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ABSTRACT

The generation and amplification at wavelengths longer than 1100 nm is not straightforward when using
Yb-doped optical fibers, since light emission of ytterbium occurs preferentially in the region of 1020 nm
- 1100 nm with a maximum at 1030 nm. One well known approach is to heat the Yb-doped fiber up to
temperatures above 100 ◦C. This increases the re-absorption in the lower emission band and also enhances
at the same time the emission at longer wavelengths. Consequently, heating allows to extend the spectral
gain-region of Yb-doped fibers by at least 60 nm up to 1160 nm. However, the drawback of this method
is that it results in a shorter durability of the fiber, since heating damages the polymer-coating. Moreover,
such a laser has a reduced overall efficiency, due to heating, isolation and heat removal issues.

It has been reported, that at the presence of an aluminosilca host (silica doped with Al) efficient laser
activity at around 1150 nm can be achieved by heating the Yb-doped fiber to only 60 ◦C. In this work we
investigate the spectroscopy of a heated Yb-doped fiber with a high aluminum concentration. The fiber is
drawn in our in-house fiber drawing tower. The preforms are produced by the sol-gel-based granulated silica
method which allows us to vary the aluminum as well as the ytterbium concentrations within a large range.
The fiber is investigated with respect to their spectroscopic data as well as their lasing performance.

Keywords: Aluminum concentration in Yb-doped fiber, Extension of spectral gain-region of Yb-doped
fibers, Heating Yb-doped fiber

1. INTRODUCTION

The generation of laser light sources in the yellow spectral range (560 - 580 nm) is due to the lack of efficient
laser gain medias not straight forward. One approach is to build an infrared laser cavity at the wavelength
of 1120 - 1160 nm, followed by a Second Harmonic Generation (SHG) crystal to frequency double the light.
One possible design of such a setup is a linear, Fiber Bragg grating (FBG) based laser cavity with an Yb-
doped fiber as gain medium. The benefit of such a design is not only a narrow banded laser line at a desired
wavelength, which allows efficient SHG, but also the commercial availability of the fiber. In a previous work
we demonstrated successfully such an infrared fiber laser with an output power at Watt-level; generated by
a laser cavity design as described.1 Currently, the limit of such a setup is the upcoming, parasitic Amplified
Spontaneous Emission (ASE) at the wavelength of the ytterbium gain maximum at 1030 - 1060 nm. One
possibility to generate more efficient laser light at long wavelengths is to heat up the Yb-doped fiber, since
this causes a shift in the absorption as well as in the emission spectrum.2 Heating a fiber, however, has
several drawbacks. The polymer-coating takes damage, which results into a shorter durability of the fiber.
Furthermore, the heat source demands for an extra effort in isolation and heat management and hence limits
the design of the setup. This fact must be taken into account once a compact prototype of a lab setup is
demanded.

It has been reported, that at the presence of an aluminosilca host efficient laser activity at around 1150 nm
can be achieved by heating the Yb/Al-doped fiber to only 60 ◦C.3 In this contribution we investigate the
spectroscopy of a heated Yb-doped fiber with a high aluminum concentration, which is drawn in our in-
house fiber drawing tower. The fiber was drawn by our production method, the sol-gel based granulated
silica method, which allows an easy adjustment of the doping components concentrations.4,5 The produced
fiber is investigated with respect to their spectroscopic data as well as their laser performance.
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2. FIBER FABRICATION

Our sol-gel based granulated silica approach of fiber fabrication is summarized in Figure 1.5 It combines
the sol-gel based production of homogeneously doped silica granulate with the powder-in-tube technique,
which allows an easy adjustment of the dopant concentration up to several at. %. The process starts from
precursors mixed into a liquid solution resulting in a sol. Hydrolysis, condensation, gelatinization and drying
result in a powder, where every grain is doped. Next, the powder is sintered and milled to a desired grain
size of several 100 µm. In order to reduce the scattering losses an intermediate vitrification step is added
before the final fiber drawing. For this fiber, the vitrification process was done by drawing a droplet in
the drawing furnace from the sintered granulate derived from the sol-gel process. We then took the upper
part of this droplet as a core area for the powder-in-tube preform where the interspace was filled with pure
silica granulate. The drawback of this method is the non-constant core diameter. In the latest development
of the fabrication process, the vitrification is done by a CO2 laser treatment, which allows a constant core
diameter. The final result is a step-index fiber with a homogeneously doped core and pure silica cladding.5

The core precursor composition for our fiber is listed in Table 1. Phosphor is added as a co-dopant in order
to increase solubility of the rare earth dopant as well as to suppress photodarkening.5

Figure 1: Schematic overview of our fiber fabrication process, the sol-gel based granulated silica method.5

Table 1: Core precursor composition

Precursor name Chemical formula At. %

Ytterbium(III) nitrate pentahydrate Yb(NO3)3 · 5H2O 0.4
Phosphorus pentoxide P2O5 2.4
Aluminum nitrate nonahydrate Al(NO3)3 · 9H2O 4
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3. SETUP

Our setup to characterize the spectroscopic and laser characteristics is sketched in Figure 2. If the dichroic
mirror M2 is mounted into the setup, port P2 allows to measure the residual pump. Without mirror M2,
the setup changes into a single pass setup, which allows to measure the transmission of the signal as well as
the residual pump.

laser diode
976nm 

double clad fiber single clad fiber

Yb-doped fiber
inside oven

P1
P2

P3

free space beam lens

mirror HR @ 1020-1200 nm, HT @ 976 nm

M1 M2

0° angle cleave

Figure 2: Schematic setup to characterize our fiber. Every end facet of a fiber is cleaved at an angle of 0◦.
P1 corresponds to the entrance facet of the Yb-doped fiber, where the pump light is coupled into the fiber.
This cleave acts as a 4 % reflection mirror of the double pass setup. P2 is after the end facet of the Yb-doped
fiber and after the dichroic mirror M2. At this position, the residual pump can be measured. The signal
from the double pass can be measured at P3, since it is coupled out from the system with the dichroic mirror
M1. Both dichroic mirrors M1 and M2 are high reflective for light at a wavelength of 1020 - 1200 nm and
high transmitting for the pump light.

4. RESULTS

4.1 Refractive index profile measurement

The refractive index was measured with an improved system, which is based on the refracted near field
technique.6 The new setup allows a fast capture of the 2-D refractive index profile of our fiber.6 The
measured values are given in Table 2 and depicted in Figure 3.

Table 2: Results from the refractive index profile measurement

Value Error

Index step 5.1317 × 10−3 9.6453 × 10−5

NA core 1.1612 × 10−1 1.0933 × 10−3
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Figure 3: 2-D refractive index profile. The average core index is 1.3163 (err: 9.5087 × 10−6), the average
cladding index is 1.3112 (err: 1.6174 × 10−5).

4.2 Lifetime measurement

The lifetime measurements of the upper laser level of the Yb was taken for our fiber as well as for a commercial
one. The values are presented in Table 3.

Table 3: Results from the lifetime measurement

Lifetime [ms]

Our fiber 0.74 ± 0.007
Commercial fiber 0.8 ± 0.004

4.3 Spectral measurements

The fiber was coiled on a cylindrical aluminum block, which is used as a heating source. To measure the
forward ASE, the mirror M2 was removed from the setup. The Yb-doped fiber was then pump to a level
below the laser threshold and heated to different temperatures. Figure 4 show the ASE spectrum for three
different temperatures. A shift of the peak maximum by 0.013 nm/◦C is observed as well as a general increase
of the emitted spectrum. At the peak maximum at approx. 1030 nm, the increase of the spectral emission
is 0.008 dB/◦C, whereas at a wavelength of 1160 nm, the increase is 0.014 dB/◦C. While the increase at
longer wavelength is similar to the values we observed for a commercial fiber, the spectrum shows a different
behavior at the peak maximum at 1030 nm. In a previous work we observed a decrease of the spectral
emission at 1030 nm.1
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Figure 4: Forward ASE. The fiber was pump below the laser threshold and heated to different temperatures.
An general increase of the spectral emission was observed for higher temperatures.

4.4 Laser measurements

The fiber was investigated in two different setups, one is a single pass setup, pumped at a wavelength of
940 nm, the second one is a double pass setup, pumped at a wavelength of 976 nm. The laser characteristics
are summarized in Table 4. Figure 5 indicate the slope efficiency for different temperatures of the Yb-doped
fiber. The slope efficiency increases with increasing temperature of the fiber from 4.3 % at room temperature
to 6.5 % at 140 ◦C. The power was measured with a thermophile power meter. Figure 6 shows the emission
of laser lines, when the system is pumped with an absorbed pump power of 8 Watt. All laser lines are shifted
to longer wavelengths, as the temperature of the fiber was increased.

Table 4: Laser characteristics.

Double pass Single pass

Pump wavelength [nm] 976 940
Fiber length [m] 5 2
Slope efficiency [%] 4-6 0.5
Laser threshold [W] 3.5 6
Temperature [◦C] 25 25
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Figure 5: Absorbed pump power vs. signal power for a fiber length of 5 m, pumped at a wavelength of
976 nm. The slope efficiency increases with higher temperatures of the fiber.

5. DISCUSSION

The core size is, due to the fact that the core was vitrified by drawing a drop, not constant. Since this fiber
is a very first prototype, we did not concern about this fact.

The two characteristics numerical aperture (NA core: 0.11612) and the lifetime (0.74 ± 0.007 ms) of our
fiber show similar values to commercial fibers (NA core: 0.12, lifetime: 0.8 ms), both values deviate less
than 10 %.

The shift of the spectral emission of a heated Yb-doped fiber is a well known fact.2 While we observe a
similar (+0.015 dB/◦C) increase of spectral emission at a wavelength of 1160 nm to our previous work, the
spectral emission at the peak at 1030 nm behaves differently. In our previous work, we observed a significant
decrease of the emission peak (up to -0.1 dB/◦C), while our fiber indicates an increase of 0.008 db/◦C. This
leads to the assumption, that the absorption spectrum of our fiber differs from the commercial one.

Our fiber absorbs approximately 60 % of the coupled pump power, however, only a small percentage
is converted into laser light. Since the fiber was heated by a heating source, which has a temperature
monitor, we could also observe that the fiber heats itself up by pumping as well as the heating. Calculations
confirmed, that the power required to heat up the heating source to the measured temperature corresponds
to the power coupled into the fiber, but not converted into laser light. One explanation for this effect could
be the presence of Yb-clustering. Yb-clustering would also result in a shorter lifetime, which corresponds to
the fact that the measured lifetime of our fiber is shorter compared to the commercial one. Furthermore,
the composition of Yb/Al/P is in progress to be optimized. Our assumption is that all of these drawbacks
are responsible for the poor laser performance.

6. CONCLUSION AND OUTLOOK

We drew a Yb-doped double clad fiber with a high aluminum concentration. The laser performance with
a slope efficiency of only 4 - 6 % is low compared to commercial fibers, and a self heating of the fiber was
observed. However, since this is a very early stage of our research, further experiments need to be performed.
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Figure 6: Laser emission for a fiber length of 5 m, pumped at a wavelength of 976 nm. The spectrum shows
a competition of various laser lines and a general shift to longer wavelength for higher temperatures of the
Yb-doped fiber.
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