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Abstract. This paper describes and analyzes the performance of two different formulations of
model predictive control (MPC) applied to a quadrotor unmanned aerial vehicle (UAV), one that
explicitly handles constraints and another that doesn’t. The objective of the MPC strategy is to
compute an optimal sequence of actions within its prediction horizon to track desired states. The
optimization strategies adopted in this work are based on an approximated dynamical model
for prediction while imposing a quadratic cost function. One prominent vantage of MPC is its
ability to handle constraints inherent to the process, based either on actuators’ limitations or
security concerns. Through simulations, the impacts of imposing a convex set of constraints is
analyzed, regarding the performance and computational effort involved in solving a trajectory
tracking problem.
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Model Predictive Control Applied to Quadrotor UAV

1 INTRODUCTION
Research and development of Unmanned Aerial Vehicles (UAVs), accelerated by recent

technological advances, has enabled applications such as search-and-rescue (Faessler et al.
2015), mapping (Scaramuzza et al. 2014, Holz & Behnke 2016) and visual inspection (Burri
et al. 2012). Quadrotors are among the most frequently used platforms because of their abil-
ity to hover, high maneuverability and simple design. These UAVs can be used both indoors
and outdoors, but controlling its flight is rather challenging because of its coupled dynamics
and underactuated nature. In addition, the dynamics of the quadrotor are highly non-linear,
introducing several uncertainties in its operation.

In the last decade, a considerable number of papers have been published regarding quadro-
tor dynamic modeling (Santana & Borges 2009, Kim et al. 2010, Powers et al. 2015). Several
control strategies have been proposed and tested for these systems, which include: PID, LQR,
backstepping and feedback linearization. A broad compilation of control algorithms for quadro-
tors can be found in (Zulu et al. 2014).

More recently, advanced controllers have been made possible by the boost of computa-
tional power in mobile devices. One prominent strategy that has emerged in this context is
model predictive control (MPC). Dating back to the late 1970s, MPC was first conceived to
control industrial chemical processes (Richalet et al. 1978), which typically have slow dynam-
ics and sampling times measured in seconds or minutes. With the high performance processors
available today, MPC has been applied for fast systems, such as the quadrotor.

The strategy of MPC consists in computing an optimal control sequence over a prediction
horizon, by minimizing some given cost function expressing the control objective. It relies on
the dynamical model of the system to predict its response to the commands. An important fea-
ture of MPC is its constraint handling, that keeps the systems states and commands inside a
desirable zone of operation. The optimization problem involved depends greatly on the formu-
lations of the cost function and constraints. If the cost function is quadratic and the constraints
imposed are a convex set, the resulting optimization will be a quadratic programming problem
(QP), which is indeed a common approach in MPC formulations (Wang & Boyd 2010).

MPC has been successfully used for control of UAVs. Lopes et al. (2011) formulated a
MPC based on a linearized model of the quadrotor. The proposed controller can follow trajec-
tories while imposing constraints to the orientation of the aircraft (roll and pitch angles). In
(Izadi et al. 2011) a fault tolerant MPC controller is proposed, based on the Unscented Kalman
Filter for estimating nonlinear parameters. Important remarks are also made about the high
computational time necessary for the algorithm. Experimental validation of predictive con-
trollers are presented in (Burri et al. 2012), testing both LQR and MPC controllers. In their
experimental setup, proposed for industrial visual inspection, a quadrotor equipped with a low
level controller and on-board cameras navigates confined spaces.

In this paper, two different approaches of predictive control are compared through simu-
lations. First, an unconstrained MPC with finite prediction horizon that amounts to a linear
feedback control, similar to a LQR. Second, a constrained MPC formulation that yields a QP
problem to optimize the future control inputs. In the latter, the constraint handling in state and
input variables are demonstrated, but also result in a considerable increase of computational ef-
fort. Further, the controllers’ performance is discussed, regarding their trajectory tracking and
stabilization.
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2 DESCRIPTION AND MODELING

2.1 Notation

Here, we define the notation used in the remainder of the paper. These are useful for both
the modeling and the MPC formulation.

Vectors and matrices: All vectors are column vectors, and the transpose of a vector or
matrix is denoted with a superscript T , e.g. AT . The notation diag(d1, ..., dn) denotes a diagonal
matrix with di values along the diagonal. The notation In denotes a n × n identity matrix.
Similarly, a n× n zero matrix is represented by On.

Quadratic norm: The notation ‖ν‖2Q denotes the quadratic norm νTQν.

Discrete-time state space: Variables that change at each discrete timestep have the time
index denoted between parenthesis, e.g. x(k). In the state space model representation:

x(k + 1) = Ax(k) +Bu(k)

yα(k) = Cαx(k)

The state vector x(k) has its dimension denoted by n, i.e. x ∈ Rn. Similarly, the input vector
has its dimension denoted by nu. The state and input matrices are respectively A ∈ Rn×n and
B ∈ Rn×nu . Output vectors like yα ∈ Rnα are defined by output matrices like Cα ∈ Rnα×n.

Variable sequences: Given a finite prediction horizon of N future steps, a consecutive
sequence of a variable y(k) within the prediction horizon (i ∈ [1, ..., N ]) is denoted by a ỹ. For
example, the future control inputs can be written as the vector:

ũ =
[
u(k) u(k + 1) . . . u(k +N − 1)

]T ∈ RN ·nu

To isolate any component of this sequence, the following operator is used:

u(k + i) = Π
(nu,N)
i ũ

where Π
(n,N)
i extracts the i-th vector of the concatenation of N vectors of dimension n.

2.2 Nonlinear Dynamics

The quadrotor’s flight and motion is achieved by the propulsion and torques generated by
its rotors. The only actuators of the system are its four motors, one pair spins clockwise while
the other spins counterclockwise. This way, when all motors spin with the same velocity, their
torques cancel out. Additionally, if all motors reach a certain speed (ω̄), it’s possible to generate
enough thrust so that the vehicle can hover. In figure 1 the motor velocities (ωi), thrust forces
(fi) and torques (τMi

) are represented, along with the inertial (I) and body (B) reference frames.

Assuming the quadrotor to be a rigid body with six degrees of freedom (x, y, z, φ, θ, ψ)
and identical actuators, the nonlinear dynamical model can be derived by the Euler-Lagrange
equations, as shown in (Santana & Borges 2009). Assuming small inclinations (φ, θ), the model
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Figure 1: Diagram of quadrotor dynamics with inercial and body reference frames, adapted from (Luukko-
nen 2011).

can be written:

ẍ =
(
CψSθCφ + SψSφ

)U
m

φ̈ =
Iyy − Izz
Ixx

ψ̇θ̇ +
τx
Ixx

ÿ = (SψSθCφ − SφCψ)
U

m
θ̈ =

Izz − Ixx
Iyy

ψ̇θ̇ +
τy
Iyy

z̈ = −g + (CθCφ)
U

m
ψ̈ =

Ixx − Iyy
Izz

θ̇φ̇+
τz
Izz

Here Cα = cos(α), m is the UAV’s mass, Ijj denotes de mass moment of inertia along the
j-axis and U = f1 + f2 + f3 + f4 is the total thrust. The resulting torques in the body frame
are represented by (τx, τy, τz) and are achieved by unbalancing the opposite thrusts and torques.
These are modeled as:

τx = bL(ω2
4 − ω2

2), τy = bL(ω2
3 − ω2

1), τz = d(ω2
1 − ω2

2 + ω2
3 − ω2

4)

where b and d are the thrust and drag coefficients respectively. The motor’s distance from the
center of mass (also center of B) is L, assumed to be the same for all motors.

2.3 Approximate Dynamics

Assuming near hover operation, the quadrotor’s dynamic model can be aproximated by a
linear one. Using a first order Taylor expansion around an equilibrium point, the model can
be rewritten in state space representation. Further, after defining a sampling period of τs, the
discretized model is:

ξ(k + 1) = Aξ(k) +Bu(k) (1)

Here ξ = [x ẋ y ẏ z ż φ φ̇ θ θ̇ ψ ψ̇]T is the state vector and u = [ω1 ω2 ω3 ω4]
T are the control

inputs. The state and input matrices are A and B, respectively. These matrices can be found in
(Lopes et al. 2011), that define the equilibrium point to be ξ̄ = [0 0 0 0 10 0 0 0 0 0 0 0]T and
ū = [ω̄ ω̄ ω̄ ω̄]T . This point represents the condition of hovering 10m high, which is achieved
when all rotors spin in the right velocity (ω̄ rad/s) with thrusts aligned upwards.
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3 PREDICTIVE CONTROL FORMULATION

As previously mentioned, the MPC strategy relies on the dynamical model to predict the
system’s response to inputs within a finite prediction horizon of N future steps. Further, a cost
function is defined to evaluate the trajectory tracking of future control inputs ũ. This amounts
to an optimization problem that computes the optimal course of actions ũopt, that minimizes the
cost function. However, only the first action of this sequence is actually applied to the system,
that is Π

(nu,N)
1 ũopt. In the next sampling instant, a new reading of the current state ξ(k) is made

and the process repeats.

The complexity of this optimization depends essentially on the formulation of the predic-
tion model, cost function and constraints. With a quadratic cost function and no constraints, the
minimization is straightforward and solving for ũopt is analytical. Further, introducing a convex
set of constraints significantly complicates the solution. This way, ũopt is obtained through a
quadratic programming problem (QP). Fortunately, QPs have a wide range of solution methods
(Wang & Boyd 2010). The definitions necessary for these two approaches, with or without
constraints, are presented next.

3.1 Prediction Map

Assuming our quadrotor operates near hover condition during most of its flight, the model
in Eq. (1) can be used to predict future states ξ(k + i) ∀ i ∈ [1, ..., N ]. So assuming that the
current state ξ(k) and the sequence of applied commands ũ are known:

ξ(k + 1) = Aξ(k) +Bu(k)

ξ(k + 2) = A

[
Aξ(k) +Bu(k)

]
+Bu(k + 1) = A2ξ(k) + ABu(k) +Bu(k + 1)

...

ξ(k + i) = Aiξ(k) +
[
Ai−1B Ai−2B · · · B

]


u(k)

u(k + 1)
...

u(k + i− 1)


Finally, the prediction model can be rewritten as

ξ(k + i) = Φiξ(k) + Ψiũ (2)

where the model matrices are

Φi = [Ai] , Ψi =
[
Ai−1B Ai−2B · · · B

]


Π
(nu,N)
1

Π
(nu,N)
2

...

Π
(nu,N)
i

 (3)
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3.2 Cost Function

The control objective is to drive the system’s outputs to a desired trajectory. These regulated
outputs may be state variables or their linear combinations, thus:

yr(k) = Crξ(k) (4)

Here yr ∈ Rnr is the regulated output vector defined by the matrix Cr ∈ Rnr×nr . Moreover, the
desired trajectory is represented by ydr (k + i) ∈ Rnr .

The cost function attributes a scalar to a given sequence of inputs ũ, expressing how well it
tracks the desired trajectory. It can be defined as (Alamir 2013):

J(ũ) =
N∑
i=1

‖yr(k + i)− ydr (k + i)‖2Qy +
N∑
i=1

‖u(k + i− 1)− ū‖2Qu (5)

where the first sum imposes penalty on the regulated output error, while the second sum pe-
nalizes control input deviation from the equilibrium point ū. Further, the weighting matrices
Qy = QT

y > 0 and Qu = QT
u > 0 are chosen according to the regulation objectives.

After substituting the Eqs. (2) and (4) in (5) and expanding the norms, the cost function
can be rewritten as:

J(ũ) =
1

2
ũTHũ+ [F1ξ(k) + F2ỹ

d
r + F3ū]T ũ (6)

where the following definitions were introduced:

H , 2
N∑
i=1

[
ΨT
i C

T
r QyCrΨi + (Π

(nu,N)
i )TQu(Π

(nu,N)
i )

]
(7)

F1 , 2
N∑
i=1

[
ΨT
i C

T
r QyCrΦi

]
(8)

F2 , −2
N∑
i=1

[
ΨT
i C

T
r QyΠ

(nr,N)
i

]
(9)

F3 , 2
N∑
i=1

[
(Π

(nu,N)
i )TQu

]
(10)

(11)

3.3 Constraints

Constraint handling is a major advantage of MPC strategies. They can cope with the sys-
tem’s inherent limitations like actuator saturation, operational restrictions or security concerns.
Here, the constraints are imposed as convex sets of the system’s inputs and outputs.

Once again, the constrained output vetor is composed of state variables or their linear com-
binations:

yc(k) = Ccξ(k) (12)
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where the matrix Cc defines which variables will be bounded. So for all future instants in the
prediction horizon, i.e. i ∈ [1, ..., N ]:

yminc ≤ yc(k + i) ≤ ymaxc (13)

After substituting Eqs. (2) and (12) in (13) and rearranging, the output bounds can be rewritten
as the following inequalities:

CcΨ1

...

CcΨN

−CcΨ1

...

−CcΨN


︸ ︷︷ ︸

A
(1)
ineq

ũ ≤



−CcΦ1

...

−CcΦN

CcΦ1

...

CcΦN


︸ ︷︷ ︸

G
(1)
1

ξ(k) +



ymaxc

...

ymaxc

−yminc

...

−yminc


︸ ︷︷ ︸

G
(1)
3

(14)

Next, the input constraints are defined to handle actuator limitations. Firstly, by imposing
restrictions the rate of change:

δmin ≤ u(k + i)− u(k + i− 1) ≤ δmax (15)

This can be rewritten using notation defined in Section 2.1 and rearranged as following:

+Inu Onu Onu · · · Onu Onu

−Inu +Inu Onu · · · Onu Onu

...
...

...
...

...
...

Onu Onu Onu · · · −Inu +Inu
−Inu Onu Onu · · · Onu Onu

+Inu −Inu Onu · · · Onu Onu

...
...

...
...

...
...

Onu Onu Onu · · · +Inu −Inu


︸ ︷︷ ︸

A
(2)
ineq

ũ ≤



+Inu
Onu

...

Onu

−Inu
Onu

...

Onu


︸ ︷︷ ︸

G
(2)
2

u(k − 1) +



+δmax

+δmax
...

+δmax

−δmin
−δmin

...

−δmin


︸ ︷︷ ︸

G
(2)
3

(16)

The inequities in Eqs. (14) and (16) can be combined and rewritten in more compact form:

Aineqũ ≤ G1ξ(k) +G2u(k − 1) +G3 (17)
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where the following definitions were introduced, based on the highlighted terms.

Aineq ,

A(1)
ineq

A
(2)
ineq

 ; G1 ,

 G
(1)
1

O(2Nnu)×n

 (18)

G2 ,

O(2Nnc)×nu

G
(2)
2

 ; G3 ,

G(1)
3

G
(2)
3

 (19)

Finally, one more set of bounds is imposed to take actuator saturation into account.

umin ≤ u(k + i) ≤ umax (20)

4 Unconstrained MPC

The unconstrained approach is based on the prediction horizon of Eq. (2) and cost funtion
of Eq. (5). Without restrictions, minimization consists in taking the gradient of the cost function
equal to zero. So as long the matrix H is positive definite (H > 0), a global minimum is found
by (Alamir 2013):

Hũ+ F1ξ(k) + F2ỹ
d
r + F3ū = 0 (21)

Therefore, the optimal sequence can be isolated and given by the following linear feedback law:

ũopt = −H−1
[
F1ξ(k) + F2ỹ

d
r + F3ū

]
(22)

Considering that the MPC only applies the first action of this sequence, the feedback law can
be rewriten:

uopt(k) = KNξ(k) +GN ỹ
d
r + LN ū (23)

where the constant gains KN , GN and LN are given by:

KN = −Π
(nu,N)
1 ·H−1F1 (24)

GN = −Π
(nu,N)
1 ·H−1F2 (25)

LN = −Π
(nu,N)
1 ·H−1F3 (26)

This approach is similar to a LQR controller, as discussed in detail by Alamir (2013). In fact,
if we take Cr = In×n and N sufficiently high, the gain KN converges to that of the LQR
controller. In this case, the unconstrained MPC can be seen as an LQR controller combined
with the feedforward terms GN and LN , to track the trajectory ỹdr and stabilize the commands
in the equilibrium point ū.

5 Constrained MPC

The constrained MPC, based on the same prediction model of Eq. (2) and cost function of
Eq. (5), goes further by introducing the set of constraints expressed in Eqs. (17) and (20). The
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resulting optimization problem is convex as long as the matrix H is definite positive. Thus, the
QP and can be formally written as:

ũopt(k) , argmin :

[
1

2
ũTHũ+ F T (k)ũ

]
(27)

subject to : Aineqũ ≤ Bineq(k)

ũmin ≤ ũ ≤ ũmax

where the following definitions are introduced:

F (k) = F1ξ(k) + F2ỹ
d
r + F3ū (28)

Bineq(k) = G1ξ(k) +G2u(k − 1) +G3 (29)

As previously mentioned, QPs have a considerable number of solution methods and software
libraries such as the ones presented by Mattingley & Boyd (2012) and Ferreau et al. (2014).

6 SIMULATION RESULTS

Numerical simulations were carried out in order to observe the performance of both MPC
strategies for the trajectory tracking problem. The values of the model parameters used in the
simulations were extracted from Lopes et al. (2011) which can be seen in Table 1.

Table 1: Quadrotor model parameters.

Symbol Definition Value
m mass 4.0 Kg
g local gravity 9.81 m/s2

Ixx X inertia 0.033 Kgm2

Iyy Y inertia 0.033 Kgm2

Izz Z inertia 0.066 Kgm2

ω̄ Rotor velocity for hovering 192.8 rad/s

The reference trajectory is defined as consecutive 10 m long steps in the x, y and z axis,
keeping ψ a constant.

xd(t) =

{
10 if 10 < t < 40

0 if t < 10 or t > 40
; yd(t) =

{
10 if 20 < t < 40

0 if t < 20 or t > 40

zd(t) =

{
10 if 0 < t < 40

0 if t > 40
(30)

The following initial conditions were considered: [x, y, z] = [0, 0, 0]m, [φ, θ, ψ] = [0, 0, π
6
] rad

and all null speeds. Considering a response time of τr = 5 s for the actuators, the trajectory is
filtered by:

F
(
x(k)

)
= x(k) + e

−3τs
τr ·

(
x(k − 1)− x(k)

)
(31)

Finally, a sampling time τs = 50 ms is considered for both applications.

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering

Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016



Model Predictive Control Applied to Quadrotor UAV

6.1 Unconstrained MPC

In this first approach, the prediction horizon is set to N = 100 steps, which is equivalent to
5 s with the given sampling time. Furthermore, we take the entire state vector (ξ) as regulated
variables so: Cr = In. This way, the controller can track the trajectory set in Eq. (30) and
the remaining regulated states are given a null set point. This allows us to stipulate the kind of
response the quadrotor is going to give, through adjustments in the weighting matrices Qy and
Qu. These are set as diagonal matrices:

Qy = diag(Ky) ∈ Rn×n; Qu = diag(Ku) ∈ Rnu×nu (32)

where the main diagonal entries are:

Ky =
[

1 1 1 1 10 1 1 1 1 1 10 1
]T

; Ku =
[
10−3 10−3 10−3 10−3

]T (33)

Notice these give a lower priority to the control input deviation and higher costs for deviations
in z and ψ.

Figure 2 shows the quadrotor’s simulated positions and attitude along with their reference
trajectories. The system tracks well the trajectory while keeping ψ stabilized in zero.
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Figure 2: Time evolution of the position and attitude variables along with their respective desired trajecto-
ries for the unconstrained MPC simulation.

The control inputs, i.e. the rotor speeds, are depicted in Fig.3 .
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Figure 3: Applied control inputs.

6.2 Constrained MPC

In this more elaborate strategy, the prediction horizon is set to N = 50 steps. The regulated
output vector is defined as yr =

[
x y z ψ

]
. To evaluate these outputs’ and the control inputs’

deviations, the following weighting matrices are stipulated:

Qy = diag(10, 10, 100, 100) ; Qu = diag(0.01, 0.01, 0.01, 0.01) (34)

To enforce more stability to the flight, constraints are imposed to its attitude and control
inputs. These should keep the quadrotor in a near-hover operation, in which the prediction
map (defined in Section 3.1) maintains better accuracy. The constrained outputs are thus yc =[
φ θ

]T . The following bounds are applied:

yminc

−5

−5

 deg; ymaxc =

5

5

 deg; δmin =


−10

−10

−10

−10

 rad/s; δmax =


5

5

5

5

 rad/s (35)

Furthermore, to guarantee the control actions are feasible to the actuators, its minimum and
maximum values are set as:

umin =
[

0 0 0 0
]T

; umax =
[

250 250 250 250
]T
rad/s (36)

To solve the QP problem involved, as stated in Eq. (27), we use the open-source software
package qpOASES, that is available in (Ferreau et al. 2007–2015). This solver uses an active-
set method that is particularly suitable for MPC applications, as described in (Ferreau et al.
2014).

Figure 4 shows the position and attitude of the simulated flight. Once again, the controller
is able to track the trajectory while keeping ψ stabilized in zero. Furthermore, it can be seen
that the roll and pitch angles are kept within the defined bounds.
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Figure 4: Time evolution of the position and attitude variables along with their respective desired trajecto-
ries and bounds for the constrained MPC simulation.

Figure 5 displays the time evolution of the control inputs applied, where its possible to
observe the upper bound being enforced during the takeoff.
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Figure 5: Applied control inputs along with their bounds.
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7 CONCLUSION

In this paper, two strategies of MPC were discussed and simulated for a trajectory tracking
problem, the main difference between the two being the constraint handling. Both controllers
are able to track the given trajectory. However, the constrained MPC is able to perform while
keeping the quadrotor in a set of constraints that guarantees more reliability from the prediction
map, since it is capable of keeping the UAV closer to horizontal and only plans feasible future
control actions. Consequently, the constrained MPC yields smoother control profiles and keeps
the velocities feasible for the rotors. On the other hand, the more sophisticated formulation
that handles constraints amounts to a QP problem, which requires considerable computational
effort. Therefore, real-time application of the constrained strategy requires significantly more
processing power. So even though both strategies seem adequate for trajectory tracking with
quadrotors, their feasibility depends on other factors. Therefore, the necessity to enforce con-
straints to the process has to be carefully assessed to deal with the real-time implementation
challenges that arise with the higher computational cost required.
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