
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tssc20

Download by: [Zurich Fachhochschule] Date: 12 March 2017, At: 09:03

Systems Science & Control Engineering
An Open Access Journal

ISSN: (Print) 2164-2583 (Online) Journal homepage: http://www.tandfonline.com/loi/tssc20

Feedback control of oxygen uptake during
robotics-assisted end-effector-based stair climbing

Jan Riedo & Kenneth J. Hunt

To cite this article: Jan Riedo & Kenneth J. Hunt (2017) Feedback control of oxygen uptake during
robotics-assisted end-effector-based stair climbing, Systems Science & Control Engineering, 5:1,
142-155, DOI: 10.1080/21642583.2017.1297261

To link to this article:  http://dx.doi.org/10.1080/21642583.2017.1297261

© 2017 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 12 Mar 2017.

Submit your article to this journal 

View related articles 

View Crossmark data

s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
2
4
4
5
1
/
a
r
b
o
r
.
6
0
2
0
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
4
.
1
1
.
2
0
1
9

http://www.tandfonline.com/action/journalInformation?journalCode=tssc20
http://www.tandfonline.com/loi/tssc20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/21642583.2017.1297261
http://dx.doi.org/10.1080/21642583.2017.1297261
http://www.tandfonline.com/action/authorSubmission?journalCode=tssc20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tssc20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/21642583.2017.1297261
http://www.tandfonline.com/doi/mlt/10.1080/21642583.2017.1297261
http://crossmark.crossref.org/dialog/?doi=10.1080/21642583.2017.1297261&domain=pdf&date_stamp=2017-03-12
http://crossmark.crossref.org/dialog/?doi=10.1080/21642583.2017.1297261&domain=pdf&date_stamp=2017-03-12


SYSTEMS SCIENCE & CONTROL ENGINEERING: AN OPEN ACCESS JOURNAL, 2017
VOL. 5, 142–155
http://dx.doi.org/10.1080/21642583.2017.1297261

Feedback control of oxygen uptake during robotics-assisted end-effector-based
stair climbing

Jan Riedo and Kenneth J. Hunt
Institute for Rehabilitation and Performance Technology, Division of Mechanical Engineering, Department of Engineering and Information
Technology, Bern University of Applied Sciences, Burgdorf, Switzerland

ABSTRACT
A heart rate (HR) feedback control system for end-effector gait rehabilitation robots was previously
developed and successfully tested, but oxygen uptake (V̇O2) is thought to better characterize phys-
iological exercise intensity. The aim of the present study was to identify and compare V̇O2 and
HR dynamics, and to develop and test a V̇O2 controller for an end-effector robot operated in stair
climbing mode. Six able-bodied subjects were recruited for controller testing. Command response,
disturbance rejection and robustness were assessed by means of three quantitative outcome mea-
sures: root-mean-square (RMS) error of V̇O2 (RMSEV̇O2

), average control signal power (P�P) and RMS

error of volitionally controlled power (RMSEP). The nominal first-order linear model for V̇O2 had time
constant τ = 52.4 s and steady-state gain k= 0.0174 (l/min)/W. The mean time constant τ = 67.3 s
for HR was significantly higher than for V̇O2, where τ = 53.4 (p= 0.048). Command responses for
a target V̇O2 profile gave consistent and accurate tracking with RMSEV̇O2

= 0.198± 0.070 l/min,
P�P = 2.15± 0.70W2 andRMSEP = 39.2± 15.4W (mean± SD). Disturbance rejection performance
was also found to be satisfactory. The results of the controller tests confirm the feasibility of the pro-
posed V̇O2 feedback control strategy. Robustnesswas verified as the single LTI controllerwas specific
to only one of the subjects and no difference in outcome values was apparent across all subjects.
Subject-specific variability in breath-by-breath respiratory noise is the main challenge in feedback
control of V̇O2.
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1. Introduction

Stroke is the second-most-common cause of death and
long-termdisability worldwide (Donnan, Fisher, Macleod,
&Davis, 2008). Every second stroke leads to total or partial
loss of walking ability (Mozaffarian et al., 2014). Further-
more, aerobic exercise capacity, which is defined using
peak oxygen uptake, is 50% lower 30 days post stroke
compared to standard values of age-matched healthy
adults (Kelly, Kilbreath, Davis, Zeman, & Raymond, 2003;
MacKay-Lyons & Makrides, 2002). Evidence suggests that
intensive task-specific rehabilitation in all phases after
stroke has a positive influence on the rehabilitation out-
come (Billinger et al., 2014; Veerbeek et al., 2014). Not
only are physical improvements possible, there is also
evidence that cognitive function can be enhanced by
early rehabilitation, depending on the amount of train-
ing (El-Tamawy, Abd-Allah, Ahmed, Darwish, & Khalifa,
2014).

It has been shown that a large volume of task-specific
training is important (French et al., 2007; Langhorne,
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Coupar, & Pollock, 2009). Since conventional therapy
is limited by fatigue of the physiotherapists, robotics-
assisted devices can improve the quality of rehabilitation.
Several studies investigated theeffects of robotics-assisted
gait rehabilitation, concluding that it is more effective
when conventional therapy is combined with robotics-
assisted training due to the higher volume and inten-
sity of training that can be applied (Chang & Kim, 2013;
Hesse, Tomelleri, Bardeleben, Werner, & Waldner, 2012;
Mehrholz & Pohl, 2012). Intensive task-specific train-
ing not only enhances physical and coordination skills,
but also enhances plastic changes in neural circuits
(Hornby et al., 2011). Even in non-impaired individu-
als who are trying to improve in a certain field of
physical activity, the volume and intensity of training
are the most important factors for success (Schmidt &
Lee, 2011).

Due to the benefits of, and demand for, repeti-
tive task-specific training, there is a steadily growing
market for rehabilitation robots. Two main kinds of
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gait rehabilitation robots can be identified: end-effector
robots (Hesse, Waldner, & Tomelleri, 2010; Stoller, Schin-
delholz, Bichsel, & Hunt, 2014) and exoskeletons (West-
lake & Patten, 2009). End-effector gait rehabilitation
robots have an advantage concerning task-specific train-
ing because of the possibility to implement stair climbing
activity (Hesse et al., 2010).

The studies reviewed above have focused on poten-
tial improvements in the ability to walk which can come
about due to intensive, task-specific therapy and associ-
ated neurological adaptations. As a complement to this
line of research, recent work has examined the applica-
bility of gait-assistance robots for cardiovascular training
and assessment. In this regard, several studies investi-
gated the cardiopulmonary and cardiovascular responses
to end-effector-based walking and stair climbing (Stoller
et al., 2014; Stoller, Schindelholz, & Hunt, 2016), which
confirmed that substantial increases in heart rate and
respiration can be obtained from this form of exercise.
A key observation was that response magnitudes are
within the range required for positive training adap-
tations to take place within the cardiovascular system.
A further breakthrough was made when the feasibility
of implementing formal cardiopulmonary exercise test-
ing (commonly referred to as CPET) in robotics-assisted
end-effector-based stair climbing was confirmed (Stoller
et al., 2016). From the perspective of control engineer-
ing applications, a novel and major advance was made
when for the first-time automatic feedback principles
were applied and successfully tested for control of heart
rate and oxygen uptake on an exoskeleton system (Loko-
mat, Hocoma AG, Switzerland), (Schindelholz & Hunt,
2012, 2015).

A previous study, conducted using an end-effector
gait rehabilitation robot (G-EO Evolution system, Reha
Technology AG, Switzerland), implemented and tested a
feedback system for control of heart rate (HR) (Riedo &
Hunt, 2016). However, a more comprehensive physiolog-
ical assessment consists of measurement of both heart
rate and the rate of oxygen uptake (denoted V̇O2 and
referred to in the sequel simply as ‘oxygen uptake’).

This observation provides themotivation for the prob-
lem investigated in the present work, namely the devel-
opment of controllers for oxygen uptake. Oxygen uptake
provides certain advantages over heart rate, as detailed
below, but also presents additional difficulties. The prin-
cipal difficulty lies in the more sophisticated sensor tech-
nology required to obtain oxygen uptake in real time,
and also in the substantial breath-by-breath noise which
affects this signal and which must be considered in the
feedback design.

Theprincipal advantageof usingoxygenuptake rather
than heart rate is that a more accurate determination of

the physiological exercise intensity is possible. Exercise
intensity is directly correlated with oxygen uptake and
with cardiac output (rate of blood flow). Cardiac output is
given by the product of heart rate and stroke volume (SV)
but, for the sake of convenience, usually only the heart
rate is measured. Since the autonomic nervous system
continuously adjusts HR and SV to achieve a required car-
diac output, the HR variable displays substantial lability.
The problem of using HR to characterize exercise inten-
sity is compounded by the fact that it is susceptible to
external sensory influences such as noise, disturbances
appearing in the visual field of the subject, or by other
psychological factors.

Oxygen uptake, on the other hand, is given by the
product of the volume of oxygen taken up per breath
(cf. heart: stroke volume) and breathing frequency (cf.
heart: heart rate). Direct measurement of V̇O2 therefore
implicitly includes both of the subsidiary variables which
are continuously adapted by the autonomic nervous sys-
tem (namely uptakeper breath andbreathing frequency),
and thus gives a stable and direct characterization of
exercise intensity. This explains the observation that oxy-
gen uptake is constant when training at a constant work
rate but heart rate tends to continually increase over
time: despite the increase in heart rate, cardiac out-
put stays the same, presumably due to a downward
autonomous regulation of stroke volume. It is there-
fore recommended to prescribe training intensity using
oxygen uptake (Garber et al., 2011; Kenney, Wilmore,
& Costill, 2015; Pescatello, Arena, Riebe, & Thompson,
2014).

The feedback structure employed here for control of
oxygen uptake is based on a method previously pro-
posed for HR control (Riedo & Hunt, 2016). The principal
challenge for HR control was to deal appropriately with
broad-spectrum heart rate variability, whereas for con-
trol of oxygen uptake it is the breath-by-breath variability
of V̇O2 which is important. The purposely low-pass char-
acteristics of the control approach developed in Riedo
and Hunt (2016) therefore promised to be suitable for
this new application also. A further contribution of the
present work is a comparison of HR and V̇O2 dynam-
ics, because HR can conveniently be measured simul-
taneously with V̇O2: based on previous studies using
other exercisemodalities (Bearden&Moffatt, 2001; Zhang
et al., 2014), it was hypothesized that the time constant
of the heart rate response would be higher than that for
oxygen uptake.

The aim of this study was to identify and compare
oxygen uptake and heart rate dynamics, and to develop
and test an oxygen uptake controller for an end-effector
gait rehabilitation robot using the stair climbing mode of
operation.
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2. Methods

2.1. Materials, overall identification and control
structures

An end-effector gait rehabilitation robot was employed
(G-EO Evolution system, Reha Technology AG, Switzer-
land; Figure 1). This provides three different trajecto-
ries: walking, stair climbing and stair descent. Stepping
cadence and stepping height can be adjusted in the
ranges 1–70 steps/min and 5–20 cm, respectively. The G-
EOwasaugmentedwithabiofeedback-screen (Figure1(B)),
enabling the subject to perform volitional control of exer-
cise work rate P (Figure 2(a)); the goal for the subject was
to keep the actual value of P as close as possible to a tar-
get work rate Ptarget. P was calculated using the speed of
the end-effectors (Figure 1(A)) and the forces applied on
the footplates by the subject.

The volitional control structurewith thehuman-in-the-
loop work-rate controller was used for identification of
V̇O2 and HR dynamics. For system identification, as far as
HR and V̇O2 are concerned, this represents an open-loop
structure wherein target work rate Ptarget was predefined
as a series of steps (Figure 3(a)). For feedback control
of V̇O2, the identification structure was then embedded
within an outer automatic feedback control loopwith the
effective feedback controller transfer function C(z−1) =
S(z−1)/R(z−1) (Figure 2(b)). The automatic controller con-
tinuously updated target work rate Ptarget on the basis
of the measured actual oxygen uptake V̇O2 and a tar-
get/reference oxygen uptake profile V̇O2target .

A breath-by-breath cardiorespiratory monitoring sys-
tem (Metamax 3B, Cortex Biophysik GmbH, Germany)

was used to measure V̇O2 in real time. Heart rate was
measured with a chest belt (model T34, Polar Electro
Oy, Finland) and a receiver (HRMI, Sparkfun Electronics,
USA). With this system, individual breaths are analysed by
means of gas sensors connected via a sampling line to the
mask worn by the subject and a volume sensor embed-
ded in themask (Figure 1(C)). Real-time identification and
feedback control systems used Labview (National Instru-
ments Inc., USA), implemented directly on the computer
embedded in the G-EO (Figure 1(D)). Offline data analysis
and simulations were carried out using Matlab (Math-
Works Inc., USA).

2.2. Plantmodel and system identification

For both oxygen uptake and heart rate dynamics iden-
tification, a first-order linear time-invariant (LTI) system
was used, with parameters k, the steady-state gain, and
τ , the time constant. Other studies have shown that this
simplemodel can be sufficient for accurate feedback con-
trol of V̇O2 (Schindelholz & Hunt, 2015) as well as HR
(Hunt & Fankhauser, 2016; Hunt, Fankhauser, & Saeng-
suwan, 2015; Riedo&Hunt, 2016). Themodel is expressed
in continuous (Pc) and discrete (Pd) time as

u→ y : Pc(s) = k

τ s+ 1
Ts←→ Pd(z

−1) = B(z−1)
A(z−1)

= b0z−1

1+ a1z−1
. (1)

Here, the double arrow denotes transformation
between the continuous- anddiscrete-timedomainswith
sample period Ts.

Figure 1. G-EO system with end-effectors (A) and biofeedback screen (B). Subject performing a test with a mask (C) for respiratory
measurement. Operator screens (D) showing time courses of V̇O2, HR and P in real-time for monitoring.
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Figure 2. Structures for system identification and feedback control. (a) Open-loop structure for system identification. Within this struc-
ture, the subject performs volitional control of work rate. (b) Overall structure for closed-loop control of oxygen uptake. The controlled
variable of the outer loop is the actual oxygen uptake V̇O2. The transfer function u→ y from the target work rate Ptarget to actual oxygen
uptake V̇O2 corresponds to Equation (1): Pd(z−1), the plant model.

As shown in Figure 2(a), this model structure can be
employed for the transfer functions from the target work
rate Ptarget to V̇O2 and HR. These transfer functions thus
include the inner volitional feedback control loop involv-
ing the subject as well as the physiological reaction of the
subject.

Heart rate and oxygen uptake dynamics were both
identified with a linear least-squares method on the basis
of the first-order plant model in Equation (1). All six sub-
jects (see Table 1) participated in the identification tests.
Heart rate and oxygen uptake dynamics were identi-
fied using a single test for each subject. According to
Figure 3(a), an individualized targetwork ratewasdefined
with four changes, thus providing four step responses
in HR and V̇O2. Identification was conducted within the
time interval from 590 s to 1790 s in order to include
all changes in target work rate but excluding start and

end transients. Outcomes of the identification were the
absolute root-mean-square model error (RMSE) and the
normalized RMSE, which indicates the goodness of fit in
percent (fit).

2.3. Controller design and analysis

For automatic feedback control of V̇O2, the structure in
Figure 2(a) was supplemented with the outer closed loop
shown in Figure 2(b). The measured plant output V̇O2 is
fed back as a controller input, enabling the controller to
continuously calculate Ptarget based on the control error
between V̇O2target and V̇O2. The control design method
developed in Riedo & Hunt (2016) for HR control was also
applied here for control of V̇O2. This control approach
applies three important constraints for the effective feed-
back controller transfer functionC(z−1) = S(z−1)/R(z−1):
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(a)

(b)

(c)

Figure 3. The step functions for identification, command response and disturbance rejection tests. (a) Time course of individually set
target power Ptarget during identification sessions. Difference between Plow and Phigh was 40W for all subjects. The specific values can
be found in Tables 2 and 3. (b) Time course of V̇O2target during command response tests. V̇O2high and V̇O2low were set individually for each

subject. However, the difference between both levels was the same for all: V̇O2high − V̇O2low = 0.7 l/min. Numerical values are summa-
rized in Table 4. (c) Time course of cadence (CD) during the disturbance rejection test.�CD = 35 steps/min, CDhigh = 70 steps/min and
CDlow = 35 steps/min.

Table 1. Subject characteristics.

ID Age (years) Body mass (kg) Height (cm)

S01 23 72 180
S02 24 87 183
S03 23 60 172
S04 26 83 183
S05 52 76 185
S06 25 89 182
mean± SD 28.8± 11.4 78.2± 10.3 180.8± 4.6

Notes: ID: subject number; SD: standard deviation.

integrator (inclusion of (1− z−1) in R(z−1)), low-pass
characteristics (inclusion of z−1 in S(z−1), i.e. strictly
causal) and a conservative pole cancellation strategy
(inclusion of plant polynomial A(z−1) in S(z−1)).

Full details of this feedback design method can be
found in Riedo and Hunt (2016), and a brief summary is
given here. Under the above constraints, the controller

function C takes the form

C(z−1) = S(z−1)
R(z−1)

= z−1(s0 + s1z−1)
(1− z−1)R′(z−1)

= s0z−1A(z−1)
(1− z−1)R′(z−1)

= s0z−1(1+ a1z−1)
(1− z−1)(1+ r1z−1)

. (2)

With the plant pole cancellation strategy, the char-
acteristic polynomial of the feedback system is denoted
� = A�′. The reduced polynomial �′ is used in a pole
assignment approach to define the behaviour of the con-
troller. The coefficients φ1 and φ2 of �′ are defined by
specifying the nominal closed-loop rise time tr and the
damping factor ζ . Employing the above constraints, �′
can be expressed in terms of the plant and controller
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parameters as

�′(z−1) = R+ Bs0z
−1

= (1− z−1)(1+ r1z
−1)+ b0s0z

−2

= 1+ (r1 − 1)z−1 + (b0s0 − r1)z
−2

= 1+ φ1z
−1 + φ2z

−2. (3)

The algebraic solution for the controller parameters
is then readily obtained by equating coefficients of like
powers, giving

r1 = φ1 + 1, s0 = φ2 + r1
b0

= φ1 + φ2 + 1
b0

. (4)

A deterministic reference pre-filter Cpf was also
employed in order to decouple the command signal from
the feedback loop, as detailed in Riedo and Hunt (2016).
This allows the definition of a separate rise time trpf and
damping ζpf for the reference tracking response. Cpf is
obtained from the overall pole polynomial�cl for the ref-
erence response, which is in turn defined by the chosen
trpf and ζpf values. This results in

Cpf =
�cl(1)
b0
· �

�cl
. (5)

In order to perform a frequency–domain analysis of
the influence of the disturbance d and the measurement
noise n on the control signal u (see Figure 2(b)), the input
sensitivity function Uo is employed, because Uo is the
transfer function from the disturbance input to the con-
trol signal (d→ u) as well as from the noise input to the
control signal (n→ u). The input sensitivity functionUo is
defined as

d, n→ u : Uo = C(z−1)
1+ C(z−1)Pd(z−1)

= AS

AR+ BS

= AS

�
= S

�′
. (6)

Because of the constraint that the controller transfer
function C has low-pass characteristics, it follows from
the above equations that the input sensitivity function
must be low-pass as well. Further reasoning for this can
be found in Riedo and Hunt (2016). This feature is impor-
tant as it ensures the control signal will not be excited
by high-frequency components of the disturbance and
measurement noise signals.

2.4. Data processing, outcomemeasures and
analysis

Due to substantial breath-by-breath noise on the mea-
sured V̇O2 signal, which is typical for respiratory data,

real-time data processing is essential. Three aspects were
considered when designing a filtering strategy:

• Due to the real-time feedback control of V̇O2, the use
of amoving average filterwith zero phase shiftwas not
possible. Thus, the more values that are averaged, the
greater is the phase lag, resulting in a delayed reaction
of the controller.

• There is no universal standard for data processing con-
cerning breath-by-breath respiratory data. The most
common procedure is either time averaging over a
period of 15–30 s or a moving average of a certain
number of breaths (e.g. 11 breaths as in Robergs,
Dwyer, & Astorino, 2010). There is no recommenda-
tion specifically for real-time application as in feedback
control of oxygen uptake.

• A factor of about 10 is recommended between averag-
ing time and the system time constant (Åström & Wit-
tenmark, 2011). The identification of V̇O2 in Section 3.1
revealed a mean time constant of τ = 48.3 s thus the
averaging time should be around 5 s.

In line with these considerations, a moving average of 4
breaths resulting in an averaging time of roughly 5 s (this
is dependent on the changing breathing frequency) was
implemented in real time for the variable V̇O2.

Three outcome measures serve as the basis for quan-
titative evaluation of controller performance, allowing
comparison between the subjects and with other stud-
ies. RMS error for oxygen uptake tracking RMSEV̇O2

, aver-
age power of changes in target work rate P�P, and RMS
tracking error of power RMSEP were calculated as follows:

RMSEV̇O2
=

√√√√ 1
N

N∑
i=1

(V̇O2sim(i)− V̇O2(i))2. (7)

Here, V̇O2sim(i) is obtained from simulation of the nom-
inal closed-loop system, using the nominal plant model
from Equation (1) and the calculated controller parame-
ters.

P�P = 1
N− 1

N∑
i=2

(Ptarget(i)− Ptarget(i− 1))2. (8)

The average power of the control signal P�P gives
a quantitative indication of the intensity of the control
signal.

RMSEP =
√√√√ 1

N

N∑
i=1

(Ptarget(i)− P(i))2. (9)

This value indicates how accurately a subject was able
to follow the target work rate.
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All three outcome values were calculated over a time
period of 20 min, starting at 5 min to exclude the start-
up transient. This time interval thus includes 5 min before
the first change in target work rate as well as 5 min after
the last change in target work rate.

2.5. Test protocol and subjects

All test profiles were individually tailored for each subject
in order to apply an appropriate mean level of exercise
intensity in each case, but the amplitude of steps in Ptarget
(open-loop identification) and V̇O2target (closed-loop con-
trol) were kept the same for all subjects. All subjects
took part in an identification and a control (command
response) session. These tests were all conducted with a
stepping cadence of 70 steps/min and a stepping height
of 18 cm. Additionally, one subject participated in a dis-
turbance rejection test (cadencewas repeatedly changed
asnotedbelow), andanother in a command response test
with a non-low-pass controller. Each test was carried out
on a different day.

Using data recorded in a previous study (Riedo &
Hunt, 2016), appropriate work rate levels for each sub-
ject were determined for the identification tests. These
measurements were conducted at moderate to vigorous
intensity as predicted by heart rate and each subject’s
age. The mean value of Ptarget was subjected to a square-
wave signal with an amplitude of 20W (see Figure 3(a)).

To determine appropriate individual mean V̇O2 levels
for the feedback control tests, the mean value of V̇O2

during identification sessions within the identification
interval (590–1790 s) was calculated for each subject. This
value was then employed as the mean value of V̇O2target
for the command response tests. The amplitude of the
V̇O2target square wave was calculated based on the inten-
tion to have approximately the same 20W amplitude of
target power during the command response tests as in
the identification tests.

This was calculated based on the steady-state gain of
thenominalmodel in Section3.2, i.e. k=0.0174 (l/min)/W.
Thus,

V̇O2target ±�V̇O2 = mean(V̇O2ident)± k × 20W

= mean(V̇O2ident)± 0.35 l/min. (10)

In order to test the disturbance rejection properties of
the controller, a separate testwith constant V̇O2target at the
mean identification oxygen uptake level was conducted.
A major disturbance was induced changing cadence
stepwise between 70 and 35 steps/min. The downward
change initially causes a reduction in velocity, therefore,
the subject needs to increase the forces applied to the
footplates in order to maintain the target power. Due to

this increased effort, a higher oxygen uptake follows. The
expectation is then that the controller will reduce target
powerwith the result that V̇O2 should return to the target
value. For changes from 35 back up to 70 steps/min, the
converse response would be expected.

Six healthy males participated in this study (Table 1).
No subject had any history of cardiovascular, pulmonary
or musculoskeletal problems or current limitations in
their physical ability. The study was reviewed and
approved by the ethics committee of the Canton of Bern
in Switzerland and all subjects providedwritten informed
consent.

3. Results

3.1. Identification

The identified values for oxygen uptake dynamics were:
steady-stategain k = 0.0186± 0.0029 (l/min)/W (mean±
SD) and time constant τ = 53.4± 4.1 s. The overall fit was
62.5± 12.6% and RMSE was 0.12± 0.05 (l/min)/W. For
the heart rate dynamics, the following values were iden-
tified: steady-state gain k = 0.532± 0.132 bpm/W and
time constant τ = 67.3± 15.2 s with overall fit 62.7±
3.6% and RMSE 3.27± 0.74 bpm/W. Individual values for
steady-state gain k and time constant τ are summarized
in Tables 2 and 3. Subject S02 had to be excluded from
this analysis due to measurement error leading to a high
level of breath-by-breath noise in V̇O2.

Exemplary plots of raw identification data are shown
in Figure 4(a, c), and the correspondingmodel validation
results in Figure 4(b, d). The identification interval (range
of the x-axis in Figure 4(b, d)) is displayed using red bars
in Figure 4(a, c) (590–1790 s ). This includes 10 s before
the first change in Ptarget and lasts for 20 min, including
all changes in Ptarget.

All data sets for both V̇O2 and HR were used for
the comparative analysis (Section 3.2). Furthermore, the
identification results for V̇O2 dynamics were used to
select a nominal model for V̇O2 controller calculation
(Section 3.2).

3.2. Comparison of time constants and nominal
model selection

The hypothesis that the time constant of heart rate
dynamics is significantly higher than that of oxygen
uptake was confirmed. Individual identified values of τ

for V̇O2 and HR are plotted in Figure 5 (see also Tables 2
and 3). The mean values of τ for V̇O2 and HR were 53.4±
4.1 s and 67.3± 15.2 s, respectively. A single-sided t-test
showed this difference to be significant with a p-value of
0.048 (the data were tested for a normal distribution with
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Table 2. Results of oxygen uptake dynamics identification.

ID Plow (W) Phigh (W) k (
l/min

W
) τ (s) fit (%) RMSE (

l/min

W
)

S01 60 100 0.0184 56.6 44.9 0.19
S03 70 110 0.0148 53.4 68.6 0.08
S04 90 130 0.0196 57.3 59.4 0.14
S05 30 70 0.0227 47.1 78.9 0.08
S06 70 110 0.0174 52.4 60.6 0.12
mean± SD 64.0± 21.9 104.0± 21.9 0.0186± 0.0029 53.4± 4.1 62.5± 12.6 0.12± 0.05

Notes: ID: subject number; SD: standard deviation; Plow: individually chosen target power at low level; Phigh: individually chosen target power at high level; k:
steady-state gain of V̇O2 dynamics; τ : time constant of V̇O2 dynamics; fit: normalized RMSE of identified V̇O2 model and RMSE: root-mean-square error of V̇O2
model.

Table 3. Results of heart rate dynamics identification.

ID Plow (W) Phigh (W) k(bpm/W) τ (s) fit (%) RMSE (bpm/W)

S01 60 100 0.704 75.1 69.0 3.43
S03 70 110 0.416 88.2 59.6 2.56
S04 90 130 0.428 55.2 61.9 2.87
S05 30 70 0.641 50.5 61.3 4.47
S06 70 110 0.470 67.8 61.8 3.04
mean± SD 64.0± 21.9 104.0± 21.9 0.532± 0.132 67.3± 15.2 62.7± 3.6 3.27± 0.74

Notes: ID: subject number; SD: standard deviation; Plow: individually chosen target power at low level; Phigh: individually chosen target power at high level; k:
steady-state gain of HR dynamics; τ : time constant of HR dynamics; fit: normalized RMSE of identified HRmodel and RMSE: root-mean-square error of HRmodel.

the Lilliefors test). The mean difference was 14.0 s with a
95% confidence interval from 0.24 to∞; the fact that the
value 0 lies outwith this interval reflects the observed dif-
ference at the significance level of 5%. All values listed
in Tables 2 and 3 were used for comparison, Subject S02
having been excluded as noted above.

In order to investigate the robustness of the overall
V̇O2 control strategy, a single LTI model was selected
as the nominal model for controller calculation. For
this purpose, one of the individually identified models
was selected as nominal, rather than using an average
over several models/subjects. With this strategy, con-
troller robustness can be better verified because poten-
tial differences between the identification subject and
the other subjects can be analysed. The model selec-
tion procedure is visualized in Figure 5. Subject S05
was excluded from further consideration for the nominal
model because of a distinctly higher value for steady-
state gain k. It can be seen that the model for Sub-
ject S06 was closest to the average model of Subjects
S01, S03, S04 and S06. Thus, the identified model for
Subject S06 was selected as the nominal model and
used for controller calculation. The nominal steady-state
gain was therefore k=0.0174 (l/min)/W and the nomi-
nal time constant was τ = 52.4 s. A sampling period of
Ts = 5 s was employed according to recommendations
in Åström & Wittenmark (2011), Hunt & Hunt (2016) and
Hunt & Fankhauser (2016). These choices give the nomi-
nal discrete-time model, Equation (1),

Pd(z
−1) = B(z−1)

A(z−1)
= 0.0016z−1

1− 0.9090z−1
. (11)

3.3. Controller calculation

A single LTI controller was calculated according to
Section 2.3 using the nominal model. The specifications
used were: rise time tr = 195 s, critical damping ζ =
1 and sample period Ts = 5 s. This gave the controller
Equation (2) as

C(z−1) = S(z−1)
R(z−1)

= z−1(4.2785− 3.8891z−1)
(1− z−1)(1− 0.8354z−1)

. (12)

The rise time of the reference pre-filter was set to trpf =
150 s with the aim of having a relatively dynamic V̇O2

command response, when compared to the slower spec-
ification for the feedback loop. With ζpf = 1, Equation (5)
was used to obtain

Cpf(z
−1) =

(7.0496827− 19.3469229z−1
+17.6981804z−2 − 5.3965933z−3)
1− 1.7886846z−1 + 0.7998482z−2

. (13)

With feedback controller Equation (12), the input sen-
sitivity functionUo, Equation (6), has the desired low-pass
characteristics (Figure 6, red line). The input sensitivity
function for a controllerwith non-low-pass characteristics
(used for comparative tests) is also plotted (Figure 6, blue
line).

3.4. Controller tests

The quantitative outcome measures for all command
response tests are summarized in Table 4 and the corre-
sponding plots are shown in Figure 7. As with the identi-
fication tests, Subject S02 was excluded from the analysis
due to excessive noise on the V̇O2 signal, which appears
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(a) (b)

(c) (d)

Figure 4. Exemplary plots of raw identification data (left column) and the corresponding model validation results (right column) of
Subject S05. (a) Oxygen uptake: raw identification data, (b)model validation for oxygen uptake, (c) heart rate: raw identification data and
(d) model validation for heart rate.

Figure 5. Plot of k and τ from oxygen uptake identification and,
for comparison, τ for heart rate identification.

Figure 6. Bode magnitude plot of the input sensitivity function
Uo with low-pass characteristics (red line), resulting from the
strictly causal controller, and Uo based on a merely causal con-
troller (blue line).
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Table 4. Outcomes of the command response test.

ID V̇O2mid (l/min) V̇O2low (l/min) V̇O2high (l/min) RMSEV̇O2 (l/min) P�P(W2) RMSEP (W)

S01 2.01 1.66 2.36 0.200 2.15 38.1
S03 2.08 1.74 2.43 0.135 1.64 29.0
S04 2.89 2.54 3.24 0.313 3.34 64.2
S05 1.73 1.38 2.08 0.148 1.66 24.6
S06 2.52 2.17 2.87 0.192 1.97 40.0
mean± SD 2.25± 0.46 1.90± 0.46 2.60± 0.46 0.198± 0.070 2.15± 0.70 39.2± 15.3

Notes: ID: subject number; SD: standard deviation; V̇O2mid : mid-level oxygen uptake (see Section 2.5); V̇O2low : low-level oxygen uptake; V̇O2high : high-level oxygen
uptake; RMSEV̇O2 : RMS error of oxygen uptake; P�P : average power of the control signal; RMSEP : root-mean-square error of volitionally controlled power.

to be a peculiarity of this particular subject’s respiration
rather than a property of the controller. The results oth-
erwise demonstrate accurate and robust performance of
the single LTI controller across all subjects.

Target oxygen uptake was tracked well in all cases
with low RMSEV̇O2

and the dynamic response of V̇O2

to changes in the target value was close to the nomi-
nal/simulated response. The control signal (Ptarget) was
smooth in all cases, enabling the subjects to accurately
follow Ptarget with low RMSEP. Specifically, taken across
all subjects, the performance outcomes were RMSEV̇O2

=
0.198± 0.070 l/min, P�P = 2.15± 0.70W2 and RMSEP =
39.2± 15.3W (mean± SD; Table 4).

The red bars in Figures 7–9 indicate the formal out-
come evaluation interval from 5 to 30min. In addition to
the variables which were already defined above, a vari-
able denoted V̇O2smooth is shown in Figures 7–9: this is a
moving average of 25 values of raw V̇O2, and was com-
puted in order to better allow qualitative/visual assess-
ment of the control results. These plots also show the
measured HR data in order to demonstrate the phe-
nomenon of a trend in the HR signal as described in
Section 1.

The disturbance test with Subject S03 showed that
the controller was able to rapidly reject the effects of
changes in stepping cadence (Figure 8). It can be seen
that, when the cadence is reduced, an initial rise in oxy-
gen uptake is counterbalanced by the controller in the
form of a reduction in Ptarget, resulting in rapid recovery
of V̇O2 towards V̇O2target with RMSEV̇O2

= 0.279 l/min. The
disturbance herewas smaller than in a former study of HR
control (Riedo & Hunt, 2016). In comparison to that study,
the smaller reduction in cadence enabled the subject to
follow Ptarget more accurately, resulting in the relatively
low value of RMSEP = 45.5W. Despite the disturbance,
the control signal showed smooth and calm behaviour,
which is reflected in the low average control signal power
of P�P = 1.11W2.

A further test with Subject S05 investigated the
behaviour of a non-low-pass controller. This test under-
lines the importance of low-pass characteristics in the
controller and, consequently, in the input sensitivity

function (cf. Figure 6). The low-pass and non-low-pass
tests with Subject S05 are shown for comparison in
Figure 9. The low-pass controller shows better results in
all performance outcomes. The values for the low-pass
vs. non-low-pass controllers were: RMSEV̇O2

= 0.148 vs.
0.152 l/min,P�P = 1.66vs. 106.63W2 andRMSEP = 24.6 vs.
29.3W. The most striking difference here is the average
control signal power P�P, which was two orders of mag-
nitude higherwith the non-low-pass controller, reflecting
this controller’s sensitivity to high-frequency measure-
ment noise and disturbances.

4. Discussion

The aim of this work was to identify and compare oxygen
uptake and heart rate dynamics, and to develop and test
an oxygen uptake controller for an end-effector gait reha-
bilitation robot using the stair climbing mode of opera-
tion. As stated in Section1, V̇O2 offers amoredirectway to
characterize the physiological level of exercise intensity.
While the main challenge in feedback control of HR was
physiological heart rate variability (Riedo&Hunt, 2016), in
the present study the substantial breath-by-breath noise
on V̇O2 was of primary concern.

The identification of V̇O2 and HR dynamics was suc-
cessful for all subjects except for Subject S02 due to
excessive noise causing fluctuation of the V̇O2 signal. In
a previous study, Schindelholz and Hunt (2015), Subject
S05 completed a V̇O2 identification using an exoskeleton-
type rehabilitation robot (Lokomat, Hocoma AG, Switzer-
land). The findings there of k=0.0238 (l/min)/W and τ =
48.3 s are very close to the values obtained here on the
G-EOwith k=0.0227 (l/min)/W and τ = 47.1 s. A compar-
ison of the mean V̇O2 time constant here of τ = 53.4 s
(Table 2) with the mean time constant of six subjects
running normally on a treadmill found in Hunt, Ajayi,
Gollee, & Jamieson (2008) of τ = 47.1 s, indicates that V̇O2

dynamics are similar across very different exercisemodal-
ities. Furthermore, the time constant for oxygen uptake
dynamics according to Wasserman, Hansen, Casaburi, &
Whipp (1999) is generally on the range τ = 40− 60 s at
medium intensity. The mean HR time constant τ = 67.3 s
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Figure 7. Command response tests. (a) S01, command response test, (b) S03, command response test, (c) S04, command response test,
(d) S05, command response test and (e) S06, command response test.
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can be compared with a study (Hunt et al., 2015) con-
ducted with 24 subjects running on a treadmill, which
revealed a time constant of 57.6 s. Thus all V̇O2 and HR
identification results from the present study are in broad
agreement with previous reports using differing exercise
devices.

The identification of V̇O2 and HR dynamics using a sin-
gle test for each subject provided a good basis for direct
comparison of the respective time constants. Previous
studies suggest that τ for HR is generally higher than for

Figure 8. Disturbance rejection test, Subject S03.

Figure 9. Command response tests of Subject S05 with low-pass controller (left) and with non-low-pass controller (right). (a) Command
response with low-pass controller and (b) Command response with non-low-pass controller.

V̇O2 (Bearden & Moffatt, 2001; Zhang et al., 2014). The
statistical analysis of the five data sets obtained here con-
firm this hypothesis for the end-effector robot form of
exercise, with a p-value for the observed difference of
0.048.

The command response tests showed highly accurate
and fast tracking performance for all subjects evaluated,
with lowRMSE outcomes. The control signal, which in this
application is the target work rate to be achieved by voli-
tional control of the subject, displayed calm and smooth
behaviour throughout, with a low value of average con-
trol signal power. This property is important because it
eases the subject’s volitional control task.

Robustnesswas tested by using a controller whichwas
specific to only one subject, i.e. the nominal model for
controller calculation was taken as the identified model
for Subject S06. The results showed good robustness
properties because there was no substantial difference
in any of the controller performance outcome measures
between the identification subject and the others.

The results demonstrate a very strong positive correla-
tion between RMS tracking error and average control sig-
nal power. Ranking these variables according to Table 4,
it is apparent that RMSEV̇O2

and P�P have the same order
when ranked, i.e. the subject with the highest RMSEV̇O2

also has the highest P�P, and so on. The correlation coef-
ficient for these twovariableswas computedas r=0.9920
(p=0.0009). This result suggest that, for feedback control
of V̇O2, the individual level of breath-by-breath noise is
the principal determinant of objective controller perfor-
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mance, whereas the controller tuning parameter tr likely
plays a secondary role.

The single disturbance test with Subject S03 showed a
good disturbance rejection performance. The controller
showed good behaviour and was able to bring V̇O2 back
to the target in a short time after the perturbation caused
when stepping cadence was changed.

The essential difficulty encountered in this work was
the substantial breath-by-breath noise observed with
some subjects. Moreover, this phenomenon appeared to
vary considerably between subjects. This difficulty was
overcome by purposely shaping the frequency response
of the input sensitivity function to be low pass, such that
the control signal remained calm for evenworst-case sub-
jects displaying the strongest noise effects.

The importance of this design strategy can be seen
in the single test with a non-low-pass controller, which
clearly illustrates the importance of suppression of high-
frequencynoise anddisturbances in this application.With
the non-low-pass controller, the average control signal
power P�P was very high, which substantially increased
the cognitive load on the subject and made it very diffi-
cult for him to follow the rapidly changing control signal
Ptarget. Despite the highly dynamic control signal, where
the controller reacted to even small deviations in V̇O2,
RMSEV̇O2

was still higher than for the low-pass controller.
Thus, low-pass characteristics of the controller are essen-
tial in this case.

A limitation of the present work is that only healthy,
able-bodied subjects were included. Further study is
required for application to patients who might have car-
diopulmonary or cardiovascular disease. Such patients
should be subjected to specific identification experi-
ments in case the plant model gains and time constants
are substantially different to the ones employed here,
which might in turn warrant recalculation of the con-
troller parameters.

A further limitation is that only a small number of sub-
jects was studied, within the limited age range of 23–26
(with the exception of Subject S05, aged 52). Although
S05was not used for determination of the nominalmodel
parameters, he was included in the feedback control
experiments; the stable and accurate results achieved
with this subject, andwith all other subjects, point empir-
ically to an inherent robustness of the feedback sys-
tem. Nevertheless, future work should include both male
and female subjects from target populations of patients
undergoing rehabilitation due to neurological deficits,
and who will likely be in an older age range than the
subjects used in the present work. These investigations
should focus first on identification of model parameters
and analysis of any differences to the values obtained
here.

5. Conclusions

The proposed feedback control strategy for oxygen
uptake, V̇O2, was found to be feasible during robotics-
assisted stair climbing in healthy subjects. Using quan-
titative outcome measures, highly accurate and stable
control performance was observed in the command
response and disturbance rejection tests. Robustnesswas
demonstrated on an empirical basis because a single LTI
controller was used which was specific to just one of the
subjects, yet theoutcomemeasureswere similar across all
subjects. The hypothesis that the time constant τ of HR
is significantly higher than that for V̇O2 was confirmed.
Subject-specific differences in breath-by-breath respira-
tory noise is themain challenge in the design of feedback
control systems for V̇O2. Further clinical testing of this
approach with target groups of neurologically impaired
subjects is warranted.
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