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Abstract. We consider slightly heterogeneous swarm of agents controlled by one
leader. We study the global dynamics by using a newly established connection binding
multi-agents dynamics and nonlinear optimal state estimation (nonlinear filtering).
For a whole nonlinear class of mutual interactions, we are able to exactly characterize
the resulting swarm dynamics. Our leader-follower dynamics is interpretable as a
feedback particle filtering problem similar to finite-dimensional, nonlinear filters orig-
inally proposed by V. E. Beneš. The state estimation problem can be explicitly solved
as it merely a change of probability measure on an Ornstein-Uhlenbeck process. The
agents interactions, driven by common observations of the randomly corrupted lead-
ers position, correspond to the innovation kernel that underlies any Bayesian filter.
Numerical results fully corroborate our theoretical findings and intuition.

Keywords: Heterogeneous swarm, Multi-agent dynamics, Leader-based model, Non-
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1 Introduction

Among the vast and steadily increasing literature devoted to the dynamics of
large number of mutually interacting autonomous agents, analytically solvable
models stylizing some aspects of reality are definitely welcome (Hongler et al.[1],
Eftimie[2], Bellomo and Dogbe[3], Bertin et al.[4]). Despite specific features in-
herent to analytical approaches, these contributions enhance our understand-
ing of the emergence of collective phenomena like synchronization, aggregation,
pattern formation, behavioral phase transitions, fashion trend formation and
many others. Most analytical studies focus on the dynamics of homogeneous
swarms (i.e. involving identical agents). Either the agents local rules are given
and the ultimate goal is to analytically derive the emerging collective patterns
or inversely, given a collective behavior, the goal is to unveil the agents local
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rules and their interactions. Purely homogeneous swarms are however rather
scarcely encountered in reality.

In this paper, we focus our attention on slightly heterogeneous populations in
which one special agent (we call it the leader) is able to drive the whole swarm
towards a desired objective (Wang and Han[5]). Several types of leaders can be
distinguished depending on the ways they affect their fellows. Either the leader
is external and hence is explicitly recognized by ordinary agents of the swarm
(Couzin et al.[6], Aureli and Porfiri[7]), or it acts as a shill who appears ordinary
to its fellows while in fact obeying to a hidden master (Dyer et al.[8], Gribovskiy
et al.[9], Wang and Guo[10]). Besides very particular models (Sartoretti and
Hongler[11,12]), there is generally little hope for an analytical investigation of
the collective behavior of a shill- or leader-infiltrated (and hence heterogeneous)
swarm. The objective of this paper is to unveil a class of dynamical models for
which this can be achieved.

Our source of inspiration is taken from the realm of estimation problems. In
noise filtering, one considers the evolution of a stochastically driven system
S, monitored by an observer O, itself delivering noisy information. The fil-
tering goal at time t is to construct the best possible estimation of the state
S by processing information delivered only from O up to time t. The filter-
ing process is achieved via sequential Bayesian steps. Specifically, one starts
with a prediction step to estimate the relevant conditional probability den-
sity function (pdf) based on the S-dynamics, then one updates this pdf based
on the O-dynamics. For linear S-evolutions driven by White Gaussian Noise
(WGN) and O-measurements also corrupted by WGN, the filtering problem
is completely solvable and its explicit solution is known as the Kalman-Bucy
filter. Indeed, due to linearity and Gaussian driving noise, both the predic-
tion and the updating steps conserve their Gaussian character. Therefore the
underlying filtering problem remains finite-dimensional as all operations are
expressible via means and covariances only. For nonlinear evolution, the Gaus-
sian character is lost, thus generally leading to infinite-dimensional problems.
Analytical treatments are then precluded and only numerical approaches are
feasible. One numerical method is given by particle filters, specifically feedback
particles algorithms (FPA) (Yang et al.[13]). These algorithms are directly
based dynamics of randomly interacting particles and can therefore be iden-
tified with specific agents dynamics. The FPA prediction step is achieved by
attributing the S-dynamics to a homogeneous swarm of agents. The updating
process, realized by mutual agents interactions will globally minimize, in real
time, the Kullback-Leibler distance between the S pdf and the swarm empiri-
cal distribution. In this paper, we view the S-dynamics as playing the role of
a leader evolving among a homogeneous swarm of N ordinary agents. When
N → ∞, this dynamics is reducible to a mean-field game (Pequitoy et al.[14],
Guéant et al.[15]) with here an infinitesimally short time horizon, (as only real
time updating – excluding smoothing – is realized). The FPA offers therefore
a natural framework to construct leader driven swarms of agents. As a natural
consequence, solvable filtering problems, like the Kalman-Bucy case, provide
directly solvable heterogeneous swarms dynamics. Here, our intention is to
construct a class of multi-agents models which simultaneously keep the associ-



ated FPA finitely dimensional and yet escapes from the pure Gaussian world.
The idea on which we base our construction, is to consider a class of “Girsanov-
changes” of probability measures applied on Ornstein-Uhlenbeck dynamics (i.e.
linear dynamics with Gaussian noise sources). Here one considers the class of
Girsanov changes of measures studied in Taylor[16], Hongler[17], Dai Pra[18],
Benes[19] and Daum[20].
We organize the paper as follows: in section 2, the explicit connection between
the filtering problem and the driving of a swarm of agents infiltrated by a leader
is exposed. In section 3, we introduce our specific example of non-Gaussian
interacting agents, controlled by a leader and for which the associated FPA is
analytically solvable. Section 4, we report numerical experiments to illustrate
our analytical findings.

2 Multi-agent dynamics and Feedback Particle Filtering

Consider a swarm of N Brownian agents Ai, i = 1, 2, · · · , N, and one additional
leader agent A with dynamics:

dXi(t) = f (Xi(t)) dt+K (Xi(t),X(t), dZ(t)) + σdWi(t),

leaders dynamics

dY (t) = f (Y (t)) dt+ σdW (t),

dZ(t) = hY (t)dt+ σodWy(t),

(1)

where h > 0 is a constant, f : R→ R, dWi(t), dW (t) and dWy(t) are mutually
independent WGN processes and the vector X(t) = (X1(t), X2(t), · · · , XN (t))
describes the dynamic state of the N homogeneous agents. The leader agent
Y (t) affects the dynamics of theXi(t) via the interaction kernelK (Xi(t),X(t), dZ(t)).
We emphasize that the leaders dynamics Y (t) itself is independent from the
swarms state X(t). Agents are only able to observe the corrupted leaders po-
sition Z(t), (the leader effectively hides its real position Y (t) from the other
fellows).
In Eq.(1), we focus our attention on the class of interactions kernels:

K [Xi(t),X(t), dZ(t)] = ν (Xi(t), t)⊗

dZ(t)− h

2

[
Xi(t) +

1

N

N∑
k=1

Xk(t)

]
︸ ︷︷ ︸

G[Xi(t),X(t)]

dt

 ,

(2)
where the coupling strength ν = ν(Xi(t), t) is a positive convex function in
Xi(t) and where, due to the presence of multiplicative WGN processes, we
define ⊗ to denote the Stratonovich interpretation of the underlying stochas-
tic integrals (Jazwinski[21]). In Eq.(2), G [Xi(t),X(t)] is a consensual posi-
tion given by the average between agent Ai’s position and the whole swarm
barycenter. The interaction kernel relates the position increment Gdt with the
leader’s unveiled position increment dZ(t) and weights this stimulus with the



coupling strength ν. The assumptions on ν imply that K [Xi(t),X(t), dZ(t)]
tends, in real time, to steadily reduce the distance between G [Xi(t),X(t)] dt
and dZ(t). While the multiplicative factor ν(Xi(t), t) in Eq.(2) remains yet
undetermined, its complete specification can be fixed by introducing a cost
structure. In general, one requires that for some running cost functional
J [K, Xi(t),X(t),Z(t), t] and final cost Ψ (Xi(T ),X(T ), dZ(T )) at time hori-
zon T , the interaction K is a minimizer of the associated optimization problem.
Formally, the interaction kernel (and hence ν) would be the unique minimizer
over a set K of admissible controls, namely:

K [Xi(t),X(t), dZ(t)]

= min
K∈K

{(∫ T
t
J [K,Xi(s),X(s), dZ(s), s] ds

)
+ Ψ (Xi(T ),X(T ), dZ(T ))

}
.

(3)
The coupled set of Eqs.(1), (2) and (3) can be interpreted as a multi-players
differential game (Bensoussan[22]). For large populations, one can use the em-
pirical density P (N)(x, t) to construct the mean field posterior density P (x, t |
Z(t), x0) :

P (N)(x, t)dx =
1

N

N∑
n=1

1 {Xn(t) ∈ [x, x+ dx]} ≈ P (x, t | Z(t), x0)dx, (4)

where the condition Z(t) stands for the information history of the process Z
until time t and x0 for the common initial location of the whole swarm. In the
N →∞ limit, we have:

lim
N→∞

1

N

N∑
k=1

Xk(t) =

∫
R
x′P (x′, t | Z(t), x0)dx′ = E {X(t) | Z(t)} . (5)

The Fokker-Planck equation which governs this mean field posterior density
reads (with a self explaining abuse of notation for K):

∂
∂tP (x, t | Z(t), x0) = − ∂

∂x {[a(x) +K (x,E {X(t) | Z(t)})]P (x, t | Z(t), x0)}

+σ2

2
∂2

∂x2P (x, t | Z(t), x0).
(6)

Note that Eqs.(6) and (3) define in a forward/backward coupling a so called
differential mean-field game problem.

Feedback particles filters. For vanishing forward time horizon (i.e. T = t) in
Eq.(3), a simpler situation arises (the backward in time coupling becomes triv-
ial) and the minimization is reduced to solving an Euler-Lagrange variational
problem (ELP) for Ψ (x,E {X(t) | Z(t)}). Choosing the objective criterion Ψ
to be the Kullback-Leibler distance dK :




Ψ (x,E {X(t)} , dZ(t)) := dK {P (x′, t | Z(t), x0);Q(x, t | x0)} ,

dK {P (x′, t | Z(t), x0);Q(x, t | x0)} :=
∫
R P (x′, t | Z(t), x0)

{
ln
[
P (x′,t|Z(t),x0)
Q(x′,t|x0)

]}
dx′,

(7)

with Q(x, t | x0) being the transition probability density of the diffusion process
Y (t) defined in Eq.(1) we find the ELP:

− ∂
∂x

{
1

P (x,t|Z(t),x0)
∂
∂x [P (x, t | Z(t), x0)ν(x, t)]

}
= h

σ2 ,

lim|x|→∞ P (x, t | Z(t), x0)ν(x, t) = 0,

(8)

which leads to:


ν(x, t) = h

σ2P (x,t|Z(t),x0)

{∫ x
−∞ [E {X(t) | Z(t)} − x′]P (x′, t | Z(t), x0)dx′

}
,

E {X(t) | Z(t)} =
∫ +∞
−∞ x′P (x′, t | Z(t), x0)dx′.

(9)

Eqs.(1), (2) together with ν(x, t) given in Eq.(9) produce a nonlinear continuous
time feedback particle filter. This allows for a direct reinterpretation of the
leader-based dynamics in terms of a stochastic filtering problem. A class of
examples is detailed in the next section.

It is worthwhile noting that the leader influences the swarm through the vari-
ance σ (and the parameter h), and not only through its position. As σ grows,
the agents uncertainties on the actual leader position increase. Consequently
the coupling strength ν(x, t) decreases, the agents variances increase and the
swarm tends to form a widespread group of agents around the leader. Alter-
natively, small values for σ will allow for very compact swarm formation.

3 Finite dimensional filtering with Weber parabolic
functions

Let us now introduce a specific filtering problem which will be related to the
control of the multi-agents dynamics. The nonlinear filtering problem is to
estimate the value of the one-dimensional state Y (t), at time t, given a set of
measurements prior to t: Z(t) = {Z(s) | 0 ≤ s ≤ t}. We will treat hereafter
time-continuous measurements and assume that the leader state Y (t) – starting
at position y0 – evolves according to the stochastic differential equation:

dY (t) =

:=fB [Y (t)]︷ ︸︸ ︷{
d

dy
[logYB(y)]

∣∣∣
y=Y (t)

}
dt+ dW (t),

Y (0) = y0

(10)



in which W (t) is the standard Brownian motion and where YB(y) is the Weber
parabolic function, solution to the ordinary differential equation:

d2

dy2
YB(y) =

[
y2

4
+

(
B − 1

2

)]
YB(y) (11)

with B a control parameter. From the definition of fB [Y (t)], we easily see that

d

dy
fB(y) + f2B(y) =

d2

dy2YB(y)

YB(y)
=
y2

4
+

(
B − 1

2

)
. (12)

This leads to a Beneš type finite-dimensional filtering problem (a fully an-
alytical treatment of filtering problems in the Beneš class can be found in
Daum[20]). In the sequel, we impose the parameter range B ∈ R+ which en-
sures the positivity of YB(y) (∀ y ∈ R). For B ∈ [0, 1/2], we further observe
that the generalized potential − log [YB(y)] is locally attractive near the origin
and asymptotically repulsive for |y| → ∞. In the parameter range B > 1/2,
the potential is systematically repulsive ∀y ∈ R (Hongler[17]). Figure 1 shows
the shape of YB(y) and fB(y) for different values of the control parameter B.
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Fig. 1. Shape of YB(y) (left) and fB(y) (right) for B = 0 (plain line), B = 0.01
(stripped line), B = 0.5 (stripped-dotted line) and B = 1 (dotted line). For B = 0
the filtering problem is linear and the dynamics stable. For B = 1 the filtering
problem is again linear but with unstable dynamics. In between, we have a nonlinear
filtering problem and the conditional probability density changes – with increasing B
– from unimodal to bimodal and back to unimodal.

For B = 0 and B = 1, we respectively obtain linear dynamics:Y0(y) = e−
1
4y

2 ⇒ f0(y) = − 1
2y

Y1(y) = e+
1
4y

2 ⇒ f1(y) = +1
2y.

(13)

Using the framework introduced in Daum[20], the continuous time filter is
given by the normalized probability density P (y, t|Zt) of observing Y (t) := y



conditioned on the set of measurements up to time t, Z(t), and can be written
as (computational details are given in the Appendix):

P (y, t) := P (y, t | Z(t)) =
YB(y) · e−

(y−m)2

2s

J0(m, s,B)
(14)

with J0(m, s,B) the normalization function (see Appendix):

J0(m, s,B) = 2

√
πs

2 + s

[√
2 + s

2− s

]B
e

m2s
2(4−s2)YB

(
2m√
4− s2

)
. (15)

The measurement dependent quantities m := m(Z(t); t) are given by

m = m(Z(t); t) =
tanh(pt)

p

[
h

∫ t

0

sinh(ps)

sinh(pt)
dZ(s) +

py0
sinh(pt)

]
(16)

and similarly, the measurement independent quantities s := s(t) read as:

s = s(t) =
1

p
tanh(pt) (17)

with the definition p =
√
h2 + 1

4 . With this expression for P (y, t), we have for

the conditional mean:

〈Yt〉 := E(Yt|Z(t)) =
4m

4− s2
+

2s√
4− s2

fB

[
2m√
4− s2

]
(18)

and after tedious elementary manipulations the conditional variance:

var(Yt) := E((Yt−〈Yt〉)2|Z(t)) =
2s

2 + s
+

4s2

4− s2
{ m2

4− s2
+B−f2B

( 2m√
4− s2

)}
.

(19)
Remark: For the linear cases B = 0 and B = 1 from Eq.(13), we consistently
find the following classical results:

P (y, t) =
exp

{
− ((2+s)y−2m)2

4s(2+s)

}
√

2π 2s
2+s

, 〈Yt〉 =
2

2 + s
m, var(Yt) =

2

2 + s
s

(20)
for B = 0 and

P (y, t) =
exp

{
− ((2−s)y−2m)2

4s(2−s)

}
√

2π 2s
2−s

, 〈Yt〉 =
2

2− s
m, var(Yt) =

2

2− s
s

(21)
for B = 1. As predicted by the linear version of the feedback filter, when
B = 0 and B = 1 the coupling strength ν(x, t) reduces to the standard state
independent Kalman gain:



ν(x, t) = ν(t) =
h

σ2
var(Yt). (22)

4 Numerical results

Numerical results are obtained by simulating (1) for a finite swarm of agents and
one leader. Thanks to the consistency of the estimator (see Yang et al.[13]), one
can still use the results from the mean field analysis for large enough N . In this
case P (y, t) must be fitted to the empirical histogram of agents’ position at time
t, to find the values for m and s. The control ν(x, t) can then be computed from
its integral expression Eq.(9), while 〈Y 〉t can be computed from Eq.(18). The

derivative d
dxν(x, t) is computed by using the relation

d
dxP (x,t)

P (x,t) = fB(x) + x−m
s ,

which can be written as:

d

dx
ν(x, t) =

h

σ2
(〈Y 〉t − x)− ν(x, t) ·

(
fB(x)− x−m

s

)
. (23)

Note that this natural fitting strategy to estimate P (y, t) is – computationally
– very costly. Extensive numerical computations have shown that ν(x, t) can
safely be computed from Eq.(9) when using directly the empirical histogram
of the agents’ position instead of the fitted function in Eq.(14). The derivative
d
dxν(x, t) ' ν(x+h,t)−ν(x,t)

h is computed by selecting a sufficiently small value h.

Numerical results in linear cases. Figures 2 and 3 show in red the time
evolution of the noisy leader’s unveiled position. The mean value from the
swarm of agents (likewise the output of the feedback particle filter) produces
the smooth blue curve. As the agents’ control is updated based on the un-
veiled position of the leader, a small delay can be observed between the leaders
movements and the swarms reactions. The filter performs well: as expected,
the swarms barycentric position is nearly always closer to the actual position
of the leader than the unveiled position. This means that the control on the
agents leads to a better approximation of the actual leaders position.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

0

5

Fig. 2. Leader’s position Y (t) from Eq.(10) (black), along with its unveiled position
Z(t) (red), for B = 0, σ = h = 1 and t ∈ [0; 5]. In blue the mean value 〈Y 〉t measured
from a swarm of N = 1000 agents. The particles start with Yi(0) = x0 = 1 ∀i, while
Z(0) = Y (0) = x0.
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Fig. 3. Leader’s position Y (t) from Eq.(10) (black), along with its unveiled position
Z(t) (red), for B = 1, σ = h = 1 and t ∈ [0; 5]. In blue the value 〈Y 〉t measured from
a swarm of N = 1000 agents. The particles start with Yi(0) = x0 = 0.1 ∀i, while
Z(0) = Y (0) = x0.

Numerical results in nonlinear cases. We now consider the parameter
range 0 < B < 0.5 where the dynamics of the leader is nonlinear and exhibits
an attractive potential in the central region (i.e., around the origin), and a re-
pulsive potential for |x| � 0. Between these two regions, the potential changes
from attractive to repulsive and the agents experience strong nonlinear dynam-
ics. Note that the dynamics in the attractive region is meta-stable and a leader
starting within this region ultimately escapes to infinity.
During the sojourn time of the leader in the attractive region, the close-by
agents undergo quasi linear dynamics. They stay in this attractive region,
self-arrange in the vicinity of the leaders position to empirically build the a
posteriori distribution P (y, t). As soon as the leader escapes from the attrac-
tive region, the other agents start feeling their barycentric control and ulti-
mately follow the leader outside the attractive region. For an infinite swarm,
its barycenter follows the leaders position with nearly no delay; but in our case,
as N < ∞ agents, a delay can possibly be observed between the exit times of
the leader and the agents. Figure 4 and 5 show the results of a representative
numerical simulation for N = 1000 agents, with a very narrow and shallow
attractive region (B = 0.49). Observe the explicit delay between the exit times
of the leader and the swarm for σ = 5 in Figure 5.

5 Summary and Conclusion

Heterogeneous multi-agent systems are notoriously difficult to describe analyt-
ically and most especially if the underlying dynamics is intrinsically nonlinear.
In this note, we present a class of dynamics where explicit and fully analytical
results can be derived. The core of our construction relies on recent approaches
that have been obtained in the realm of nonlinear estimation problems. The
so-called particle filter method can be reinterpreted as a general leader-follower
problem in which a swarm of interacting agents try to follow a leader whose
unveiled position is corrupted by noise. In stochastic filtering, only finite-
dimensional problems can possibly be solved analytically. Hence, when the
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Fig. 4. Leader’s position Y (t) from Eq.(10) (black), along with its unveiled position
Z(t) (red), for B = 0.49, σ = h = 1 and t ∈ [0; 8]. In blue the value 〈Y 〉t measured
from a swarm of N = 1000 agents. The particles start with Yi(0) = x0 = 0.2 ∀i,
while Z(0) = Y (0) = x0.
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Fig. 5. Leader’s position Y (t) from Eq.(10) (black), along with its unveiled position
Z(t) (red), for B = 0.49, σ = 5, h = 1 and t ∈ [0; 8]. In blue the value 〈Y 〉t measured
from a swarm of N = 1000 agents. The particles start with Yi(0) = x0 = 0.2 ∀i,
while Z(0) = Y (0) = x0.

dynamics is driven by Gaussian noise, all relevant probability distributions re-
main always remain Gaussian and hence calculations are limited to the first
two moments (Kalman-Bucy filter). The intimate connection existing between
multi-agent systems and estimation problems show that for nonlinear dynam-
ics, analytical results are in general hopeless. For one class of non-Gaussian
filtering finite-dimensional problems however, explicit analytical models are
available and were pioneered by Benes. It is therefore fully natural to study
how the Benes’ class enables to construct nonlinear solvable multi-agents sys-
tems, as it is done here. The core analytical tools leading to solvable finite-
dimensional filtering problems rely on an underlying Riccati equation that we
explicitly solved (in the scalar situation) via Weber parabolic cylinder func-
tions. Using these special functions, we are able to answer two open questions
originally formulated in Daum[20]. Our multi-agent class of dynamics enables
to explicitly observe how a leader can control the spreading factor of the agents
around its position, by tuning the strength of the observation noise.
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15. O. Guéant, J.-M.. Lasry, and P.-L. Lions. Mean field games and applications,
volume 2003 of Lecture Notes in Mathematics. 2011.

16. J. C. Taylor. The minimal eigenfunctions characterize the ornstein-uhlenbeck
process. The Annals of Probability, 17(3):1055–1062, 1989.

17. M.-O. Hongler. Study of a class of nonlinear stochastic process - boomerang
behavior of the mean. Physica D, 2:353–369, 1981.

18. P. Dai Pra. Stochastic control approach to reciprocal diffusion processes. Applied
Mathematics and Optimization, 23(3):313–329, 1991.

19. V. E. Benes̆. Exact finite dimensional filters for certain diffusion with nonlinear
drifts. Stochastics, 5:65–92, 1981.

20. F. E. Daum. Exact finite-dimensional nonlinear filters. IEEE Transactions on
Automatic Control, AC-31(7):616–622, 1986.

21. A. H. Jazwinski. Stochastic Processes and Filtering Theory. Academic Press,
1970.

22. A. Bensoussan, J. Frehse, and P. Yam. Mean Field Games and Mean Field Type
Control Theory. Springer, 2013.

23. I. S. Gradshteyn and I. M. Ryzhik. Table of integrals series and products. Aca-
demic Press, 1980.



Appendix - Details of calculations

For the readers ease we introduce notations and collect formulas useful for the
computation of the conditional probability density.

5.1 Collection of useful formulas

sinh(x+ y) = sinh(x) cosh(y) + cosh(x) sinh(y),

cosh(x+ y) = cosh(x) cosh(y) + sinh(x) sinh(y).∫
R
e−ax

2−2bx−cdx =

√
π

a
e
b2−ac
a , a > 0

∫
R

cosh[xα]e−
(x−µ)2

γ dx =
√
πγ cosh[µα]e

1
4γα

2

(24)

∫
R
x cosh[xα]e−

(x−µ)2
γ dx =

√
πγ
[αγ

2
sinh(µα) + µ cosh(µα)

]
e

1
4γα

2

(25)

∫
R
x sinh[xα]e−

(x−µ)2
γ dx =

√
πγ
[αγ

2
cosh(µα) + µ sinh(µα)

]
e

1
4γα

2

(26)

From sections 9.24 and 9.25 of Gradshteyrn and Ryzhik[23], we extract:

D−B(x) =
e−

x2

4

Γ (B)

∫
R+

e−x ζ−
ζ2

2 ζB−1dζ, (R(B) > 0) (see Gradshteyrn and Ryzhik[23], 9.241/2)

(27)


YB(x) := 1

2 [D−B(x) +D−B(−x)] =
√

2
π
e−

x2

4

Γ (B)

∫
R+ cosh(x ζ)e−

ζ2

2 ζB−1 dζ,

d2

dx2 {YB(x)} =
[
x2

4 +
(
B − 1

2

)]
YB(x), (B ≥ 0), (see Gradshteyrn and Ryzhik[23], 9.255/1)

(28)

5.2 Quadratures

Let us define the couple of quadratures:

Ji(m, s,B) =

∫
R
xiYB(x)e−

(x−m)2

2s dx, i = 0, 1. (29)



0th-order moment - J0(m,B) Using the integral representation given in
Eq.(28), we can write:

J0(m, s,B) =
∫
R

{
YB(x)e−

(x−m)2

2s

}
dx

=
√

2
π

1
Γ (B)

∫
R+ ζ

[B−1]e−
ζ2

2

{∫
R cosh(ζx)e−

(x−m)2

2s − x24 dx
}
dζ

J0(m, s,B) =
√

2
π
e
− m2

2(2+s)

Γ (B)

∫
R+ ζ

[B−1]e−
ζ2

2

{∫
R cosh(ζx)e−

(2+s)
4s (x− 2m

2+s )
2

dx
}
dζ

Now we use Eq.(24) with γ = 4s/(2 + s) and µ = 2m/(2 + s) to get

J0(m, s,B) = 2

√
2

π

√
πs

(2 + s)

e−
m2

2(2+s)

Γ (B)

∫
R+

ζ [B−1]e−
ζ2

2 [ 2−s
2+s ] cosh

[
2mζ

2 + s

]
dζ

Let us introduce the renormalization η := ζ
√

2−s
2+s , which implies

J0(m, s,B) =

√
2

π
2

√
πs

2 + s

e−
m2

2(2+s)

Γ (B)

[√
2 + s

2− s

]B
e
+ m2

(4−s2) e
− m2

(4−s2)︸ ︷︷ ︸
=1

∫
R+

η[B−1] cosh

[
2mη√
4− s2

]
e−

η2

2 dη.

(30)
Finally, using the definition Eq.(28), we end up with:

J0(m, s,B) = 2

√
πs

2 + s

[√
2 + s

2− s

]B
e

m2s
2(4−s2)YB

(
2m√
4− s2

)
. (31)

First order moment - J1(m, s,B) From the definitions Eqs.(27) and (29),
we observe that one can write:

J1(m, s,B) :=

∫
R

{
xYB(x)e−

(x−m)2

2s

}
dx

From the previous equation and the definition of J0(m, s,B) given in Eq.(29),
let us observe that we can write:

d
dmJ0(m, s,B) =

∫
R

{[
(x−m)
s

]
YB(x)e−

(x−m)2

2s

}
dx = 1

sJ1(m, s,B)− m
s J0(m, s,B).

This is equivalent to the relation:

J1(m, s,B) = mJ0(m, s,B) + s

[
d

dm
J0(m, s,B)

]
. (32)

Using Eqs.(31) and (32), the conditioned expectation reads:

E(x|Zt) = J1(m.b,B)
J0(m,s,B)

∣∣∣
t

= m+ s
[
d
dm (log {J0(m, s,B)})

] ∣∣∣
t

= 4
4−s2m(z) + 2s√

4−s2 fB

(
2m(z)√
4−s2

)
(33)


