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Abstract

In this paper, we introduce a general method for obtaining more flexible new distributions by compounding the extended Weibull
and power series distributions on a latent complementary risk problem base. The properties of the proposed class are discussed,
including a formal proof of an expension for its density function and explicit formulae for its hazard rate function, quantiles,
ordinary and incomplete moments and generating function. The method of maximum likelihood is used for estimating the model
parameters. Special distributions are investigated. The potentiality of the new class is illustrated on a real data set.
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Resumo

Neste artigo, introduzimos um método geral para obter distribuições de probabilidade mais flexíveis por meio da composição das
classes Weibull estendida e da séries de potência no contexto de riscos competitivos. As propriedades da nova classe são descritas,
incluindo uma prova formal para a expansão da função densidade e fórmulas explícitas para a função taxa de risco, quantils,
momentos ordinários e incompletos e função geradora. O método de máxima verossimilhança é usada para estimar os parâmetros
do modelo. Algumas distribuições especiais são estudadas. A potencialidade da nova classe é ilustrada com uma aplicação a um
conjunto de dados reais.
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1 Introduction

The complementary risk problems arises in sev-
eral areas, such as public health, actuarial science,
biomedical studies, demography and industrial

reliability. In complementary risk scenarios, the event of
interest is related to causes which are not completely ob-
served. Therefore, the lifetime of the event of interest is
modelled as function of the available information, which
is only the maximum ordered lifetime value among
all causes. For example, in medical applications, the
death of a patient can be caused by several competing
causes such as heart failure, pulmonary embolism and
stroke. Further, in industrial applications, the failure
of a device can be caused by several competing causes
such as the failure of a component, contamination from
dirt, an assembly error, harsh working environments,
among others. For more literature on complementary
risk problems, we refer the reader to Cox and Oakes
(1984), Crowder et al. (1991), Louzada-Neto (1999) and
Lawless (2003).

In recent years, several compound models have been
introduced by complementary risk motivation. For in-
stance, Bereta et al. (2010) proposed the Weibull Poisson
distribution, which can be used for modeling the life-
time until the occurrence of a failure in competing risks
scenarios. In the same context, Barriga et al. (2011),
Louzada et al. (2011) and Flores et al. (2011) defined the
complementary exponential power (CEP), complemen-
tary exponential geometric (CEG) and complementary
exponential power series (CEPS) distributions, respec-
tively. More recently, Louzada et al. (2013) proposed the
complementary exponentiated exponential geometric
(CEEG) distribution.

On the other hand, Silva et al. (2013) defined gen-
eral models for the structure of primary causes based
on extended types of failure of a system, called the ex-
tended Weibull power series (EWPS) distributions. The
EWPS models are obtained by compounding the ex-
tended Weibull (EW) (Gurvich et al., 1997) and power
series distributions. The compounding procedure fol-
lows the same set-up pioneered by Marshall and Olkin
(1997) and defines 68 special models. The EWPS class
is derived as follows. First, consider the EW class of
distributions with cumulative distribution function (cdf)
given by

G(x; α,ξ) = 1− e−α H(x; ξ), x > 0, α > 0, (1)

where H(x; ξ) is a non-negative monotonically increas-
ing function which depends on a parameter vector ξ.
The corresponding probability density function (pdf)
becomes

g(x; α, ξ) = α h(x; ξ) e−α H(x; ξ), x > 0, α > 0, (2)

where h(x; ξ) is the first derivative of H(x; ξ). We em-
phasize that several distributions could be expressed
in the form (1). Table 1 summarizes several of these
models. Further, we refer the reader to Nadarajah and
Kotz (2005) and Pham and Lai (2007). Second, let N
be a discrete random variable having a power series
distribution (truncated at zero) with probability mass
function

P(N = n) =
an θn

C(θ)
, n = 1,2, . . . , (3)

where an depends only on n, C(θ) = ∑∞
n=1 an θn (with

θ > 0) is such that C(θ) is finite. Table 2 summarizes
some power series distributions (truncated at zero) de-
fined according to (3) such as the Poisson, logarithmic,
geometric and binomial distributions. Given N, let
X1, . . . ,XN be independent and identically distributed
(iid) random variables following (1). The EWPS class is
defined by the random variable X = min {Xi}N

i=1, which
has the cdf given by

F(x; θ,α, ξ) = 1− C(θ e−αH(x;ξ))

C(θ)
, x > 0.

However, the EWPS models are not suitable for mod-
eling the observed maximum lifetime among all causes.
For this purpose, we define the complementary extended
Weibull power series (CEWPS) class of univariate distri-
butions obtained by compounding the extended Weibull
and power series distributions. The compounding pro-
cedure follows the same way of Barriga et al. (2011) and
Flores et al. (2011).

This paper is organized as follows. In Section 2, we
define the CEWPS class of distributions and demonstrate
that there are many existing models which can be de-
rived as special cases of the proposed unified model. In
Section 3, we provide general properties of the CEWPS
class including the density, survival and hazard rate
functions, and some useful expansions for the quan-
tiles, ordinary and incomplete moments and generating
function. Estimation of the parameters by maximum
likelihood is discussed in Section 4. Two special mod-
els of the proposed class are investigated in Section 5.
Applications to a real data set is presented in Section 6.
Some concluding remarks are addressed in Section 7.

2 The new class

The new class of distributions can be derived as follows.
Let N be a discrete random variable having a power
series distribution (3). Given N, let X1, . . . ,XN be iid
random variables following (1). Let X(n) = max {Xi}N

i=1.
The conditional cumulative distribution of X(n)|N = n
is given by

GX(n) |N=n(x) =
[
1− e−αH(x;ξ)

]n
,
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Table 1: Special distributions and corresponding H(x; ξ) and h(x; ξ) functions

Distribution H(x; ξ) h(x; ξ) α ξ References

Exponential (x ≥ 0) x 1 α ∅ Johnson et al. (1994)

Pareto (x ≥ k) log(x/k) 1/x α k Johnson et al. (1994)

Rayleigh (x ≥ 0) x2 2x α ∅ Rayleigh (1880)

Weibull (x ≥ 0) xγ γxγ−1 α γ Johnson et al. (1994)

Modified Weibull (x ≥ 0) xγ exp(λx) xγ−1 exp(λx)(γ + λx) α [γ, λ] Lai et al. (2003)

Weibull extension (x ≥ 0) λ[exp(x/λ)β − 1] β exp(x/λ)β(x/λ)β−1 α [γ, λ, β] Xie et al. (2002)

Log-Weibull (−∞ < x < ∞) exp[(x− µ)/σ] (1/σ) exp[(x− µ)/σ] 1 [µ, σ] White (1969)

Phani (0 < µ < x < σ < ∞) [(x− µ)/(σ− x)]β β[(x− µ)/(σ− x)]β−1[(σ− µ)/(σ− t)2] α [µ, σ, β] Phani (1987)

Weibull Kies (0 < µ < x < σ < ∞) (x− µ)β1 /(σ− x)β2 (x− µ)β1−1(σ− x)−β2−1[β1(σ− x) + β2(x− µ)] α [µ, σ, β1, β2] Kies (1958)

Additive Weibull (x ≥ 0) (x/β1)
α1 + (x/β2)

α2(α1/β1)(x/β1)
α1−1 + (α2/β2)(x/β2)

α2−1 1 [α1, α2, β1, β2] Xie and Lai (1995)

Traditional Weibull (x ≥ 0) xb[exp(cxd − 1)] bxb−1[exp(cxd)− 1] + cdxb+d−1 exp(cxd) α [b, c, d] Nadarajah and Kotz (2005)

Gen. power Weibull (x ≥ 0) [1 + (x/β)α1 ]θ − 1 (θα1/β)[1 + (x/β)α1 ]θ−1(x/β)α1 1 [α1, β, θ] Nikulin and Haghighi (2006)

Flexible Weibull extension(x ≥ 0) exp(α1x− β/x) exp(α1x− β/x)(α1 + β/x2) 1 [α1, β] Bebbington et al. (2007)

Gompertz (x ≥ 0) β−1[exp(βx)− 1] exp(βx) α β Gompertz (1825)

Exponential power (x ≥ 0) exp[(λx)β]− 1 βλ exp[(λx)β](λx)β−1 1 [λ, β] Smith and Bain (1975)

Chen (x ≥ 0) exp(xb)− 1 bxb−1 exp(xb) α b Chen (2000)

Pham (x ≥ 0) (ax)β − 1 β(ax)β log(a) 1 [a, β] Pham (2002)

Table 2: Useful quantities for some power series distributions

Distribution an C(θ) C′(θ) C′′(θ) C(θ)−1 Θ

Poisson n!−1 eθ − 1 eθ eθ log(θ + 1) θ ∈ (0, ∞)

Logarithmic n−1 − log(1− θ) (1− θ)−1 (1− θ)−2 1− e−θ θ ∈ (0,1)

Geometric 1 θ(1− θ)−1 (1− θ)−2 2(1− θ)−3 θ(θ + 1)−1 θ ∈ (0,1)

Binomial (m
n) (θ + 1)m − 1 m(θ + 1)m−1 m(m−1)

(θ+1)2−m (θ − 1)1/m − 1 θ ∈ (0, 1)

i.e., X(n)|N = n has the exponentiated form of the gen-
eral class (1) with parameters n, α and ξ based on the
same H(x; ξ) function. Thus, we obtain

P(X(n)≤ x, N=n) =
an θn

C(θ)

[
1−e−αH(x;ξ)

]n
, x>0, n≥1.

So, the EWPS class of distributions is defined by the
marginal cdf of X(n):

F(x; θ,α, ξ) =
C
[
θ (1− e−αH(x;ξ))

]
C(θ)

, x > 0. (4)

We can provide at least two motivations for the
CEWPS class. For instance, from the stochastic rep-
resentation X = max {Xi}N

i=1, we note that the CEWPS

class can arise in parallel systems with identical com-
ponents, which appear in many industrial applications
and biological organisms. Further, under the so-called
last-activation scheme, let N be the number of latent fac-
tors that must all be active by failure and Xi be the time
of resistance to a disease manifestation due to the ith
latent factor. In the last-activation scheme, it is assumed
that failure occurs after all N factors have been active.
So, if the Xi’s are iid EW random variables independent
of N, where N follows a zero-truncated power series
distribution, the CEWPS class can be able for modeling
the time to the failure under the last-activation scheme.

Hereafter, the random variable X following (4) with
parameters θ, α and the vector of parameters ξ is de-
noted by X ∼ CEWPS(θ,α, ξ). Equation (4) extends
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some distributions which have been studied in the lit-
erature. The complementary exponential geometric
(CEG) distribution is obtained by taking H(x; ξ) = x
and C(θ) = θ (1− θ)−1 with θ ∈ (0,1). Further, from
H(x; ξ) = x and C(θ) = eθ − 1, θ > 0, we obtain the
complementary Poisson exponential (CPE) distribution
proposed by Cancho et al. (2011). The complemen-
tary exponential power series (CEPS) distributions come
from (4) by combining H(x; ξ) = x with any C(θ) listed
in Table 2.

3 General properties

3.1 Density, survival and hazard rate func-
tions

The density function associated to (4) is given by

f (x; θ,α, ξ)= θα h(x; ξ)e−αH(x;ξ)
C′
[
θ(1−e−αH(x;ξ))

]
C(θ)

, x>0.

(5)
We can obtain the EW class of distributions as a

limiting special case of the CEWPS class of distributions
when θ → 0+. Indeed, using a similar argument given
by Morais and Barreto-Souza (2011), we have (for x > 0)

lim
θ→0+

F(x) = lim
θ→0+

∞

∑
n=1

an θn
[
1− e−αH(x;ξ)

]n

∞

∑
n=1

an θn

= lim
θ→0+

1− e−αH(x;ξ) + a−1
1

∞

∑
n=2

an θn−1
[
1− e−αH(x;ξ)

]n

1 + a−1
1

∞

∑
n=2

an θn−1

= 1− e−αH(x;ξ).

For instance, for H(x; ξ) = exp[(λx)β]− 1 and θ →
0+, we obtain the exponential-power distribution, which
was defined by Smith and Bain (1975). Moreover, we
provide an interesting expansion for the density (5). We
have C′(θ) = ∑∞

n=1 n an θn−1. By using this result in (5),
we can write

f (x; θ,α, ξ) =
∞

∑
n=1

n−1

∑
j=0

ωn,j(θ) g(x; (j + 1)α,ξ), (6)

where

ωn,j(θ) =
(−1)j θn an

(j + 1)C(θ)

(
n− 1

j

)
and g(x; (j + 1) α,ξ) is given by (2). Hence, the CEWPS
density function is an infinite linear combination of EW
densities. So, some mathematical quantities (such as the
ordinary and incomplete moments, generating function

and mean deviations) of the CEWPS distribution can be
obtained by knowing those quantities for the baseline
density function g(x; (j + 1) α,ξ). The CEWPS survival
function becomes

S(x; θ, α, ξ) = 1−
C
[
θ (1− e−αH(x;ξ))

]
C(θ)

and the corresponding hazard rate function (hrf) reduces
to

τ(x; θ, α, ξ)= θα h(x; ξ)e−αH(x;ξ)
C′
[
θ(1−e−αH(x; ξ))

]
C(θ)−C

[
θ(1−e−αH(x;ξ))

] .

3.2 Quantiles, moments and generating func-
tion

The CEWPS class is easily simulated by inverting (4).
The quantile function (qf) corresponding to (2) plays
an important role in the algebraic developments in this
section. We have

Q(u; α,ξ) = H−1
{
− 1

α
log(1− u); ξ

}
. (7)

We only require the inverse of H(x; ξ) to obtain the qf (7).
So, if U has a uniform U(0,1) distribution, the solution
of the nonlinear equation

X = H−1
{
− 1

α
log
[

1− C−1(C(θ)U)

θ

]
; ξ

}
(8)

has the CEWPS(θ,α,ξ) distribution, where H−1(·) and
C−1(·) denote the inverse functions of H(·) and C(·),
respectively. To simulate data from this nonlinear equa-
tion, we can use the matrix programming language Ox

through SolveNLE subroutine (see Doornik, 2007). Table
3 provides closed-form inverses for H(x; ξ) for some
special models.

3.3 Moments

The need for necessity and the importance of moments
in any statistical analysis especially in applied work
is obvious. Some of the most important features and
characteristics of a distribution can be studied through
moments (e.g. tendency, dispersion, skewness and kur-
tosis).

The rth raw moment of X can be determined from (6)
and the monotone convergence theorem. So, for r ∈N,
we obtain

E(Xr) =
∞

∑
n=1

n−1

∑
j=0

ωn,j(θ) E(Zr
j+1), (9)

where Zj+1 denotes a random variable with density
function g(z; (j + 1)α,ξ).



5 Cordeiro and Silva: The complementary extended Weibull power series class of distributions

Table 3: Inverse function x = H−1(x; ξ) for some EW models

Distribution z = H−1(x; ξ) References

Exponential power λ−1 [log(x + 1)]1/β Smith and Bain (1975)

Chen [log(x + 1)]1/β Chen (2000)

Log-Weibull σ log(x) + µ White (1969)

Weibull Kies
(

t1/βσ + µ
)

/
(

x1/β + 1
)

Kies (1958)

Generalized power Weibull β[(x + 1)1/θ − 1]1/α1 Nikulin and Haghighi (2006)

Gompertz β−1 log(βx + 1) Gompertz (1825)

Pham [log(1 + x)/ log(a1)]
1/β Pham (2002)

Let βr(α,ξ) be the rth moment of the EW distribution
having density (2) with parameters α and ξ. We have
immediately by substituting u = G(x; α,ξ)

βr(α,ξ) =
∫ 1

0
Q(u; α,ξ)rdu. (10)

Thus, we can rewrite (9) as

E(Xr) =
∞

∑
n=1

n−1

∑
j=0

ωn,j(θ) βr((j + 1)α,ξ). (11)

We now provide a simple application of equation
(10). Consider the log-Weibull distribution for which
(10) yields

βs(α,ξ) =
∫ 1

0

{
σ log

[
− log(1− u)

]
+ µ

}sdu.

Using the binomial expansion and setting v = 1− u,
we obtain

βr(α,ξ) =
r

∑
k=0

(
r
k

)
µs−kσk

∫ 1

0
logk{− log(v)}dv.

We can calculate this integral in MAPLE for a given k.
For r = 1 and r = 2, we obtain: β1(α,ξ) = µ− σγ and
β2(α,ξ) = µ2 − 2µσγ + σ2[(1/6)π2 + γ2], respectively,
where γ is Euler’s constant.

The incomplete moments of X can be determined
from (6) using the monotone convergence theorem as

IX(r,y; α,ξ)=
∫ y

0
xr f (x)dx=

∞

∑
n=1

n−1

∑
j=0

ωn,j(θ) IZj+1(r,y; α,ξ),

(12)

where

IZj+1(r,y; α,ξ) =
∫ y

0
xrg(x; (j + 1)α,ξ)dx

=
∫ G(y;α,ξ)

0
Q(u; α,ξ)rdu

can be computed numerically for most EW distributions.
A practical application of the first incomplete mo-

ments of X in equation (12) is related to the Bonfer-
roni and Lorenz curves. They are defined by B(π) =

1
π µ′1

IX(1,q; α,ξ) and L(π) = 1
µ′1

IX(1,q; α,ξ), respectively,

where µ′1 = E(X), π is a probability and

q = H−1
{
− 1

α
log
[

1− C−1(C(θ)π)

θ

]
; ξ

}
is determined from (8). Bonferroni and Lorenz curves
have applications in economics to study income and
poverty, reliability, demography, insurance and medicine.

For r,c > 0, we define

J(r,y,c) =
∫ y

0
xr e−cH(t;ξ)dH(x; ξ). (13)

Clearly,

IZj+1(r,y; α,ξ) = (j + 1)α J(r,y,(j + 1)α)

and then J(r,y,c) becomes the basic quantity to calculate
the incomplete moments of X.

Further, if we can invert H(x; ξ), changing variable
u = H(x; ξ), equation (13) yields

J(r,y,c) =
∫ H(z)

H(0)
H−1(u)s e−u cdu. (14)

Thus, we have two alternative forms for J(r,y,c) that
can be easily obtained numerically from equations (13)
and (14). For some cases, we can compute J(r,y,c) an-
alytically. As an example using (14), we consider the
log-Weibull distribution. We can obtain from equation
(14)

J(r,y,c) =
∫ exp[(y−µ)/σ]

exp(−µ/σ)
[σ log(u) + µ]r e−u cdu.

For the first incomplete moments, r = 1. We can
calculate using MAPLE∫ exp [(z−µ)/σ]

exp(−µ/σ)
σ log(u) e−ucdu
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=
σ

c

{
exp

(
− ce−¯/œ)(−¯/œ) + Ei(1,ce−¯/œ)

− exp
(
− ce(z−µ)/σ

)
[(z− µ)/σ]

− Ei(1,ce(z−µ)/σ)
}

,

where Ei(a,y) =
∫ ∞

1 x−a eyxdx is the exponential integral.
Now,∫ exp [(z−µ)/σ]

exp(−µ/σ)
µ e−cudu

=
µ

c

{
exp

[
−c exp(−µ/σ)

]
− exp

[
−c exp((z−µ)/σ)

]}
.

Then,

J(1,y,c) =
σ

c

{
exp

[
− c exp(−µ/σ)

]
(−µ/σ)

+ Ei(1,c exp(−µ/σ))

− exp
[
− c exp{(z− µ)/σ}

]
{(z− µ)/σ}

− Ei(1,c exp{(z− µ)/σ})
}

µ

c

{
exp

[
− c exp(−µ/σ)

]
− exp

[
− c exp{(z− µ)/σ}

]}
.

Hence, the first incomplete moments for the comple-
mentary log-Weibull power series distribution can be
determined from (12) and (13) and the last result.

We define the quantity A(y; α,ξ) =
∫ y

0 x g(x; α,ξ)dx =∫ G(y;α,ξ)
0 Q(u; α,ξ)du from the EW distribution.

We now provide a simple example for A(y; α,ξ). The
log-Weibull distribution gives

A(y; α,ξ)

= µ G(y; α,ξ) + σ
∫ G(y;α,ξ)

0
log
{
− 1

α
log(1− u)

}
du

= µ G(y; α,ξ) + σ
∫ G(y;α,ξ)

0
log{− log(1− u)}du

− σ G(y; α,ξ) log(α),

where G(y; α,ξ) = 1− exp
{
− exp

( y−µ
σ

)}
.

Setting v = 1− u, the integral calculated using MAPLE

becomes∫ 1

x
log{−log(v)}dv=−x log[−log(x)]−Ei(1,−log(x))−γ.

Then,

A(y; α,ξ) = µ G(y; α,ξ)− σ G(y; α,ξ) log(α)

+ σ
{
− [1− G(y; α,ξ)] log{− log[1− G(y; α,ξ)]}

− Ei(1,− log[1− G(y; α,ξ)])− γ
}

.

3.4 Generating function

The moment generating function (mgf) of a random
variable provides the basis of an alternative route to

analytical results compared with working directly with
its pdf and cdf. The mgf of X can be determined from
(6) as

MX(t; α,ξ) =
∞

∑
n=1

n−1

∑
j=0

ωn,j(θ) E
(

et Zj+1
)

.

The mgf of the random variable Zj+1 can be ex-
pressed as

M(t; α,ξ) =
∫ 1

0
exp{t Q(u; α,ξ)}du. (15)

Based on the last two equations, we can write the mgf
of X as

MX(t; α,ξ) =
∞

∑
n=1

n−1

∑
j=0

ωn,j(θ) M(t; (j + 1)α,ξ). (16)

We give two applications of equation (15). First,
consider the log-Weibull distribution whose qf is given
by

Q(u; α,ξ) = σ log
[
− 1

α
log(1− u)

]
+ µ,

where ξ = µ, σ. We can readily obtain from equation
(15)

M(t; α,ξ) =
∫ 1

0
exp

[
t
{

σ log
[
− 1

α
log(1− u)

]
+ µ

}]
du

and then

M(t; α,ξ) = α−tσet µ
∫ 1

0
logtσ

( 1
1− u

)
du.

Changing variable v = 1− u, we can write

M(t; α,ξ) = α−tσet µ
∫ 1

0
logtσ(v)dv

and then from Prudnikov et al. (1986, equation 2.6.3.1),
we have

M(t; α,ξ) = Γ(σ t + 1).

By combining this equation with (16), we obtain the
mgf of the complementary log-Weibull power series
distribution.

Secondly, we consider the Gompertz distribution
for which H(x; β) = β−1[exp(βx) − 1] and h(x; β) =
exp(βx), where −∞ < β < ∞. The Gompertz qf is

Q(u; α,β) =
log
[
(−α−1) log(1− u) + 1

]
β

.

We can readily obtain from (15)

M(t; α,β) =
∫ 1

0
exp

{
t log[−(β/α) log(1− u) + 1]

}
du
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=
∫ 1

0

[
− (β/α) log(1− u) + 1

]tdu.

Using the binomial expansion and changing v =
1− u, we have

M(t; α,β) =
∞

∑
j=0

(
t
j

)( β

α

)j ∫ 1

0
logj(v)dv.

But
∫ 1

0 logj(v)dv = (−1)j Γ(j + 1) and then

M(t; α,β) =
( β

α

)(t+1)
exp

( β

α

){
(t + 1)Γ

(
− t− 1;

β

α

)
+ Γ(−t)

}
Γ(t + 1)2,

where Γ(x; α) =
∫ ∞

x wα−1e−wdw is the upper incomplete
gamma function.

By combining this equation with (16), we obtain the
mgf of the complementary Gompertz power series dis-
tribution.

Equations (9), (11), (12), (15) and (16) are the main
results of this section.

3.5 Mean deviations

The amount of scatter in a population is evidently mea-
sured to some extent by the totality of deviations from
the mean and median. We can easily obtain the mean de-
viations about the ordinary mean µ′1 = E(X) and about
the median M from equations

δ1 = 2
[
µ′1 F(µ′1)− IX(1,µ′1; α,ξ)

]
and

δ2 = µ′1 − 2IX(1,M; α,ξ),

where IX(1,q; α,ξ) comes from (12) with r = 1.

4 Maximum likelihood estimation

Here, we determine the maximum likelihood estimates
(MLEs) of the parameters of the CEWPS class of distri-
butions from complete samples only. Let x1, . . . ,xn be
observed values from the CEWPS class with parameters
θ,α and ξ. Let Θ = (θ,α, ξ)> be the p × 1 parameter
vector. The total log-likelihood function for Θ is given
by

`n = `n(Θ) = n [log(θ) + log(α)− log(C(θ))]

− α
n

∑
i=1

H(xi; ξ) +
n

∑
i=1

log[h(xi; ξ)]

+
n

∑
i=1

log
{

C′
[
θ (1− e−αH(x; ξ))

]}
. (17)

The log-likelihood can be maximized either directly
by using the SAS (PROC NLMIXED) or the Ox program

(sub-routine MaxBFGS) (see Doornik, 2007) or by solving
the nonlinear likelihood equations obtained by differ-
entiating (17). The components of the score function
Un(Θ) = (∂`n/∂θ, ∂`n/∂α, ∂`n/∂ξ)> are

∂`n

∂α
=

n
α
−

n

∑
i=1

H(xi; ξ)

+ θ
n

∑
i=1

H(xi; ξ)e−αH(xi ; ξ) C′′[θ (1− e−αH(x;ξ))]

C′[θ (1− e−αH(x;ξ))]
,

∂`n

∂θ
=

n
θ
− n

C′(θ)
C(θ)

+
n

∑
i=1

(1− e−αH(xi ; ξ))
C′′[θ (1− e−αH(x;ξ))]

C′[θ (1− e−αH(x;ξ))]

and

∂`n

∂ξk
=

n

∑
i=1

∂ log h(xi; ξ)

∂ξk

−α
n

∑
i=1

∂H(xi; ξ)

∂ξk

[
1−θ e−αH(xi ;ξ) C′′[θ(1−e−αH(x;ξ))]

C′[θ(1−e−αH(x;ξ))]

]
.

For interval estimation on the model parameters, we
require the observed total information matrix

Jn(Θ) = −

 Uθθ Uθα U>θξ

Uαθ Uαα U>αξ

Uθξ Uαξ U>ξξ

 .

Let Θ̂ be the MLE of Θ. Under standard regular condi-
tions (Cox and Hinkley, 1974) that are fulfilled for the
proposed model whenever the parameters are in the
interior of the parameter space, we can approximate the
distribution of

√
n(Θ̂−Θ) by the multivariate normal

Np(0, K(Θ)−1), where K(Θ) = limn→∞ n−1 Jn(Θ) is the
unit information matrix and p is the number of parame-
ters of the compounded distribution.

5 Special models

5.1 Complementary modified Weibull geo-
metric distribution

The complementary modified Weibull geometric (CMWG)
distribution is defined by the cdf (5) with H(x; ξ) =
xγ exp(λ x) and C(θ) = θ(1− θ)−1 leading to

f (x; θ, α, γ, λ) = α (1− θ) xγ−1 eλ x(γ + λ x)

exp(−α xγeλ x){
1− θ [1− exp(−α xγeλ x)]

}2 , x > 0,

where θ ∈ (0,1). The associated hrf becomes

τ(x; θ, α, γ, λ) = α (1− θ)−1 xγ−1 eλ x(γ + λ x)
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Figure 1: Plots of the CMWG densities for some parameter values.
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Figure 2: Plots of the CMWG hrfs for some parameter values.

{
1− θ [1− exp(−α xγeλ x)]

}
, x > 0.

As stated before, the CMWG distribution includes the
modified Weibull (MW) distribution when θ → 0+. Fur-
ther, for θ → 0+ and λ = 0, we obtain the Weibull
distribution. Thus, the exponential and Rayleigh distri-
butions follow as special models of the CMWG distri-
bution. Figures 1 and 2 display the density and hazard

rate functions of the CMWG distribution for selected
parameter values.

The rth raw moment of the random variable X hav-
ing the CMWG distribution is determined in closed-form
from (6) as

E(Xr) =
∞

∑
n=1

n−1

∑
j=0

ωn,j(θ) µr(n), (18)
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where µr(n) =
∫ ∞

0 xr g(x; (j + 1)α, γ, λ)dx denotes the
rth raw moment of the MW distribution with parame-
ters (j + 1)α, γ and λ. Carrasco et al. (2008) obtained
an infinite representation for the rth raw moment of the
MW distribution with these parameters given by

µr(n) =
∞

∑
i1,...,ir=1

Ai1,...,ir Γ(sr/γ + 1)
[(k + 1)α]sr/γ

, (19)

where

Ai1,...,ir = ai1 , . . . , air and sr = i1, . . . , ir,

and

ai =
(−1)i+1ii−2

(i− 1)!

(
λ

γ

)i−1
.

Hence, the ordinary moments of X can be obtained
directly from equations (18) and (19).

5.2 Complementary Pareto Poisson distribu-
tion

The complementary Pareto Poisson (CPP) distribution is
defined by taking H(x; ξ) = log(x/k) and C(θ) = eθ − 1
in (4) leading to

f (x; θ, α, k) = θ α kα x−(α+1) exp
{

θ
[
1− (k/x)α]}
eθ − 1

, x≥ k.

The corresponding hrf is

τ(x; θ, α, k) =
θ α kα x−(α+1)

exp[θ (k/x)α]− 1
, x ≥ k.

We obtain the Pareto distribution as a sub-model
when θ → 0. Figures 3 and 4 display the density and
hazard rate functions of the CMWG distribution for
selected parameter values.

The rth moment of the CPP random variable becomes

E(Xr) = α kr
∞

∑
n=1

n−1

∑
j=0

(j + 1)
(j + 1)α− r

ωn,j(θ), (j + 1)α > r.

(20)
In particular, setting r = 1 in (20), we obtain the

mean of X

E(X) = α k
∞

∑
n=1

n−1

∑
j=0

(j + 1)
(j + 1)α− 1

ωn,j(θ), (j + 1)α > 1.

6 Applications

In this section, we compare the fits of some special mod-
els of the CEWPS class by means of a real data set to
show its potentiality. In order to estimate the param-
eters of these special models, we adopt the maximum
likelihood method (as discussed in Section 4). All the

computations were done using the subroutine NLMixed

of the SAS software.
The first data set consists of a real data set obtained

from Smith and Naylor (1987). The data are the strengths
of 1.5 cm glass fibres, measured at the National Physical
Laboratory, England. The data are: 0.55, 0.74, 0.77, 0.81,
0.84, 1.24, 0.93, 1.04, 1.11, 1.13, 1.30, 1.25, 1.27, 1.28,
1.29, 1.48, 1.36, 1.39, 1.42, 1.48, 1.51, 1.49, 1.49, 1.50, 1.50,
1.55, 1.52, 1.53, 1.54, 1.55, 1.61, 1.58, 1.59, 1.60, 1.61, 1.63,
1.61, 1.61, 1.62, 1.62, 1.67, 1.64, 1.66, 1.66, 1.66, 1.70, 1.68,
1.68, 1.69, 1.70, 1.78, 1.73, 1.76, 1.76, 1.77, 1.89, 1.81, 1.82,
1.84, 1.84, 2.00, 2.01, 2.24. Table 4 summarizes some
descriptives statistics about the current data.

Table 4: Descriptive statistics for the strengths of glass
fibres data.

Min 1st Q Median Mean 3rd Q Max

0.550 1.375 1.590 1.507 1.685 2.240

The CEWPS model in the application is defined by
equation (5) with H(x; ξ) = xγ, h(x; ξ) = γ xγ−1 and
C(θ) = θ (1− θ)−1, thus referring to the complemen-
tary Weibull geometric (CWG) distribution with θ1 =
(α, γ, θ). For comparison purposes, we compare the
CWG distribution with the Weibull, modified Weibull
(MW), complementary exponentiated exponential geo-
metric (CEEG) and complementary exponential power
(CEP) models defined, respectively, as

f (x; θ2) = α βα xα−1 exp {−(β x)α} ,

f (x; θ3) = α (β + λ x) xβ−1 exp(λ x− α xβeλ x),

f (x; θ4) = α θ λ e−λ x(1− e−λ x)α−1

[1− (1− θ) (1− e−λ x)α]−2

and

f (x; θ5) =
β θ xβ−1

αβ
exp

{
1 +

( x
α

)β
− exp

[( x
α

)β
]}

{
[1− exp

(
1− exp

[( x
α

)β
])}θ−1

,

for x > 0, where θ2 = (α, β), θ3 = (α, λ, β), θ4 = (α, λ, θ)
and θ5 = (α, β, θ).

The MLEs of the parameters (with standards errors),
the −2`(Θ̂) and Kolmogorov-Smirnov (K-S) statistics
are given in Table 5. From those statistics, we conclude
that the CWG model provides a better fit to the data set,
since it yields the lowest values for these statistics.

We also perform formal goodness-of-fit tests in or-
der to verify which distribution fits better to the data.
We apply the Cramér-von Mises (C-M) and Arderson-
Darling (A− D) tests. The C-M and A-D test statistics
are described in details in Chen and Balakrishnan (1995).
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Figure 3: Plots of the CPP densities for some parameter values.

1 2 3 4 5 6

0
2

4
6

8

x

H
az

ar
d

α = 3.00
α = 5.00
α = 7.00
α = 9.00
α = 11.00

(a) θ = 0.9 and k = 1

2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x

H
az

ar
d

α = 0.10
α = 0.30
α = 0.50
α = 0.70
α = 0.90

(b) θ = 0.8 and k = 1

Figure 4: Plots of the CPP hrfs for some parameter values.

In general, the smaller the values of C-M and A-D, the
better the fit to the data. Table 5 gives the values of these
four statistics for the data. According to them, the CWG
model fits the data set better than the others competing
models.

Plots of the pdfs and cdfs of the fitted CWG, Weibull,
MW, CEEG and CEP models to the data, displayed in

Figure 5, indicate the superiority of the CWG model.

7 Concluding remarks

We define a new class of lifetime distributions named the
complementary extended Weibull power series (CEWPS)
class on a latent complementary risk problem base. The
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Table 5: Estimates (a denotes standard errors) and −2`(Θ̂), A-D, C-M and K-S statistics (b denotes p-values)

Distribution Estimates −2`(Θ̂) A-D C-M K-S

CWG θ̂1 = (0.6948,3.2018, 0.9399) 24.1 0.5839 0.1049 0.1000

(0.5651, 0.9478, 0.0750)a (0.1231)b (0.0940) (0.5542)

Weibull θ̂2 = (5.7807,0.6142) 30.4 1.2877 0.2324 0.1522

(0.5761,0.0140)a (0.0022)b (0.0018) (0.1079)

MW θ̂3 = (0.0087, 2.1608,2.4027) 28.7 0.9497 0.1695 0.1352

(0.0126, 1.5418, 2.4173)a (0.0153)b (0.0127) (0.1995)

CEEG θ̂4 = (10.9697,5.8364,0.0014) 32.0 1.4550 0.2658 0.1326

(58.0308, 0.6471, 0.0075)a (0.0008)b (0.0008) (0.2178)

CEP θ̂5 = (1.6932,2.7908,1.7899) 30.0 1.1638 0.2103 0.1485

(0.0961, 0.6707, 0.6947)a (0.0045)b (0.0038) (0.1240)
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Figure 5: Estimated (a) pdfs and (b) cdfs for the CWG, Weibull, MW, CEEG and CEP models for the strengths of
glass fibres data.

new class extends several models existing in literature
such as the complementary exponential geometric dis-
tribution (Louzada et al., 2011), the Poisson exponential
distribution (Cancho et al., 2011) and complementary
exponential power series class (Flores et al., 2013). We
provide a mathematical treatment of the new class in-
cluding expansions for the density function, ordinary
and incomplete moments, and generating function. The
CEWPS density function can be expressed as a linear
combination of extended Weibull (EW) density functions.
This linear combination representation is important to
derive several properties of the new class. Maximum
likelihood inference is implemented straightforwardly

for estimating the model parameters. Some special mod-
els are explored. We fit some CEWPS distributions to
a real data set to show the usefulness of the proposed
class. In conclusion: we define a general approach for
generating new lifetime distributions, at least 68 distribu-
tions, some of them known and the great majority new
ones. Further, we motivate the use of the new class in
two different ways. We think these two facts combined
may attract more complex applications in the literature
of lifetime distributions. Finally, the formulas derived
are manageable by using modern computer resources
with analytic and numerical capabilities.
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