model 

1 0 0 0 

2 0 0 0 

3 0 0 0 

4 0 0 0 

5 0 0 0 

6 0,00038085 0,001112 0,00078576 

7 51,241 51,206 51,251 

8 72,805 72,732 72,818 

9 144,33 144,52 143,73 

10 145,43 145,62 144,79 

4  CONCLUSIONS 

As expected, the natural frequencies of FEM models of damaged aeronautical structures 

have smaller values them those of the non-damaged models. As discussed before, this 

happens because the dynamic properties of the structure are altered when it is damaged, and 

the stiffness is lowered. For further analysis, we pretend to use some analysis criterions 

described in the literature to see the accuracy of such information and later develop a 

numerical analysis tool for damage detection. 
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