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Summary
Feedback control of heart rate (HR) for treadmills is important for exercise inten-
sity specification and prescription. This work aimed to formulate HR control
within a stochastic optimal control framework and to experimentally evaluate
controller performance. A quadratic cost function is developed and linked to
quantitative performance outcome measures, namely, root-mean-square track-
ing error and average control signal power. An optimal polynomial systems
design is combined with frequency-domain analysis of feedback loop proper-
ties, with focus on the input sensitivity function, which governs the response to
broad-spectrum HR variability disturbances. These, in turn, are modelled using
stochastic process theory. A simple and approximate model of HR dynamics was
used for the linear time-invariant controller design. Twelve healthy male sub-
jects were recruited for comparative experimental evaluation of 3 controllers,
giving 36 tests in total. The mean root-mean-square tracking error for the opti-
mal controllers was around 2.2 beats per minute. Significant differences were
observed in average control signal power for 2 different settings of the con-
trol weighting (mean power 22.6 vs 62.5 × 10−4 m2/s2, high vs low setting,
p = 2.3 × 10−5). The stochastic optimal control framework provides a suitable
method for attainment of high-precision, stable, and robust control of HR during
treadmill exercise. The control weighting can be used to set the balance between
regulation accuracy and control signal intensity, and it has a clear and system-
atic influence on the shape of the input sensitivity function. Future work should
extend the problem formulation to encompass low-pass compensator and input
sensitivity characteristics.
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1 INTRODUCTION

Heart rate (HR) is a convenient variable to use for exercise intensity specification and prescription both in healthy
individuals1,2 and in patient populations.3 High-intensity interval training protocols, for example,4,5 combine various

*Notation and Abbreviations: q−1, backward shift operator (time domain); ∇(q−1) = 1 − q−1, backward difference operator; ∇[x](t) = (1 − q−1)x(t) =
x(t)−x(t−1); z, z-transform complex variable (frequency domain); s, Laplace transform complex variable (frequency domain); X*(q−1) = X(q), X*(z−1) =
X(z), conjugate polynomial (discrete); Pd, nominal plant transfer function; C, feedback compensator transfer function; Cpf, deterministic reference
prefilter transfer function; y, controlled variable (heart rate, HR); ynom,HRnom, nominal (simulated) heart-rate response; u, control signal (treadmill speed
command, v); d, plant output disturbance;ψd, stochastic process, disturbance generator; r, reference signal (target heart rate, HR*); r′, filtered reference
signal; e′, feedback compensator input signal; u′, sample-to-sample change in control signal; u′(t) = ∇[u](t) = u(t) − u(t − 1); RMSE, root-mean-square
tracking error; P∇u, average power of changes in the control signal u, “average control signal power”; ANOVA, analysis of variance; bpm, beats per
minute; HR, heart rate; HRV, heart-rate variability; LQ, linear quadratic; LTI, linear time invariant; PA, pole assignment.
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HR intensity regimes of differing durations. Treadmills provide a useful platform for a systematic and automated
implementation of such protocols, especially when combined with continuous feedback control of HR.

A variety of design methods have previously been investigated for feedback control of HR during treadmill exercise;
implementations typically involve real-time monitoring of HR and continuous adjustment of a control variable, which is
usually the treadmill speed command. The feedback designs that have been applied include classical proportional-integral
(PI) control,6 robust control in combination with a nonlinear state-space model,7 model predictive control with a Hammer-
stein model structure,8 and other forms of nonlinear control.9 The design focus in these approaches has been on possible
structural and parametric sources of uncertainty, ie, on whether the plant should be considered to comprise higher order
and/or nonlinear components and whether the parameters within a given structure are subject to substantial variation.

In contrast, the primacy of broad-spectrum physiological HR variability (HRV) as a disturbance source and, there-
fore, its role as the principal feedback design challenge have been asserted elsewhere10: the observations therein were
supported by empirical results, which used quantitative performance outcome measures, control designs based on simple
and approximate linear time-invariant (LTI) plant models,11 and subject cohorts of sufficient size to facilitate comparative
statistical analysis. Furthermore, a direct head-to-head comparative study of linear and nonlinear controllers did not
reveal any significant differences in performance outcomes at moderate exercise intensity.12 These results have demon-
strated that accurate, stable, and robust HR control performance can be obtained using simple models and LTI design
methods, provided that the HRV disturbance spectrum is appropriately dealt with.

In the present work, the HR control problem is formulated within a stochastic optimal control framework using poly-
nomial systems theory13; this is a linear quadratic (LQ) optimal approach based on a linear plant model and a quadratic
cost function. This control design strategy, which is based on a cost function that can be expressed in both the time
and frequency domains, is combined with frequency-domain analysis of feedback loop properties; particular attention
is given to the shape of the input sensitivity function, which governs the behaviour of the control signal in response to
broad-spectrum disturbances generated by physiological HRV. Heart-rate variability disturbances, in turn, are modelled
conveniently using concepts from stochastic process theory.

Quantitative time-domain outcomes are again used for objective assessment of empirically observed controller perfor-
mance: these comprise root-mean-square tracking error (RMSE) and average control signal power. An explicit link is
drawn between these performance outcome measures and the quadratic objective function used in the optimal controller
design: RMSE and average control signal power are shown to provide sample estimates of the quadratic terms within the
cost function, with their relative importance being set through the choice of the control weighting design parameter.

Taking these 2 factors together, ie, the suitability of stochastic processes for modelling HRV disturbances and the link
between appropriate outcome measures and the cost function, the stochastic optimal control framework is seen to provide
a natural means by which to formulate the key elements of the HR control problem.

The aims of this work were to formulate HR control within the stochastic optimal control framework and, in an exper-
imental evaluation study, to statistically compare quantitative performance outcomes obtained with 2 parameterisations
of the optimal controller and with a direct pole-assignment (PA) controller.

2 CONTROL DESIGN METHODS

2.1 Nominal plant model
The optimal control problem formulation comprises the definition of a nominal plant model, a controller structure, and
a cost function. The plant (see Figure 1) is described in the time domain as

y(t) = Pd(q−1)u(t) + d(t) =
B(q−1)
A(q−1)

u(t) + 1
∇(q−1)A(q−1)

ψd(t), (1)

where A, B, and∇ are real polynomials, with A monic and∇(q−1) = 1−q−1. The discrete-time transfer function Pd = B∕A
is taken to be strictly causal, ie, the leading coefficient of B is zero. The signal y is the controlled variable (heart rate, HR),
u is the plant control input (treadmill speed command, v), and d is an HR disturbance signal.

The term d = (1∕(∇A))ψd primarily represents physiological HR disturbances caused by broad-spectrum HRV.10,14,15

Within the optimal control framework, the driving source ψd is considered to be a stochastic process, which enters the
filter 1∕(∇A) to generate d. Use of the integrating term 1∕∇ in the filter admits a range of disturbance types13: when the
driverψd is stationary white noise, d incorporates a random walk; whenψd is a nonstationary compound Poisson process,
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FIGURE 1 Plant model and control structure. The controlled variable y is the heart rate (HR); the control signal u is the treadmill speed
command; and the reference signal r is the target heart rate (HR*). The term u′ is the sample-to-sample change in the control signal:
u = (1∕∇)u′,∇ = 1 − q−1 ⇐⇒ u′(t) = u(t) − u(t − 1). The disturbance term d is modelled as a stochastic process ψd driving a shaping filter
1∕(∇A). Transfer functions: Pd is the nominal plant, C is the feedback compensator, and Cpf is a deterministic reference prefilter

d includes a step-like sequence consisting of random steps at random times; and whenψd is a unit pulse, the output of the
integrator is a deterministic step. By notionally combining such forms for ψd, practically relevant models for HRV arise.

In the sequel, the plant transfer function Pd = B∕A is taken to be a first-order LTI system; this assumption follows pre-
vious observations that such a model gives a good representation of HR dynamics during moderate-to-vigorous treadmill
exercise,11 and, further, that feedback control design based on this model structure can be highly accurate and robust.10,12,16

Thus, with steady-state gain k and time constant τ, the transfer function for HR dynamics is represented in continuous
and discrete forms as

u → y ∶ Pc(s) =
k

τs + 1
Ts

←→Pd(z−1) = B(z−1)
A(z−1)

= b0z−1

1 + a1z−1 , (2)

where the double arrow denotes transformation between the continuous and discrete domains using sample period Ts.
The discrete model parameters, expressed in k, τ, and Ts, are

a1 = −e
−Ts
τ , b0 = k

(
1 − e

−Ts
τ

)
. (3)

2.2 Controller structure and cost function
The control signal u (here, the treadmill speed command signal) is generated by a causal linear feedback compensator
transfer function C as u(t) = C(q−1)e′(t), with e′(t) = r′(t) − y(t) (Figure 1). The signal r′ is the output of a deterministic
reference prefilter Cpf, and r is the reference signal (target heart rate, HR*).

Integral action is specified in the compensator by constraining the denominator of C to include the factor ∇(q−1) =
1−q−1; this is in line with the internal model principle, which demands within the feedback path a model of the unstable
dynamic structure of the disturbance d, viz, the term 1∕∇.17 Thus, the compensator transfer function is described as

e′ → u ∶ C(q−1) =
G(q−1)
H(q−1)

· 1
∇(q−1)

, (4)

where G and H are real polynomials to be determined by the cost-function minimisation, with H monic.
The optimisation problem below is formulated by penalising sample-to-sample changes in the control signal, which

are given by the intermediate signal u′ (Figure 1) since

u(t) = 1
∇(q−1)

u′(t)⇐⇒ u′(t) = ∇(q−1)u(t) = u(t) − u(t − 1). (5)

The optimal feedback compensator C is obtained as the solution to a stochastic regulation problem, ie, under the
assumption of zero reference signals r = r′ = 0; reference tracking is introduced deterministically in the sequel via the
reference prefilter Cpf (Section 2.5).

The optimal regulator polynomials G and H are those which minimise a quadratic cost function J, expressed in the time
and frequency domains as

J = E
{

y2(t) + ρu′2(t)
}
= 1

2πj∮|z|=1
(ϕy + ρϕu′ )

dz
z
, (6)
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where E denotes expectation, and ϕy and ϕu′ are spectral densities. The real scalar ρ is the control weighting, which
can be used as a single controller tuning parameter to establish a desired compromise between regulation accuracy
and control signal activity: increasing ρ penalises control signal changes more heavily, resulting, nominally, in a less
dynamic control signal and, correspondingly, less accurate output regulation, and vice versa. Equivalence of the time-
and frequency-domain expressions in Equation 6 is established by application of Parseval's theorem.18,19

Equivalently, the cost function can be written in terms of u = (1∕∇)u′ as

J = E
{

y2(t) + ρ(∇u)2(t)
}
= 1

2πj∮|z|=1
(ϕy + ρ∇∇∗ϕu)

dz
z
, (7)

where ∇* is the conjugate of ∇, ie, ∇*(z−1) = ∇(z).

2.3 Performance measures and relation to cost function
Recent studies on feedback control of HR have used quantitative measures of closed-loop control performance10,12,16 and
these measures are adopted in the present work. Tracking accuracy is assessed using the RMSE on an interval [t0, t1]

RMSE =

√√√√ 1
N

t1∑
t=t0

(ynom(t) − y(t))2, (8)

where N = t1 − t0 + 1. The signal ynom is the nominal simulated HR response from reference r to output y, ynom = CpfTor
(Figure 1, Equations 22 and 26).

The intensity of the control signal is quantified using the average power of changes in u, denoted P∇u, where

P∇u =
1

N − 1

t1∑
t=t0+1

(u(t) − u(t − 1))2. (9)

For simplicity, this quantity is referred to henceforth as “average control signal power.”
These expressions are closely related to the cost function J = E{y2(t) + ρu′2(t)} in Equation 6. In the case of pure

regulation, ie, setting ynom = r = 0, the term RMSE2 from Equation 8 simplifies to RMSE2 = 1
N

∑t1
t=t0

y 2(t), which is seen
to be a sample estimate of the expectation E{y2(t)} in Equation 6. In a similar vein, P∇u provides a sample estimate of the
second term E{u′2(t)} in the cost function (6). The control weighting ρ thus provides a natural means by which to adjust
the relative importance of the 2 primary outcome measures, RMSE and P∇u, in the manner outlined in Section 2.2 above.

2.4 Optimal regulator solution
The optimal regulator polynomials G and H in Equation 4, which minimise the cost function J, Equations 6 and 7 satisfy
the linear polynomial Diophantine equation

A∇H + BG = Dc, (10)
where Dc, the characteristic polynomial of the feedback loop, is the strictly stable spectral factor obtained from

DcD∗
c = BB∗ + A∇ρ∇∗A∗

. (11)

For a proof of this result, see the works of Hunt13 and Åström and Wittenmark20 (ch. 12).
For a first-order plant Pd(q−1) = B(q−1)∕A(q−1) = b0q−1∕(1+ a1q−1), Equation 2 and with ∇ = 1− q−1, the degree of Dc

in Equation 11 is ndc = 2, ie,
Dc(q−1) = 1 + dc1q−1 + dc2q−2

. (12)
The unique minimal-degree solution of Equation 10 then has polynomial degrees ng = 1 and nh = 0, giving
G(q−1) = g0 + g1q−1 and H(q−1) = 1.13,20 The optimal regulator structure, for the first-order case, is therefore

C(q−1) =
G(q−1)
H(q−1)

· 1
∇(q−1)

=
g0 + g1q−1

1 − q−1 . (13)

An explicit solution for the feedback compensator parameters g0 and g1 can be readily obtained by writing out
Equation 10 in full, viz,

(1 + a1q−1)(1 − q−1) + b0q−1(g0 + g1q−1) = 1 + dc1q−1 + dc2q−2
. (14)
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Equating coefficients of like powers and resolving for the unknowns gives

g0 = (dc1 − a1 + 1)∕b0, (15)

g1 = (dc2 + a1)∕b0. (16)

In summary, given the plant steady-state gain k and time constant τ, together with a sample period Ts, the optimal
regulator is determined in the following steps:

1. Calculate a1 = −e(−Ts∕τ) and b0 = k(1 − e(−Ts∕τ)), Equation 3.
2. Obtain dc1 and dc2 from spectral factorisation Equation 11, and using Equation 12.
3. Calculate g0 = (dc1 − a1 + 1)∕b0 and g1 = (dc2 + a1)∕b0, Equations 15 and 16.
4. Implement feedback compensator as C(q−1) = (g0 + g1q−1)∕(1 − q−1), Equation 13.

As an aside, it is noted that the optimal regulator structure for the first-order case, Equation 13, is equivalent to an ideal
PI controller CPI with proportional gain kp and integrator gain ki because, cf Equation 13,

e′ → u ∶ CPI(q−1) = kp +
ki

1 − q−1 =
(kp + ki) + (−kp)q−1

1 − q−1 . (17)

Therefore,
C(q−1) = CPI(q−1)⇐⇒ g0 = kp + ki, g1 = −kp ⇐⇒ kp = −g1, ki = g0 + g1. (18)

2.5 Reference prefilter
The strategy adopted here for the design of the deterministic reference prefilter Cpf was to retain in the overall closed-loop
transfer function from reference r to plant output y the characteristic polynomial of the feedback loop, Dc, Equation 10,
together with the plant zero polynomial B. Inclusion of B, which has the strictly causal term q−1, ensures that Cpf will be
causal (otherwise, a predictive factor would be required). Thus, it was required that

r → y ∶ Dc(1)
B(1)

·
B(q−1)
Dc(q−1)

, (19)

where the scalar term Dc(1)∕B(1) enters to ensure an overall steady-state gain of unity.
The overall closed-loop transfer function from r to y is given by (see Figure 1)

r → y ∶ Cpf(q−1) ·
B(q−1)G(q−1)

Dc(q−1)
. (20)

Equating expressions (19) and (20) and solving for Cpf gives, in general,

Cpf(q−1) =
Dc(1)∕B(1)

G(q−1)
, (21)

and for the first-order case
Cpf(q−1) =

(1 + dc1 + dc2)∕b0

g0 + g1q−1 . (22)

2.6 Pole-assignment design
For comparative purposes, a feedback compensator was also designed using a pole assignment (PA) method where the
closed-loop poles were specified using the closed-loop rise time (this approach was also taken in previous works12,16).
The feedback compensator transfer function was taken to be identical to that used in the optimal design, ie, C(q−1) =
(g0 + g1q−1)∕(1 − q−1), Equation 13, but instead of using the optimal characteristic polynomial Dc obtained by spectral
factorisation (11), Dc in Equation 12 was calculated using a desired 10%-90% closed-loop rise time tr and critical relative
damping ζ = 1 to give (see the work of Hunt and Hunt16)

dc1 = −2e−3.35Ts∕tr , dc2 = e−6.7Ts∕tr . (23)
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All other details of the algebraic problem solution are then identical to the optimal case, ie, only step 2 of the 4-step
algorithm summary in Section 2.4 differs for the PA design; the parameters dc1 and dc2 in Equation 12 are obtained
from Equation 23 instead of from Equation 11. A reference prefilter was also used with the PA design; it was calculated
according to Equation 22.

2.7 Frequency-domain analysis
A key design issue for HR control is to ensure that broad-spectrum HRV, modelled here using the disturbance signal d,
does not unduly excite the control signal u: physically, the control signal is the treadmill speed command, which is directly
imposed upon and perceived by the runner.

The effect of the disturbance d on the control signal u can be analysed using the nominal input sensitivity function,
denoted Uo, Equation 24 below, which is the transfer function linking these 2 signals (and between r′ and u).

A further design goal is to achieve accurate HR regulation performance, ie, to keep the HR output y close to the reference
r (HR*). The degree to which the HRV disturbance d is suppressed by the feedback is determined by the sensitivity function
So, Equation 25 below, which is the transfer function between d and y. Nominally, a greater degree of disturbance rejection
corresponds to more accurate reference tracking but at the cost of higher control signal power. An appropriate compromise
must therefore be reached between these 2 aspects; this trade-off can best be achieved by appropriate shaping of Uo
and So.10

The complementary sensitivity function To, Equation 26, which governs the reference tracking response, is also defined
below. In summary, the 3 key frequency response functions used in the sequel for controller design and performance
interpretation are the following:

Input sensitivity function Uo

d → u, r′ → u ∶ Uo(z−1) = C(z−1)
1 + C(z−1)Pd(z−1)

= AG
A∇H + BG

= AG
Dc
; (24)

Sensitivity function So

d → y ∶ So(z−1) = 1
1 + C(z−1)Pd(z−1)

= A∇H
A∇H + BG

= A∇H
Dc

; (25)

Complementary sensitivity function To

r′ → y ∶ To(z−1) = C(z−1)Pd(z−1)
1 + C(z−1)Pd(z−1)

= BG
A∇H + BG

= BG
Dc

. (26)

2.8 Controller calculation
Three controllers were designed using an existing approximate plant model with k = 24.2 bpm/(m/s) and τ =
57.6 seconds, and implemented using a sample period Ts = 5 seconds. This single model was obtained in a previous
identification study as the average of 48 individual models estimated from 24 subjects, each running at moderate and vig-
orous intensity levels.11 Thus, in the present study, no model identification was performed, and the nominal model was
not specific to any of the subjects tested.

The nominal plant model, Equation 2, was

u → y ∶ Pc(s) =
24.2

57.6s + 1
Ts = 5 s

←−−−−−→ Pd(z−1) = b0z−1

1 + a1z−1 =
2.0121z−1

1 − 0.9169z−1 . (27)

Three different controllers, each comprising a feedback compensator of the form C(q−1) = (g0 + g1q−1)∕(1 − q−1),
Equation 13, and a reference prefilter of the form Equation 22, were designed and tested with all subjects (controller sum-
mary in Table 1). Two optimal controllers were included to investigate the effect of the control weighting ρ on closed-loop
performance. A standard PA design (Section 2.6) was included to facilitate direct comparison with one of the 2 opti-
mal controllers; the second optimal controller, below, was parameterised to give similar loop characteristics to the PA
controller.

The first controller used the PA design (Section 2.6) with closed-loop rise time tr = 150 seconds, giving

C1(q−1) =
0.06370 − 0.05815q−1

1 − q−1 . (28)
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TABLE 1 Controller parameterisation

Controller Type Setting

C1 PA tr = 150 s
C2 LQ ρ = 67 000
C3 LQ ρ = 18 100

C1, C2, C3: controllers 1, 2, and 3; Equations 28, 29,
and 30; PA: pole assignment; tr: closed-loop rise time,
Section 2.6; LQ: linear quadratic (optimal); ρ: control
weighting, Equations 6 and 7

The rationale for the choice tr = 150 seconds was that the range 120 to 180 seconds was previously evaluated using the
PA approach for HR control during outdoor running and found to give accurate and robust performance.16

The second controller used the optimal LQ design approach (Section 2.4). The control weighting was selected to give
the same complementary sensitivity bandwidth as for the PA design, C1 above, resulting in the same reference tracking
response from r′ to y (see To in Equation 26). By this method, the control weighting was found to be ρ = 67 000, giving

C2(q−1) =
0.03343 − 0.02970q−1

1 − q−1 . (29)

The third controller also used the optimal LQ design, but the control weighting was selected to give a loop gain Lo = CPd
with the same 0 dB crossover frequency as for the PA design. This gave ρ = 18 100, and

C3(q−1) =
0.05457 − 0.04754q−1

1 − q−1 . (30)

The parameterisation of the 3 controllers is summarised in Table 1; their frequency responses Uo and So are displayed
in Figure 2. The frequency response of a strictly proper (ie, low-pass) compensator, as used in the work of Hunt and
Fankhauser,10 is also shown for further consideration in the discussion.

It can be seen from the frequency responses (Figure 2) that PA controller C1 and LQ optimal controller C3, as
intended, have very similar characteristics, albeit the LQ controller C3 gives slightly more complex behaviour due to a
complex-conjugate pair of poles resulting from the spectral factorisation (11) (the PA design gives 2 equal real poles). The
optimal controller C2, which has a much higher control weighting ρ than C3, is clearly much less dynamic than C1 and C3
since the high-frequency gain of Uo and the bandwidth of So are both substantially lower than for the other 2 controllers.

3 EXPERIMENTAL METHODS

3.1 Subjects
Twelve healthy male subjects were recruited for comparative experimental evaluation of the 3 controllers (subject details
in Table 2). Each subject was tested with all 3 controllers, C1, C2, and C3, giving 36 tests in total, with each test taking place
on a separate day. The study design was counterbalanced by computer randomisation of controller testing order for each
subject. Because 6 unique sequences are possible for 3 test cases, viz, the set of test sequences TS = {123, 132, 213, 232,
312, 321}, the number of subjects n = 12 was purposely chosen to be a multiple of 6, and each individual test sequence in
the set TS was repeated twice across the 12 subjects.

All procedures performed in this study in regard to the human participants were in accordance with the ethical stan-
dards of the local research committee: the study protocol was reviewed and approved by the Ethics Committee of the
Swiss Canton of Bern. Informed consent was obtained from all individual participants.

3.2 Equipment and test procedures
Experiments were performed using a computer-controlled treadmill (type Venus, h/p/cosmos Sports and Medical GmbH,
Germany; Figure 3) and a chest belt for HR measurement (model T34, Polar Electro Oy, Finland).

All controller tests were performed in accordance with a formal protocol where each test lasted 35 minutes, and target
HR was varied periodically by ± 10 beats per minute (bpm) around a mid-level (see Figures 5, 6, and 7). The mid-level
HR was set individually for each subject to the value corresponding to the transition between moderate and vigorous
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FIGURE 2 Frequency responses for controllers C1, C2, and C3 (solid lines). |Uo|, SP and |So|, SP (dashed lines) are for the strictly proper
compensators used in the work of Hunt and Fankhauser.10 LQ, linear quadratic; PA, pole assignment; ρ, control weighting; SP, strictly proper;
tr , rise time [Colour figure can be viewed at wileyonlinelibrary.com]

exercise intensity regimes, which is taken to be 76.5% of the age-predicted maximal HR, HRmax
2; the latter was estimated

as HRmax = 220 − age.21 This experimental protocol is similar to that used in previous studies.10,12

3.3 Primary outcome measures and statistical analysis
The primary outcome measures were RMSE, Equation 8 and average control signal power P∇u, Equation 9. These
outcomes were evaluated for all tests across the time interval 300 ≤ t ≤ 1800 seconds (5 to 30 minutes; see
Figures 5 to 7).

Both primary outcomes were statistically analysed to evaluate possible differences between the 3 controllers. One-way
repeated-measures analysis of variance (ANOVA) was used, with controller number (1, 2, or 3) as the single factor. When-
ever a significant overall difference was determined (overall p value), posthoc pairwise comparisons were performed for
the pairs of controllers, with Bonferroni correction of significance levels. For paired comparisons, mean differences (MDs)
and 95% confidence intervals were computed.
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TABLE 2 Subject characteristics

Age, y Body Mass, kg Height, m BMI, kg/m2

S01 52 75.4 1.85 22.0
S02 27 67.7 1.76 21.9
S03 24 75.2 1.81 23.0
S04 33 74.0 1.82 22.3
S05 22 73.5 1.78 23.2
S06 30 83.7 1.88 23.7
S07 22 59.0 1.71 20.2
S08 26 63.0 1.74 20.8
S09 32 75.0 1.78 23.7
S10 26 79.0 1.80 24.4
S11 23 68.0 1.83 20.3
S12 28 73.4 1.75 24.0
Mean ± SD 28.8 ± 8.2 72.2 ± 6.8 1.79 ± 0.05 22.5 ± 1.5
Range 22–52 59.0–83.7 1.71–1.88 20.2–24.4

BMI, body mass index (mass/height2); n = 12, all male; SD, standard deviation

FIGURE 3 Computer-controlled treadmill. Controllers were implemented in real time in the PC on the left. The control signal (speed
command) was sent via serial link to the treadmill control unit in the centre [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Outcome measures for the 3 controllers and overall p values for
comparison of means (see also Figure 4)

Mean ± SD p value
C1 C2 C3

RMSE/(bpm) 2.12 ± 0.39 2.20 ± 0.38 2.22 ± 0.45 0.57
P∇u/(10−4 m2/s2) 78.5 ± 21.4 22.6 ± 7.3 62.5 ± 14.0 5.1 × 10−9

n = 12; SD: standard deviation; C1, C2, C3: controllers 1 (PA), 2 (LQ, ρ = 67000), and 3 (LQ, ρ =
18100); p values: overall values, one-way repeated-measures ANOVAs; RMSE: root-mean-square
tracking error; bpm: beats per minute; P∇u: average power of changes in v

The null hypothesis was that no differences existed in the outcomes between the 3 controllers. The significance level for
hypothesis testing was set to 5% (α = 0.05). Statistical analysis was performed using the MATLAB Statistics and Machine
Learning Toolbox (The Mathworks Inc, USA).
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TABLE 4 Paired comparisons (differences) for root-mean-square
tracking error (see also Table 3, first row of data, and Figures 4A-4B)

Comparison MD (95% CI) /(bpm) p value

C1 − C2 −0.09 (−0.34,0.16) na
C1 − C3 −0.10 (−0.39,0.19) na
C3 − C2 0.02 (−0.31,0.34) na

n = 12; C1, C2, C3: controllers 1 (PA), 2 (LQ, ρ = 67 000), and 3 (LQ, ρ = 18 100);
MD: mean difference; 95% CI: 95% confidence interval for the mean difference,
with Bonferroni correction; na: not applicable (overall p value > 0.05, Table 3,
first row)

4 RESULTS

Heart rate tracking accuracy did not differ significantly between the 3 controllers C1, C2, and C3: mean RMSE/(bpm)
was 2.12, 2.20, and 2.22, respectively (Table 3, first row, overall p = 0.57; Table 4, MDs and 95% confidence intervals;
Figures 4A and 4B).

Average control signal power was significantly different between C1, C2, and C3: mean P∇u/(10−4 m2/s2) was 78.5, 22.6,
and 62.5, respectively (Table 3, second row, overall p = 5.1 × 10−9; Table 5; Figures 4C and 4D).

Paired comparisons for average control signal power (Table 5, Figure 4D) showed that mean P∇u was significantly lower
for C2 than for C1 (MD/(10−4 m2/s2) = 55.9, p = 4.1 × 10−6), and for C3 (MD/(10−4 m2/s2) = 39.9, p = 2.3 × 10−5). There
was moderate evidence that mean P∇u was lower for C3 than for C1 (MD/(10−4 m2/s2) = 16.0, p = 0.063).

A selection of test results for controllers C1, C2, and C3 are given in Figures 5, 6 , and 7, respectively. For each controller,
the results which had the lowest, median, and highest values for RMSE across all subjects are shown.

5 DISCUSSION

In this work, HR control was formulated within a stochastic optimal control framework, and, in an empirical investigation,
2 parameterisations of the optimal controller and a PA controller were compared using formal statistical analysis.

Heart rate tracking was very precise, with mean RMSE on the range 2.12 to 2.22 bpm. There was no significant difference
in RMSE between the 3 controllers, despite the very substantial and significant differences in average control signal power,
which lay in the range 22.6 to 78.5 × 10−4 m2/s2. Since, nominally, higher control signal activity would be expected to
drive down RMSE, this result may indicate that, at this very high level of tracking precision, an empirical lower bound on
the achievable RMSE is being approached. This observation is supported by a previous study where RMSE was similar to
that reported here (mean RMSE of 2.29 bpm over 32 tests), and where even higher levels of average control signal power
did not lead to any observable reduction in RMSE.12

Conversely, it was observed elsewhere that when average control signal power is lower than the levels seen in the
present study, RMSE tends to increase10 (mean P∇u = 16.0 × 10−4 m2/s2, mean RMSE = 2.96 bpm). The latter reference
differed from the present work principally in that the compensator and input sensitivity transfer functions were purposely
designed to be low-pass (see the dashed line in Figure 2A), thus explaining the lower value of P∇u, and the sensitivity
function bandwidth was relatively low (dashed line in Figure 2B), leading to higher RMSE.

The sensitivity function bandwidths for the 3 controllers tested here were substantially higher than for the low-pass
compensator mentioned above (see the −3 dB cutoff in Figure 2B), thus giving lower RMSE values: since the sensitiv-
ity function So is the transfer function from disturbance d to controlled variable y, Equation 25, higher So bandwidths
would be expected, nominally, to give progressively more suppression of disturbances and consequently lower RMSE.
That this outcome was not observed here between the 3 controllers C1, C2, and C3 lends further support to the concept of
an empirical lower bound for RMSE, as put forth above.

On the other hand, the substantial and significant differences in observed average control signal power between the 3
controllers is consistent with the shapes of the input sensitivity function Uo (Figure 2A), which is the transfer function
from disturbance d to control signal u, Equation 24. The high-frequency gain of Uo can be seen to increase on the order
C2, C3, C1, which is consistent with the increases in the respective average control signal power values of 22.6, 62.5, and
78.5 × 10−4 m2/s2 (Table 3).
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FIGURE 4 Primary outcomes RMSE and P∇u. Parts A and C: samples for all 12 subjects for the 3 controllers C1, C2, and C3 (see also
Table 3); the green lines link the sample pairs from each subject; the red horizontal bars depict mean values; ∗∗∗∗ ⇐⇒ p < 0.0001 (paired
comparisons, C1 vs C2 and C2 vs C3, in Tables 3 and 5). Parts B and D: sample differences for paired comparisons (see also Tables 4 and 5);
the mean differences (MDs, red horizontal bars) and their 95% confidence intervals (CIs, blue) are shown beside the corresponding sample
differences. Inclusion of value 0 within any 95% CI signifies a nonsignificant difference between the means, and vice versa (see also Tables 3
to 5) [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 5 Paired comparisons (differences) for average control
signal power P∇u(see also Table 3, second row of data, and
Figures 4C-4D)

Comparison MD (95% CI) /(10−4 m2/s2) p value

C1 − C2 55.9 (39.1,72.6) 4.1 × 10−6

C1 − C3 16.0 (−0.8,32.8) 0.063
C3 − C2 39.9 (25.6,54.1) 2.3 × 10−5

n = 12; C1, C2, C3: controllers 1 (PA), 2 (LQ, ρ = 67 000), and 3 (LQ, ρ = 18 100);
MD: mean difference; 95% CI: 95% confidence interval for the mean differ-
ence, with Bonferroni correction; p value: paired comparison with Bonferroni
correction
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(A) Subject S05, lowest RMSE of 1.41 bpm, 
P u= 44.7×10 4 m2/s2. HR = 151.5±10 bpm.
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(B) Subject S08, median RMSE of 1.98 bpm,
P u = 65.9×10 4 m2/s2. HR = 148.4±10 bpm.
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(C) Subject S02, highest RMSE of 2.70 bpm,
P u = 120.7× 10 4 m2/s2. HR =147.6±10 bpm.

FIGURE 5 Results with C1 with the lowest (A), median (B), and highest (C) values for RMSE. In the upper part of each figure, HR* is the
heart-rate reference, HRnom is the target nominal heart-rate response (simulated), and HR is the measured heart rate. In the lower graphs, v is
the control signal, ie, the treadmill speed command. The thick red horizontal bars mark the outcome evaluation interval
300 ≤ t ≤ 1800 seconds. RMSE, root-mean-square tracking error (Equation 8); P∇u, average control signal power (Equation 9) [Colour figure
can be viewed at wileyonlinelibrary.com]

The transfer functions of the 3 controllers C1, C2, and C3 were purposely constrained here only to be causal and not
strictly causal: see the structure of the general time-domain expression for C(q−1) in Equation 13. This corresponds, in
the frequency domain, to a transfer function C(z−1) that is merely proper when expressed in z and not strictly proper.
Consequently, the gain of C is not of low-pass character and does not roll-off to zero at high frequency. This non–low-pass
frequency-domain behaviour of C carries over to the input sensitivity function Uo (see Equation 24), whence the observed
non–low-pass shape of the 3 corresponding functions |Uo| in Figure 2A.

This design choice, and the resultant frequency-domain characteristics of the key transfer functions, gives a relatively
dynamic overall control system performance with a very low RMSE but relatively high average control signal power. This
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(A) Subject S07, lowest RMSE of 1.81 bpm,
P u = 17.2 10 4 m2/s2. HR = 151.5
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(B) Subject S02, median RMSE of 2.17 bpm,
P u = 20.0 10 4 m2/s2. HR 10 bpm.= 147.6
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(C) Subject S09, highest RMSE of 3.06 bpm,
P u = 38.7 10 4 m2/s2. HR 10 bpm.= 143.8

10 bpm.

FIGURE 6 Results with C2 with the lowest (A), median (B), and highest (C) values for RMSE. In the upper part of each figure, HR* is the
heart-rate reference, HRnom is the target nominal heart-rate response (simulated), and HR is the measured heart rate. In the lower graphs, v is
the control signal, ie, the treadmill speed command. The thick red horizontal bars mark the outcome evaluation interval
300 ≤ t ≤ 1800 seconds. RMSE, root-mean-square tracking error (Equation 8); P∇u, average control signal power (Equation 9) [Colour figure
can be viewed at wileyonlinelibrary.com]

is because the feedback loop retains the capability of generating corrective control signals across the whole range of the
broad-spectrum HRV disturbance, by virtue of the absence of roll-off in |Uo| (Figure 2A).

As noted above, constraining the controller and the input sensitivity function to be low-pass gives a much smoother
control signal but higher RMSE.10 The next logical step in the further development of the stochastic optimal control
formulation of HR control would therefore be to extend the theory to achieve these characteristics, as they may be desirable
in some application settings. Technically, this can be achieved by making the compensator transfer function (4) strictly
causal, with the additional factor q−1 in the numerator along with the polynomial G(q−1). Perusal of the characteristic
Equation 10 reveals that at least 1 additional closed-loop pole, and at least 1 additional pole in C, would be required for a
unique, optimal, and minimal-degree solution. This, in turn, can be obtained by modifying the nominal plant structure
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(A) Subject S12, lowest RMSE of 1.68 bpm,
P u = 56.8×10 4 m2/s2 = 146.9±10 bpm.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
time/(s)

80

100

120

140

160

180

he
ar

t r
at

e/
(b

pm
)

HR* HR HR
nom

0 200 400 600 800 1000 1200 1400 1600 1800 2000

time/(s)

0

1

2

3

4

5

sp
ee

d/
(m

/s
) v

(B) Subject S10, median RMSE of 2.25 bpm,
P u = 57.4×10 4 m2/s2. HR. HR = 148.4±10 bpm.
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(C) Subject S06, highest RMSE of 3.40 bpm,
P u = 78.5×10 4 m2/s2. HR = 145.4±10 bpm.

FIGURE 7 Results with C3 with the lowest (A), median (B), and highest (C) values for RMSE. In the upper part of each figure, HR* is the
heart-rate reference, HRnom is the target nominal heart-rate response (simulated), and HR is the measured heart rate. In the lower graphs, v is
the control signal, ie, the treadmill speed command. The thick red horizontal bars mark the outcome evaluation interval
300 ≤ t ≤ 1800 seconds. RMSE, root-mean-square tracking error (Equation 8); P∇u, average control signal power (Equation 9) [Colour figure
can be viewed at wileyonlinelibrary.com]

in Equation 1 to include a zero in the disturbance transfer function or by introducing a measurement noise term into the
model13; the latter approach would lead to an additional spectral factorisation and to 2 additional closed-loop poles, thus
giving faster high-frequency roll-off than would result from just 1 additional pole.

6 CONCLUSIONS

The results of this study show that the stochastic optimal control framework provides a suitable method for attainment of
highly accurate, stable, and robust control of HR during treadmill exercise. A single controller parameter, ie, the control
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weighting factor ρ, can be used to set an appropriate balance between regulation accuracy and the intensity of the control
signal. Moreover, the control weighting ρhas a clear and systematic influence on the shape of the input sensitivity function
Uo. These features allow the physiological HRV disturbance to be dealt with appropriately and help ensure that changes
in the control variable (treadmill speed) will be acceptable to the runner.

The results further demonstrate that a simple and approximate model of HR dynamics, used for the analytical design
of an LTI controller of simple structure, can be sufficient for a high-quality HR control performance.

Future work should extend the stochastic optimal control problem formulation to encompass low-pass compensator
and input sensitivity characteristics. It is also important to perform a sensitivity study to examine variations in the control
weighting factor ρ and the corresponding trade-offs between performance and stability. The present study included a quite
homogeneous group of male and predominantly young subjects. Further research is warranted to establish whether the
control approach is robust in performance and stability when applied to other groups of subjects (eg, female subjects and
other age groups).
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