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ABSTRACT

Based on patent data and industry specific energy prices for 18 OECD countries
over 30 years we investigate on an industry level the impact of energy prices on
green innovation activities. Our econometric models show that energy prices and
green innovation activities are positively related and that energy prices have a
significantly positive impact on the ratio of green innovations to non-green in-
novations. More concretely, our main model shows that a 10% increase of the
average energy prices over the previous five years results in a 3.4% and 4.8%
increase of the number of green innovations and the ratio of green innovations to
non-green innovations, respectively. We also find that the impact of energy prices
increases with an increasing lag between energy prices and innovation activities.
Robustness tests confirm the main results.
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1. INTRODUCTION

Despite the fact that climate change should ideally increase the demand for green tech-
nologies, firms still have little incentive to invest in green technologies as there is a ‘double exter-
nality problem’ (see, e.g., Beise and Rennings 2005, Faber and Frenken 2009, Hall and Helmers
2011). Firstly, financial market imperfections that are normally associated with innovation activities
(see Arrow 1962, p. 172) are even more pronounced for green innovation. Green innovations carry
a large technical risk as they often imply investing in technologies that lie beyond the firm’s tra-
ditional technological scope. Additional commercial uncertainty arises from unclear market devel-
opments (Aghion et al. 2009). Hence, potential external investors are hardly willing to invest in
such projects and financial markets are usually not ready to finance such risky technological in-
vestments. As a consequence, access to external capital to finance green innovation is likely to be
constrained. Secondly, because the greatest benefits from green inventions are likely to be public
rather than private, the customers’ willingness to pay for these innovations is low. In line with this
literature, recent studies have shown at the firm and industry levels that green innovations currently
have lower returns than non-green innovations (see Marin 2014, Soltmann et al. 2014). These results
indicate that—given the current level of green promotion—free market incentives alone are not
sufficient to allow the green innovation activities of industries to rise considerably. However, tech-
nological innovations are needed to solve environmental problems. “Without significant technolog-
ical development of both existing low-carbon technologies and new ones, climate change is unlikely
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1. Aghion et al. 2012 separated the tax component of the energy price and found that tax fluctuation show a similar
effect as energy price fluctuation (including taxes) on green inventions in the car industry. For this paper we also see that
energy prices are highly correlated with taxes. Industry specific taxes and prices for the three products electricity, light fuel
oil, and natural gas, respectively, show a correlation coefficient of 0.72. Unfortunately, the large number of missing values
with respect to the tax data for the different energy products does not allow for an econometric identification of the pure
tax effect.

to be limited to anything like 2�C” (see Helm 2012, p. 213). Accordingly, policy intervention is
required to stimulate green innovation activities.

This paper focuses on energy prices and investigates whether energy prices increase the
probability of producing green inventions. More concretely, we investigate whether the effects of
energy prices are different for ‘green’ inventions than for ‘non-green’ inventions. The fluctuation
of energy prices has a price component and a policy component. As the price component is primarily
driven by international market prices and we control for between-country variation, the remaining
variation in the energy price in our model is mainly due to energy taxes. Consequently, energy
prices can be interpreted as an environmental policy instrument (see Aghion et al. 2012 for a similar
argumentation). Nevertheless, as we cannot fully capture the price component, the econometric
results of this paper cannot be interpreted as a ‘pure’ policy effect. Our results refer to fluctuation
of the end-use price including taxes.1

Empirical research linking environmental policy and innovation is related to a small but
growing literature. A first group of studies uses pollution abatement control expenditures (PACE)
as a proxy for environmental regulation stringency. Brunnermeier and Cohen (2003) found for the
US that PACE is positively related to environmental innovation. Based on a data set that includes
17 countries Lanjouw and Mody (1996) also found a positive correlation between PACE and en-
vironmental innovation. However, the use of PACE as a measure for policy stringency in a cross-
country study is questionable due to the heterogeneity in the definitions and sampling strategies
(see Johnstone et al. 2012, p. 2161). To overcome this problem Johnstone et al. (2012) used survey
data. Based on this data they again found that environmental innovation is positively affected by
environmental policy stringency.

Most other studies overcome the problem of comparability by using energy prices as proxy
for environmental regulation. Most of them focus on a single industry. Aghion et al. (2012) inves-
tigated the significance of energy prices for technological change by looking at the car industry
using patent data between 1978 and 2007. They found that higher energy prices increase the pro-
pensity of ‘clean’ innovation in the car industry. Moreover they stated that the price effect is stronger
for firms with a large stock of ‘dirty’ patents. Newell et al. (1999) looked at the level of product
characteristics in the air-conditioning industry and found that energy prices had an observable effect
on energetic features of the products offered for sale. Lanzi and Sue Wing (2011) found a positive
relationship between energy prices and innovations in renewable technologies in the energy sector
of 23 countries.

Rather than focusing on a single industry, Popp (2002) focused on a single country. He
looked at 11 different technologies including supply (e.g. solar energy, fuel cells) and demand
technologies (e.g. recovery of waste heat for energy, heat pumps) for the USA and found that energy
prices and the existing knowledge stock have a strong and significant positive effect on innovation.

It is unclear in all these studies whether the results also hold for other industries and/or
countries. Only a few studies are based on data for more than one country and more than one
industry. Johnstone et al. (2010) analyzed how different policies (among others energy prices) affect
innovation for five different renewable energy technologies. Verdolini and Galeotti (2011) inves-
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2. The OECD Indicator of Environmental Technologies distinguishes seven environmental areas: (a) general environ-
mental management; (b) energy generation from renewable and non-fossil sources; (c) combustion technologies with mit-
igation potential; (d) technologies specific to climate change mitigation; (e) technologies with potential or indirect contri-
bution to emission mitigation; (f) emission abatement and fuel efficiency in transportation; and, (g) energy efficiency in
buildings and lighting. If an invention can be assigned to one of these sub-groups (a to g), it is counted as a green invention;
otherwise it is counted as a non-green invention.

3. As the policy effects may simultaneously interact with other country-specific shocks, (e.g., macroeconomic shocks)
it is not possible to make a clear prediction about the direction of the bias that is captured by the country-specific time fixed
effects.

tigated the impact of energy prices on technological innovation (12 technologies like in Popp 2002)
for a panel of 17 countries and found a positive sign. However, as both studies are based on data
that is either aggregated to the country-level or technology-level, there is a concern that there may
be other country-specific shocks correlated with both innovation and the energy price (see Aghion
et al. 2012, p. 5).

This study contributes to the existing literature primarily in two respects. First, the breadth
of our data set allows us to draw much more general conclusions than was possible in previous
studies, which have focused on single industries or countries. This enables us to generate an in-
dustry-level data set that covers the whole manufacturing sector (grouped into 10 industries), the
most important countries for green innovation (18 OECD countries that are responsible for more
than 95% of all green patents and total patents worldwide) and this over a period of 30 years.
Secondly, in contrast to previous studies, we greatly reduce the probability of omitted variable bias,
which makes our results more reliable.

In line with previous studies, we use patent data to identify green and non-green inventions
according to the OECD Indicator of Environmental Technologies (see OECD 2012),2 however, we
switch from the technology level to the industry level by using the Schmoch et al. (2003) concor-
dance scheme. In contrast to studies that stay on the technology-level, this approach allows us to
include industry-level control variables (e.g., capital and number of employees). Furthermore, we
reduce the potential problem of omitted variable bias by controlling for industry and country fixed
effects. Additionally, we calculate industry specific energy prices, which allow us to include coun-
try-specific time fixed effects. Compared with previous studies on a more aggregated level (i.e.
country level), country-specific shocks that are correlated with both innovation and the energy prices
(see Aghion et al. 2012, p.5) do not bias the results in this particular study. An important concern
here is that national governments may have introduced policies directly supporting green innovation
(such as research subsidies) simultaneously with higher energy taxes. In such a scenario, not con-
trolling for country-specific attributes would tend to bias estimates for the price effect on innova-
tion.3

With respect to our main variable, green inventions, we find that energy prices stimulate
both the level of green invention as well as the share of green invention. In our model, a 10%
increase in the average energy prices over the previous five years results in a 3.4% and 4.8% increase
of the number of green inventions and the ratio of green inventions to non-green inventions, re-
spectively. Knowledge about potential political instruments to stimulate invention in this area is of
great importance. This study shows that energy prices may serve as such an instrument. An increase
in energy prices may stimulate the building of a green knowledge stock that: (a) would help to
achieve a country’s climate targets; and, (b) may help to establish a cleantech market for which
long-term growth is predicted.
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2. CONCEPTUAL BACKGROUND AND HYPOTHESES

The idea that an increase in the relative price of a production factor will direct innovation
efforts towards technologies that are less intensive in the production factor becoming more expen-
sive can be attributed to Hicks (1932, as quoted e.g. in Binswanger et al. 1978): “A change in the
relative prices of the factors of production is itself a spur to innovation, and to innovation of a
particular kind - directed to economizing the use of a factor which has become relatively expensive.”

This intuitively appealing assertion has been known as the induced innovation hypothesis.
Subsequent research attempted to provide microeconomic foundations for this claim and to assess
its relevance for traditional welfare economics (Binswanger et al. 1978, ch. 4). Induced innovation
is generally thought to exacerbate the effects of externalities not properly taken into account. In
particular, the exploitation of fossil fuels has undesirable side effects as CO2 emissions negatively
affect global climate. Two harmful mechanisms are at work as a result of not having adequately
priced these energy resources (by failing to take into consideration their negative externalities, e.g.
by charging a CO2 tax): price signals not only affect entrepreneurs’ choice of input combinations,
given the production techniques currently available; but they also affect their choice of which
production technologies to develop for future use.

Taking the opposite perspective, it can be argued that taking induced innovation into
account leads to market-based policies that tackle climate change more efficiently (or, more pre-
cisely, in a less costly manner). This is because such policies not only motivate profit-seeking firms
to switch to less energy-demanding technologies, which are currently available, but these policies
will induce firms to strengthen their efforts to develop such technologies for the future (see, e.g.,
Carraro and Siniscalco (1994) for a consideration of this point).

In line with the induced innovation hypothesis, Porter and van der Linde (1995) go as far
as to claim that well-designed environmental regulation may bring about a net benefit to firms
subject to such regulation. According to their argument, technological advances in process and
product design triggered by such regulation often result not only in a decrease in harmful emissions
(or other undesirable ecological consequences), but also in new modes of production which are
altogether more efficient, bringing about competitive gains that offset the initial private costs of
complying with environmental policy. A controversial debate has subsequently been triggered about
the general validity of their claims, which has become to be known as the Porter hypothesis. While
we do not provide an empirical test for it in the present study, it should be noted that the Porter
hypothesis implies that regulation triggers innovation. Thus, finding support for induced innovation
can be regarded as a necessary but not sufficient condition for validating the claims made by Porter
and van der Linde.

Subsequent theoretical research based on the Porter hypotheses supports what is known
as the “weak” version of the Porter hypotheses, i.e. that energy prices are positively related with
green innovation. Mohr (2002) showed that environmental regulation, like higher energy prices,
are encouraging firms to invest in clean technologies. Also Mohr and Saha (2008) showed that
environmental taxes trigger green innovation. Schmutzler (2001) chose an owner-manager model
and confirmed that environmental taxes lead to innovation activities if some restrictive conditions
are fulfilled. Hence, we formulate the following hypothesis:

H1: Energy prices are positively related to the number of ‘green’ innovations (i.e., the level of
green technology inventions).

Econometric estimations (see, e.g., Popp 2002 (for different technologies), Aghion et al.
2012 (for the car industry)) confirm the fact that energy prices are positively related with the green
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4. Horbach et al. (2012) found that cost savings are an important driver for green innovations. This implies that higher
energy prices stimulate green innovation.

5. In some cases an increase in energy prices could lead firms to try to reduce costs by increasing innovation activities
in technologies other than those increasing energy efficiency. However, even when the total effect of energy prices on non-
green innovation may be positive (unlike suggested by Aghion et al. 2012), the direction of the price effect on the share of
green technologies does not have to be positive as well, as on average of all companies the positive impact on green
innovation proposed in hypothesis 1 may be larger than the impact on non-green innovation.

6. While there are energy related patent classifications included in all these categories, some of the categories may be
less related to energy prices than others (e.g., technologies specific to emission mitigation). To deal with this fact we
additionally estimated our main model separately for each of the seven categories (see Table A.8 and discussion in Section
5.3).

innovation activities. Van Leeuwen and Mohnen (2013) found strong evidence that energy prices
are positively related with green innovation investments.4

While the effect of energy prices on the incentive to invent green technologies is certainly
relevant to policy, their effect on the share of inventions (i.e. a relative measure of patenting in
green technologies in relation to other technologies) is also of interest because it can imply a
diversion from other R&D activities. In line with theoretical models of green innovation (see e.g.
Aghion et al. 2012) we expect a negative effect of energy prices on non-green innovation.5 As a
consequence of this and in combination with the positive effect of energy prices on green innovation
proposed in hypothesis 1, the energy price effect on the share should be positive. Hence our second
hypothesis is as follows:

H2: Energy prices are positively related to the number of green innovations relative to non-green
innovations (i.e., the share of green technology inventions).

3. DESCRIPTION OF THE DATA

3.1 Measurement of Green Inventions Based on Patent Statistics

We use patents in order to measure the green invention activities of an industry. Patent
statistics have many disadvantages in measuring innovation output (see Aghion et al. 2012, Griliches
1990). However, despite the fact that not all innovations are patentable and smaller firms are more
reluctant to patent than larger firms, patent counts are still the best available source of data on
innovation activities as it is readily available and comparable across countries (Johnstone et al.
2010). This is especially true for green technological activities, since the OECD (2012) provides a
definition of green technologies based on the patent classification.

The patent information in this paper has been gathered in cooperation with the Swiss
Federal Institute of Intellectual Property (IPI). Green patents are a sub-group of patents that are
selected according to the OECD Indicator of Environmental Technologies (see OECD 2012). Based
on the International Patent Classification, the OECD definition distinguishes seven environmental
areas, i.e. (a) general environmental management, (b) energy generation from renewable and non-
fossil sources, (c) combustion technologies with mitigation potential, (d) technologies specific to
climate change mitigation, (e) technologies with potential or indirect contribution to emission mit-
igation, (f) emission abatement and fuel efficiency in transportation, and (g) energy efficiency in
buildings and lighting.6
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7. We may also have used the inventor’s address instead. However, there may be a risk of distorting the analysis,
especially for smaller countries, because the inventor may not live in the country where the invention occurs. Conversely,
by using the applicant’s address the analysis may be biased by patent applications from multinationals for which the country
of residence of the applicant possibly differs from the country where the invention occurred. In order to investigate if there
are considerable differences, we took both the inventor’s information and the applicant’s information for Germany. In fact,
we did not see any significant differences between the analysis based on the inventor’s and applicant’s address for that
country.

8. Lybbert and Zolas (2012), suggest new methods for constructing concordances. In comparing different concordance,
they confirmed that on a relatively coarse level (e.g., 2 digit), the Schmoch et al. (2003) concordance enable a useful
empirical policy analysis.

9. The concordance scheme is based on patent classification and also the OECD Indicator of Environmental Technologies
(see OECD 2012) is based on the patent classification, hence, we can easily distinguish green from non-green patents on
the industry level. This way we can identify for each industry class the total number of green and non-green patents.

In order to identify our proxy for the green knowledge output of an industry, further
specifications and clarifications have to be made:

(a) In order to assign patents to countries, the applicant’s country of residence or the
inventor’s country of residence may be chosen. We assigned patents according to the
applicant’s address. Since only those inventions were selected for which at least one
PCT (Patent Cooperation Treaty) application was filed, the applicant’s address was
generally available.7 Patent applications are usually costly. Moreover, the fees for an
international patent application under the PCT are generally higher than those for a
national or regional patent application. It seems likely that companies only use the
PCT application route if they expect the inventions in question to have a significant
commercial potential on the international level.

(b) We collected inventions (patent families) rather than single patents. The patent data
stem from the EPO (European Patent Offices) World Patent Statistical database (PATS-
TAT). Patents were grouped into patent families according to the PATSTAT procedure
(INPADOC). This approach has the advantage that distortions caused by different
national granting procedures and different application attitudes (USA: greater number
of single applications for one invention compared to Europe) are mitigated.

(c) Most of our model variables are classified by industrial sectors and not according to
the IPC technology classes. Schmoch et al. (2003) developed a concordance scheme
that links technology fields of the patent statistics to industry classes.8 Based on this
concordance table we thus recoded our invention data into 10 manufacturing industry
classes at the NACE two-digit level for which also energy price data were available.9

In comparison with invention data at the firm level, aggregating inventions on an
industry level should reduce potential problems with invention cycles within a firm.

(d) Our data set includes invention data from 18 countries (Australia, Austria, Belgium,
Canada, Denmark, Finland, France, Germany, Ireland, Italy, Japan, Korea, the Neth-
erlands, Spain, Sweden, Switzerland, the United Kingdom and the United States).
These 18 countries account for more than 95% of all ‘green’ and ‘non-green’ inven-
tions worldwide. The data set includes 10 industries that capture the whole manufac-
turing sector (chemicals; food and tobacco; machinery; basic metals; non-metallic
minerals; paper, pulp and print; textile and leather; transport equipment; wood and
wood products; non-specified industry). The patent data refer to the period 1980–
2009.
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Figure 1: Development of Green Inventions Worldwide, 1980–2009

Source: Own calculations.

Figure 1 shows the aggregated development of green inventions over time. In the beginning
of our sample period, only a few green inventions were registered. The number of green inventions
remained very low during the following ten years. Between 1985 and 1995, the number slightly
increased. The increase was, however, not disproportionally high compared with non-green inven-
tions. A sharp increase in the number of green inventions can be observed since 1995. In 2009,
29,444 green inventions were protected worldwide. Due to generally low invention activity, the
share of green inventions was quite instable at the beginning of our sample period and later stabilizes
between at 6–8%. A disproportional increase in green inventions can be observed after 2000. By
2009, the overall share of green inventions had increased to 11.6%.

Detailed descriptive statistics for our disaggregated invention data are presented in Table
1. Nearly half of all green inventions are patented in the ‘machinery’ sector (48.8%). Furthermore,
a considerable share is invented in the two industries ‘chemicals’ (24.3%) and ‘transport equipment’
(16.3%). The industry ‘transport equipment’ (34.8%) is at the same time the most green-intensive
industry, followed by the two industries ‘basic metals’ (13.6%) and ‘non-metallic minerals’ (11.0%).

On the country level (see Table 1) we see larger shares of non-green inventions being
generated by larger countries. The USA, Japan, and Germany hold 38.4%, 14.8%, and 12.8%
respectively.

Concerning the respective shares in total green inventions (see column 4 in Table 1), we
see a different picture. Although the USA (28.8%), Japan (21.4%), and Germany (17.9%) also show
the greatest green shares, the country rankings change further down the line.

The last column in Table 1 shows the ratio of green inventions to non-green inventions.
Japan (11.7%), Germany (11.3%) and Denmark (11.0%) show the highest degree of specialization
in green invention activities, followed by Canada (10.5%) and Austria (9.7%). In sum, we see from
these descriptive statistics that green invention activities show a great heterogeneity across industries
and across countries.

3.2 OECD STAN Data

In order to control for important industry characteristics beside their stock of knowledge,
we accessed the OECD STAN database (OECD 2011). We used information on labor input (total
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Table 1: Number of Green and Non-green Inventions by Industry and Country

Period 1980–2009

Type of invention Non-green Green
Green vs.
non-green

Number of
non-green
inventions

Relative share
in total non-

green
inventions

Number of
green

inventions

Relative share
in total green

inventions

Ratio of green
inventions to

non-green
inventions

Industry
Chemicals 1172396 30.7% 74774 24.3% 6.4%
Food and tobacco 57592 1.5% 2288 0.7% 4.0%
Machinery 2051964 53.7% 150514 48.8% 7.3%
Basic metals 51632 1.3% 7032 2.3% 13.6%
Non-metallic minerals 90085 2.4% 9900 3.2% 11.0%
Paper, pulp and print 23549 0.6% 1429 0.5% 6.1%
Textile and leather 28032 0.7% 948 0.3% 3.4%
Transport equipment 144272 3.8% 50200 16.3% 34.8%
Wood and wood products 5193 0.1% 189 0.1% 3.6%
Non-specified industry 189730 5.0% 10046 3.3% 5.3%

Country
Australia 62303 1.6% 5701 1.8% 9.2%
Austria 35719 0.9% 3466 1.1% 9.7%
Belgium 40310 1.1% 2586 0.8% 6.4%
Canada 85859 2.2% 8978 2.9% 10.5%
Switzerland 113971 3.0% 5995 1.9% 5.3%
Germany 489542 12.8% 55284 17.9% 11.3%
Denmark 38724 1.0% 4254 1.4% 11.0%
Spain 28392 0.7% 2520 0.8% 8.9%
Finland 50888 1.3% 3439 1.1% 6.8%
France 202914 5.3% 17071 5.5% 8.4%
United Kingdom 226064 5.9% 15076 4.9% 6.7%
Ireland 12421 0.3% 637 0.2% 5.1%
Italy 65896 1.7% 4639 1.5% 7.0%
Japan 564861 14.8% 65844 21.4% 11.7%
Korea 86305 2.3% 7267 2.4% 8.4%
Netherlands 130798 3.4% 8789 2.9% 6.7%
Sweden 110091 2.9% 6847 2.2% 6.2%
United States 1469387 38.4% 88927 28.8% 6.1%
Total 3814445 100% 307320 100% 8.1%

Notes: Data is based on own calculations; these statistics are based on 30 cross-sections, 18 countries and 10 industries
(total of 5,400 observations); the relative share in total green inventions is calculated as the share of an industry’s/country’s
number of green inventions relative to the number of all green inventions in our sample (sum of green inventions over all
industries/countries in the sample); the ratio of green inventions to non-green inventions is defined as an industry’s/ country’s
ratio of green inventions relative to its number of non-green inventions.

10. For the descriptive statistics of variables from the STAN data and other model variables see also Table 2.

employment) and the capital input (gross fixed capital formation, volumes at current prices) of
industries relevant for our estimations.10

3.3 IEA Energy Data

To analyse the impact of energy prices on invention, we use information on energy prices
available from the International Energy Agency’s (IEA) Energy Prices and Taxes Statistics (IEA
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Figure 2: Nominal Energy Prices for Electricity, Light Fuel Oil, Natural Gas, Steam Coal
and Coking Coal (per tonne of oil equivalent (toe); PPP adjusted) by Year, 1978–
2009

Source: IEA (2012a).

11. Tonne of oil equivalent; unit of energy for the practical expression of energy quantities (e.g., 1 MWh = 0.086 toe).
12. We refrain from producing estimates based on taxes alone (instead of total end-use prices including taxes) as the

main explanatory variable. It is not clear why changes in taxes alone should drive innovation behavior, rather than changes
in total prices (imagine a petroleum tax increase of 5 % and a contemporaneously decrease of the crude oil prices of 6%,
ceteris paribus). Moreover, tax rates are either not available or zero for a large number of energy products and observations
in our data, which makes the estimation of tax elasticities not only imprecise but also questionable.

13. The IEA also collects price information for other oil products, such as motor gasoline. However, as the number of
observations is very low for these variables, we could not use this price information to construct our industry specific energy
price. Our energy price should nevertheless be representative, as the energy products that could be taken into account
(electricity, light fuel oil, natural gas and different coal products) make up more than 70% of total energy consumption (on
average over all industries and the whole time period; see Figure 4). This figure is quite impressive, as the remaining 30%
do not only include motor gasoline, but also the consumption of energy products for which no price information is collected,
such as energy from biogases or waste heat.

2012a) for all 18 countries that are included in our sample. The price information is available for
different energy products on a country level from 1978 onwards. To get internationally comparable
information, we use total end-use prices (per toe11 including taxes) for the manufacturing sector in
USD (PPP).12 This information is available for different energy products, such as electricity, light
fuel oil,13 natural gas and different coal products. Figure 2 shows the development of the energy
prices since 1978. We see a parallel development of the energy prices of the respective sources.
Several of these products show a sharp increase at the beginning of the 1980s and again from 2000
onwards. While the price of light fuel oil remarkably dropped in 2008, electricity prices increased.
Electricity is the most expensive energy source at all times, followed by light fuel oil, natural gas,
steam coal, and coking coal. With the exception of electricity, energy prices have doubled since
2000.
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14. The appendix includes some additional notions and the results of related robustness checks on the construction of
the composite industry-specific energy prices.

At the country level (see Figure 3), we see that electricity is most expensive in Italy,
followed by Japan, Korea, and Spain. Light fuel oil is most expensive in Korea followed by Italy,
Spain, and Ireland. Natural gas is most expensive in Korea, followed by Sweden, Denmark, and
Japan. However, the meaning of such a descriptive comparison of these prices is very limited, since
prices are not available for all countries for all times. Hence, the average might be biased due to
the fact that energy prices are only available at later times. This is the case for Sweden in terms of
natural gas, for example.

Besides energy prices, the IEA collects data on consumption of the different energy prod-
ucts (in ktoe) on the industry level. This information is available for 10 different industries of the
manufacturing sector and comes from the IEA World Energy Statistics and Balances (IEA 2012b).
This allows us to calculate the relative importance of a certain energy product compared with other
products on the industry level. Electricity (35%) followed by other products (28%) and natural gas
(23%) are the most important sources of energy. Light fuel oil, steam coal and coking coal are of
minor importance in the countries we looked at (see Figure 4). If we compare natural gas, light
fuel oil and electricity on an industry level across all countries and all times, we see that in most
industries, electricity is the most important energy source (see Figure 5). Only in the non-metallic
minerals industry natural gas is more important. Natural gas is also relatively important in chemicals,
food and tobacco, and in unspecified industries.

To get industry-specific energy prices, we multiply the energy prices with their relative
importance within the industry.14 The industry-specific energy price for an industry j, in country i
at time t is defined as follows:

Energy_price = w_E ∗ ln(Energy_price ), (1)∑ijt ijtk itk
k∈S

where

Energy_useijtkw_E = , (2)ijtk Energy_use∑ ijtl
l∈S

and

S = {electricity, light fueloil, naturalgas, steamcoal, cokingcoal}. (3)

The information on energy consumption as well as on energy prices is available for electricity, light
fuel oil, natural gas, steam coal, and coking coal. However, due to missing values for some of the
price variables, the industry-specific prices used in our main model are based on the three products
electricity, light fuel oil (LFO) and natural gas, i.e. S includes only electricity, LFO, and natural
gas. Besides the fact that there are fewer missing values for these three products than for the other
products, these are also the three products that show the largest relative importance in our sample
(see Figure 4). However, we test the sensitivity of our results to prices that are based on other
baskets of energy products as well (see Table A.3).
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Figure 3: Average Energy Prices (per tonne of oil equivalent; PPP adjusted) for the Three
Most Used Energy Products Electricity, Light Fuel Oil and Natural Gas (see
Figure 4) by Country, 1978–2009

Notes: As the different price information is not available for all countries over the whole sample period, some of the figures
are not directly comparable across countries and products. Natural gas prices for Sweden are for example only available
for the years 2007–2009, and are thus not directly comparable with the respective prices for light fuel oil that are available
for the whole sample period. Other prices averages with few observations are: Australian LFO price (6 years), Danish
natural gas price (4 years) and Korean natural gas price (6 years); Source: IEA (2012a).

Figure 4: Share of Total Energy Consumption by Product, 1978–2009

Other products: e.g., energy from biogas or heat.
Source: IEA (2012b).
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Figure 5: Relative Share of Top Three Energy Products by Industry, 1978–2009

Source: IEA (2012b).

15. Given that capital flow also has a size component, we measure capital as the ratio of capital/labor. With this for-
mulation we lower the multi-collinearity between our measures for labor and capital in our main model. We thank an
anonymous referee for this suggestion.

3.4 Combining the Data

As only very few invention counts could be registered in the years before 1980, we restrict
the sample used for regression analysis to the years 1980–2009. Accordingly, the final data set
includes 18 countries, 10 industry classes, and a period of 30 years. This yields a data set of 5,400
observations. Because of missing values for the other model variables, the number of observations
that could be used for econometric estimations is significantly lower.

4. EMPIRICAL TEST OF HYPOTHESES

As stated by Jaffe and Palmer (1997), it is very difficult to specify a theoretically satisfying
structural or reduced-form innovation equation at the industry level. Hence, we follow the frame-
work of a knowledge production function as formulated by Griliches (1979) and also applied by
Jaffe (1986, 1989). Similar to Jaffe (1989), we look at innovations (i.e. patentable inventions) as
the outcome variable, but we differ in two respects: first we investigate the industry level; and
secondly, we can distinguish between different types of knowledge inputs. Our dependent variable
is Green_inventions, which is measured by the number of green patent families (inventions). Firm
labor and capital are two important determinants. Specifically, we operationalize labor (L) as the
industries’ total number of employees, and the gross fixed capital formation per employee is used
to proxy capital intensity (K/L).15 Ideally, one would use data on the capital stock instead of capital
formation. Unfortunately, this information is only available for a few countries in the STAN data-
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16. Popp (2002) finds empirical evidence that failing to properly take into account measures for existing knowledge
stocks may severely bias estimates of the innovation inducing effect of energy prices.

17. Due to the low number of patents before 1980, we restricted our sample period to the years 1980–2009. However,
we use patent applications between 1975 and 1980 in order to calculate pre-sample invention stocks. The initial value of
the invention stock is set at Green_stock1975/(d + g), where g is the pre-1975 growth in invention stock that is assumed to
be 15%.

18. Alternative estimates that either exclude observations where the dependent variable takes a value of 0 or are based
on count data models in order to avoid such a transformation are discussed in the robustness section.

19. More concretely, we control for policies that are industry specific and do not change across time. These fixed effects
do not control for industry specific policy shocks.

base. We thus use a flow variable as a proxy for capital intensity. Both variables, L and K/L, should
be positively related with invention activity.

Besides the standard input factors, the current flow of green inventions should also be
affected by an industry’s stock of knowledge. To capture this effect, we augment our specification
with a variable that measures an industry’s stock in green inventions (Green_stock).16 Following
Cockburn and Griliches (1988) and Aghion et al. (2012), the invention stock is calculated using
the perpetual inventory method. Following this method, the stock is defined as

Green_stock = (1– d)Green_stock + Green_inventions , (3)ijt ijt–1 ijt

where d is the depreciation rate of R&D capital.17 According to most of the literature, we take d to
be equal to 15% (see Keller 2002, Hall et al. 2005). However, we test the sensitivity of our results
to other depreciation rates as well (see Table A.5). To capture potential effects of available knowl-
edge in non-green technologies, we also control for the stocks of inventions that are not classified
as green (Non_green_stock). The stock of non-green inventions is calculated in the same way as
the stock of green inventions. In line with previous literature (see, e.g., Aghion et al. 2012, Stucki
and Woerter 2012) we expect that both green-specific knowledge and non-green knowledge do
stimulate current green invention activities.

Finally, to test the impact of energy prices, a variable that measures the industry-specific
energy prices (Energy_price) is included in this innovation model. The specification of our model
is given by:

ln(Green_inventions ) = ln(A) + αln(L ) + βln(K/L ) + φln(Green_stock )ijt ijt–1 ijt–1 ijt–1
(4)

+ kln(Non_green_stock ) + ϕln(Energy_price ) + l + g + e ,ijt–1 ijt–1 it ij ijt

where φ and k are the coefficients of knowledge stocks, ϕ is the coefficient of energy prices, l and
g are two dimensions of fixed effects (see below), and e is the stochastic error term (see Table 2
for variable definition). As invention variables may contain a value of zero, we used
ln(1 + inventions) to avoid problems with the logarithm (see Wooldridge 2002, p. 185).18 To deal
with the potential problem of reverse causality the independent variables are introduced with a lag
of one year.

To test the robustness of the price effect we use different time lags for energy prices (2–
5 year lag), we construct a weighted average of past prices as proposed by Popp (2002) and we
calculate a moving average of the energy prices over the previous five years.

To control for correlated unobserved heterogeneity, we include country-specific industry
fixed effects (g). This way we control for the general policy climate of countries in terms of industry-
specific policy measures.19 Furthermore, to reduce the risk of an omitted variable bias from country



54 / The Energy Journal

Copyright � 2016 by the IAEE. All rights reserved.

T
ab

le
2:

V
ar

ia
bl

e
D

efi
ni

ti
on

an
d

M
ea

su
re

m
en

t

V
ar

ia
bl

e
D

efi
ni

tio
n/

m
ea

su
re

m
en

t
So

ur
ce

M
ea

n
St

d.
D

ev
.

M
in

M
ax

D
ep

en
de

nt
va

ri
ab

le
G

re
en

_i
nv

en
tio

ns
ij

t
N

um
be

r
of

gr
ee

n
in

ve
nt

io
ns

ow
n

ca
lc

ul
at

io
ns

75
.0

9
30

9.
92

0
40

15
N

on
_g

re
en

_i
nv

en
tio

ns
ij

t
N

um
be

r
of

in
ve

nt
io

ns
th

at
ar

e
no

t
cl

as
si

fie
d

as
gr

ee
n

ow
n

ca
lc

ul
at

io
ns

10
49

.6
1

50
02

.9
5

0
66

16
1

In
de

pe
nd

en
t

va
ri

ab
le

L
ij

t-
1

N
um

be
r

of
pe

rs
on

s
en

ga
ge

d
(t

ot
al

em
pl

oy
m

en
t)

O
E

C
D

ST
A

N
42

47
14

.5
0

77
14

60
.7

0
26

76
60

36
18

8
K

/L
ij

t-
1

G
ro

ss
fix

ed
ca

pi
ta

l
fo

rm
at

io
n

(v
ol

um
es

at
cu

rr
en

t
pr

ic
e

va
lu

e)
pe

r
em

pl
oy

ee
O

E
C

D
ST

A
N

,a
nd

ow
n

ca
lc

ul
at

io
n

89
81

.4
9

63
17

.2
2

93
3.

67
12

67
31

.4
0

G
re

en
_s

to
ck

ij
t-

1
St

oc
k

of
gr

ee
n

in
ve

nt
io

ns
ow

n
ca

lc
ul

at
io

ns
28

0.
60

12
40

.1
7

0
18

69
2.

86
N

on
_g

re
en

_s
to

ck
ij

t-
1

St
oc

k
of

in
ve

nt
io

ns
th

at
ar

e
no

t
cl

as
si

fie
d

as
gr

ee
n

ow
n

ca
lc

ul
at

io
ns

43
14

.7
1

22
57

0.
66

0
32

12
22

.3
0

E
ne

rg
y_

pr
ic

e i
jt

-1
In

du
st

ry
-s

pe
ci

fic
en

er
gy

pr
ic

e
ba

se
d

on
el

ec
tr

ic
ity

,l
ig

ht
fu

el
oi

l
an

d
na

tu
ra

l
ga

s
pr

ic
es

,P
PP

IE
A

55
0.

06
26

7.
12

90
.0

5
29

21
.9

4

Po
pp

_e
ne

rg
y_

pr
ic

e i
jt

-1
W

ei
gh

te
d

av
er

ag
e

en
er

gy
pr

ic
es

as
in

Po
pp

(2
00

2)
fo

r
th

e
w

ho
le

sa
m

pl
e

pe
ri

od
fr

om
19

78
on

w
ar

ds
w

ith
an

ad
ju

st
m

en
t

co
ef

fic
ie

nt
of

0.
83

(s
ee

A
gh

io
n

et
al

.2
01

2
fo

r
a

si
m

ila
r

pr
oc

ed
ur

e)
.

IE
A

24
1.

23
18

2.
44

47
.0

2
13

65
.0

5

M
ov

in
g_

av
er

ag
e_

en
er

gy
_p

ri
ce

ij
t-

1
M

ov
in

g
av

er
ag

e
of

th
e

en
er

gy
pr

ic
es

ov
er

th
e

pr
ev

io
us

fiv
e

ye
ar

s
IE

A
47

0.
53

17
5.

16
10

3.
71

11
73

.7
8

N
ot

es
:

T
he

de
sc

ri
pt

iv
e

st
at

is
tic

s
fo

r
m

os
t

va
ri

ab
le

s
is

ba
se

d
on

th
e

es
tim

at
io

n
sa

m
pl

e
of

co
lu

m
n

(4
)

of
Ta

bl
e

3
(1

,9
62

ob
se

rv
at

io
ns

);
ex

ce
pt

io
ns

ar
e

th
e

st
at

is
tic

s
fo

r
th

e
va

ri
ab

le
s

Po
pp

_e
ne

rg
y_

pr
ic

e i
jt

-1
th

at
is

ba
se

d
on

th
e

es
tim

at
io

n
sa

m
pl

e
of

co
lu

m
n

(3
)

of
Ta

bl
e

A
.4

(2
,7

25
ob

se
rv

at
io

ns
)

an
d

E
ne

rg
y_

pr
ic

e i
jt

-1
th

at
is

ba
se

d
on

th
e

es
tim

at
io

n
sa

m
pl

e
of

co
lu

m
n

(1
)

of
Ta

bl
e

A
.6

(3
,1

42
ob

se
rv

at
io

ns
).



The Impact of Energy Prices on Green Innovation / 55

Copyright � 2016 by the IAEE. All rights reserved.

20. The remaining variance in the price variable comes from both (a) changes in the individual energy mix of the
industries and (b) changes in the prices of the different energy products, given an industry’s energy mix.

21. Our dependent variable is the natural logarithm of the number of green inventions, which is a count variable.
Accordingly, count data models would be appropriate. However, these models turned out to be incapable of incorporating
both dimensions of fixed effects (l and g) at the same time, which is one of the main contributions of our paper. We thus
decided to present as a baseline specification the OLS fixed-effects regressions. Nevertheless, we present robustness tests
using count data models based on slightly simplified specifications in Table A.1.

specific shocks, we include country specific time fixed effects (l). As stated in Aghion et al. (2012),
the increase of energy prices, e.g., might be correlated with country-specific subsidies for green
innovation. Accordingly, the estimates for energy prices may be biased. The fixed effect l captures
such country specific shocks.20

As the time series dimension of our data is quite long and the patent data series are likely
to be persistent, the results for our patent stock variables may be driven by non-stationarity. In order
to deal with this issue, we perform unit root tests for the patent stock variables included in the
regressions. We employ three different tests proposed by Levin et al. (2002), Im et al. (2003) and
Pesaran (2003), respectively. Based on all three tests we can reject the unit root assumption for any
of the patent variables (test results are available on request).

As we are not just interested in the effect of energy prices on the total number of green
inventions (i.e., the level of green invention activities; see H1), but also in the effect on the devel-
opment of the number of green inventions relative to non-green inventions (i.e., the share of green
technology inventions; see H2), we alternatively estimate our innovation model with a different
dependent variable that measures the difference between the logarithms of the number of green
inventions and non-green inventions (ratio of green inventions to non-green inventions). Our second
model is:

ln(Green_inventions )– ln(Non_green_inventions ) = ln(A) + αln(L ) + βln(K/L )ijt ijt ijt– 1 ijt– 1

+ φln(Green_stock ) + kln(Non_green_stock ) + ϕln(Energy_price ) (5)ijt– 1 ijt– 1 ijt– 1

+ l + g + e .it ij ijt

5. ESTIMATION RESULTS

5.1 Main Results

The main results are presented in Tables 3 and 4. Table 3 shows OLS log-linear fixed
effects estimations for the number of green inventions (alternative estimation methods that, e.g.,
deal with the count data characteristics of the green invention variable are discussed in the robust-
ness section).21 Table 4 shows the estimates for the models with the log ratio of green to non-green
inventions as dependent variable, as specified in Equation 4. Our baseline specifications include a
moving average of the energy prices over five years, as we believe that innovation decisions are
primarily linked to longer time trends. Estimates based on alternative price variables are presented
in Tables A.4, A.6 and A.7.

In columns (1) and (2) we estimate a basic model that includes neither a variable controlling
for capital, nor country-specific time fixed effects. In these specifications, the price effect goes in
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Table 3: Estimation Results for the Green Invention Level

Estimation method OLS log linear fixed-effects regression

Period 1984–2009

Dependent variable ln(Green_inventionsijt)

(1) (2) (3) (4) (5)

ln(Lijt-1) 0.056 –0.001 0.098 0.147* 0.103
(0.045) (0.075) (0.068) (0.080) (0.085)

ln(K/Lijt-1) 0.119**
(0.059)

ln(Green_stockijt-1) 0.791*** 0.642*** 0.551*** 0.550*** 0.557***
(0.030) (0.041) (0.043) (0.047) (0.046)

ln(Non_green_stockijt-1) 0.034 0.013 0.164*** 0.158*** 0.166***
(0.035) (0.043) (0.050) (0.059) (0.059)

ln(Moving_average_energy_priceijt-1) 0.037 0.144 0.342** 0.268* 0.269*
(0.074) (0.111) (0.141) (0.143) (0.141)

Constant –1.013 –0.774 –3.880*** –4.903*** –3.384***
(0.736) (1.138) (1.092) (1.190) (1.123)

Time fixed effects yes yes no no no
Country fixed effects yes no no no no
Industry fixed effects yes no no no no
Country-specific time fixed effects no no yes yes yes
Country-specific industry fixed effects no yes yes yes yes

N 2669 2669 2669 1962 1962
Groups 144 144 144 116 116
R2 within 0.69 0.76 0.71 0.71
R2 0.92

Notes: see Table 2 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the
industry-country level (clustered sandwich estimator) are in brackets under the coefficients; ***, **, * denotes statistical
significance at the 1%, 5% and 10% test level, respectively.

the expected direction, but is statistically insignificant. However, the price effect doubles in mag-
nitude and becomes statistically significant positive at the 5% level, when we include country-
specific time fixed effects (see column 3). Accordingly, the price effect is downward biased when
we do not control for country specific shocks. These results empirically emphasize the importance
of such controls that have been neglected in previous studies. In column (4) we finally add a capital
control variable that slightly reduces the price effect. However, as the capital variable has many
missing values, the inclusion significantly reduces the available number of observations from 2,669
to 1,962. Accordingly, the reduction in the price effect may be driven by a selection bias. To test
whether this is the case, column (5) shows the results for the reduced model based on the same
observations that are available in the full model. As the results for the energy price variable only
marginally differ between these two models, we conclude that the capital control does not affect
the price effect. Accordingly, the minor differences in the price effect between model (3) and (4)
seem to be driven by a selection bias. Accordingly, we take model (3) as our baseline specification
for which we conduct a number of further robustness checks. In this model, a 1% increase of the
average energy price of the previous five years results in a 0.34% increase of the number of green
inventions. This result is in line with hypothesis H1 that states that higher energy prices stimulate
current green innovation activities.

In line with Hypothesis H2, the green invention share is positively related to energy prices
(see Table 4). Like for the green invention level, the price effect on green invention share is also
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Table 4: Estimation Results for the Green Invention Share

Estimation method OLS log linear fixed-effects regression

Period 1984–2009

Dependent variable ln(Green_inventionsijt)– ln(Non_green_inventionsijt)

(1) (2) (3) (4) (5)

ln(Lijt-1) –0.060 –0.234*** –0.111 –0.071 –0.079
(0.049) (0.077) (0.085) (0.100) (0.096)

ln(K/Lijt-1) 0.022
(0.068)

ln(Green_stockijt-1) 0.563*** 0.372*** 0.292*** 0.295*** 0.296***
(0.031) (0.043) (0.051) (0.051) (0.052)

ln(Non_green_stockijt-1) –0.592*** –0.506*** –0.297*** –0.227*** –0.225***
(0.038) (0.051) (0.068) (0.080) (0.080)

ln(Moving_average_energy_priceijt-1) 0.127 0.210* 0.481** 0.450** 0.450**
(0.081) (0.120) (0.194) (0.213) (0.212)

Constant –0.323 1.169 –3.101** –3.745** –3.480***
(0.789) (1.201) (1.408) (1.569) (1.310)

Time fixed effects yes yes no no no
Country fixed effects yes no no no no
Industry fixed effects yes no no no no
Country-specific time fixed effects no no yes yes yes
Country-specific industry fixed effects no yes yes yes yes

N 2669 2669 2669 1962 1962
Groups 144 144 116 116
R2 within 0.31 0.44 0.43 0.43
R2 0.63

Notes: see Table 2 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the
industry-country level (clustered sandwich estimator) are in brackets under the coefficients; ***, **, * denotes statistical
significance at the 1%, 5% and 10% test level, respectively. Alternatively we inserted the ratio of green to non-green
knowledge stock as an independent variable and omitted the variable for the level of the green knowledge stock and the
level of the non-green knowledge stock. The ratio also has a significant positive effect.

22. The Non_green_stock and the Green_stock have an elasticity of similar magnitude with opposite signs. Hence, we
conducted a t-test on the “equal and opposite” effects of the green knowledge stock and the non-green knowledge stock
and we see that the sum of both is not significantly different from zero, e.g., for equation 4 in Table 4 we get p = 0.9365.

downward biased when we do not control for country specific shocks. Furthermore, the price effect
is not affected by the inclusion of the capital control variable. In our baseline specification, a 1%
increase in the average energy price over the previous five years results in a 0.48% increase of the
ratio of green to non-green inventions (see column 3).

The results for the control variables are in line with general expectations. Labor input (L)
and physical capital intensity (K/L) are positively correlated with the number of green inventions.
However, we cannot observe a significant effect for these two variables with respect to the share
of green inventions. The green invention share is neither affected by labor input nor by physical
capital intensity. As expected a larger stock of green knowledge does stimulate current activities in
green invention. Furthermore, we find in Table 3 that knowledge in non-green technologies serves
as a resource for green invention as well—the effect of Non_green_stock on the number of green
inventions is significantly positive. The positive effect of green knowledge on current green inven-
tion activities is, however, significantly larger than the positive effect of non-green knowledge. The
effect of Non_green_stock on the share of green inventions is significantly negative (see Table 4).22
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Yet, the relative impact of Non_green_stock on green invention is smaller than the impact on non-
green invention, which would seem to indicate differentiated opportunity costs.

5.2 Robustness Tests

We made comprehensive tests to check the robustness of our main results discussed before.
All these tests are based on the models without the capital flow variable and using moving averages
of the energy prices over the previous five years (as appearing in column 3 of Tables 3 and 4,
respectively). Moreover, we present some additional notions and robustness checks on the construc-
tion of the composite industry-specific energy prices (see Appendix).

Dealing with special characteristics of our data

Adding 1 before taking the logarithm is often used in order to avoid a significant drop in
the number of observations. However, such a transformation may bias the results (see Wooldridge
2002, p. 185). This is especially true if the data contain many zeros. In our data set about one third
of the industries do not have green inventions. Accordingly, our baseline results could be biased.

To deal with this potential problem, we estimate our baseline models in a next step when
we drop the observations where the dependent variables take a value of 0. The respective estimation
results are presented in columns (1) and (2) of Table A.1. In both models, the price effect is smaller
than that found in previous estimates. The effect on the green invention level decreases from 0.34
to 0.22 and the effect on the green invention share decreases from 0.48 to 0.29, and becomes
statistically insignificant.

A drawback of dropping the zeros is that we probably introduce a selection problem. An
appropriate solution to overcome the problem is thus to avoid taking the logarithm and instead
estimate a count data model. Column (3) shows the results for the fixed-effects Poisson model with
robust standard errors as recommended by Allison and Waterman (2002) to correct for over-dis-
persion. Unfortunately, this procedure does not allow for the inclusion of country-specific time fixed
effects, thus time fixed effects only have been included as the nearest best alternative specification.
The estimation results with respect to energy prices are only marginally affected by this alternative
estimation procedure. While still statistically significant, the effect of energy prices on green in-
ventions decreases from 0.34 to 0.20 compared with the baseline model. However, this decrease in
the coefficient estimate for energy prices seems to be driven by the different specification of fixed
effects, rather than due to applying a count data model: when estimating a log-linear OLS model
with time fixed effects only and on the same sample as was used for column (3) in Table A.1, the
coefficient drops from 0.34 to 0.15 (see column 4).

Column (5) of Table A.1 shows an OLS model that includes pre-sample fixed effects as
proposed by Blundell et al. (1995) in order to deal with unobserved heterogeneity in the presence
of lagged endogenous variables. In doing so, we add the average level of inventions over the pre-
sample period 1975–1985 for both, green and non-green inventions (both in logs), as well as two
binary variables that measure whether an industry had any inventions at all in the pre-sample period.
This procedure does again slightly reduce the size of the effect of energy prices (0.15 vs. 0.34);
however, the effect remains statistically significant and positive.

In sum we thus find some evidence that our baseline results may overestimate the price
effect. However, as the alternative estimation methods do not allow us to control for country-specific
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23. Furthermore, the Blundell et al. (1995) procedure mainly corrects for the endogeneity of the lagged dependent
variable, which is a control variable in our model.

24. While 3,448 observations are available when only the two products electricity and light fuel oil are included in the
price basket, only 1,203 observations are available when we additionally include the three products natural gas, steam coal
and coking coal.

25. As in Popp (2002), this energy price is based on an adaptive expectation model, in which expected future energy
prices are a weighted average of past prices: where w, the adjustment coefficient that represents the weights placed on past

shocks that turned out to be econometrically relevant, we chose these models not to be our baseline
specification.23

Alternative price baskets

Despite the fact that our price variable includes the prices of the three most important
energy products, the construction of this variable may affect the results of our estimates. To test
the robustness of our results with respect to the construction of the price variable, we alternatively
estimated our main model presented in Tables 3 and 4 with price variables that are based on more
detailed baskets of energy products, i.e. S in equations 1 and 2 was extended to additional energy
products (for descriptive information about these variables see Table A.2). As there are missing
values for some product-specific energy prices, enlarging the price basket significantly reduces the
number of observations that is available for the model estimation.24 To get comparable results for
the different price baskets, we estimate all models for the same set of observations. The respective
estimation results are presented in Table A.3. To be able to compare these results with previous
results, columns (1) and (4) show the results for the previous estimates based on the smaller sample.
The fact that the price elasticities of these estimates only marginally differ from previous estimates
(0.36 vs. 0.34 for green invention level and 0.55 vs. 0.48 for green invention share) indicates that
the reduction of the sample size does not significantly affect our results.

The estimates for the different price baskets show that the elasticities of our main models
represent the lower limit. For all other price baskets the price elasticities are significantly larger.
The largest elasticities can be observed for prices based on the four products electricity, light fuel
oil, natural gas, and steam coal. Based on this basket we identify elasticities of 0.68 and 0.93 for
the number of green inventions and the ratio of green vs. non-green inventions, respectively (see
columns 2 and 5). Consequently, the robustness test shows that more energy products, which better
reflects the “real” product mix of an industry, tend to increase the price effect compared to our
baseline model.

Alternative clustering level

So far, standard errors were clustered at the industry/country level. However, as our control
variables do not control for a potential industry specific shock, we alternatively cluster at the industry
level. In columns (1) and (2) of Table A.4 we thus present the baseline regressions based on standard
errors that are clustered at the industry level. The alternative clustering level even slightly decreases
the standard errors compared with previous estimates.

Alternative construction of the price variable

In our baseline specification of the energy price was included as a moving average of the
energy prices over the previous five years. Popp (2002) proposed an alternative price variable that
is based on a weighted average of past prices.25 Estimations based on such an alternative price



60 / The Energy Journal

Copyright � 2016 by the IAEE. All rights reserved.

observations, is 0.83 (see Popp 2002 for a similar procedure), and at the beginning of the sample period where no price
data for previous time periods was available, price expectations have been set to current prices.

26. Our main estimates presented in Tables 3 and 4 are based on 144 groups. To check for outliers, we excluded all
groups with an average clean or dirty invention stock greater THAN or equal to the top 1% and 5% of the groups,
respectively. All in all, we thus dropped two and ten groups that account for 1.5% and 6.6% of the observations, respectively.

variable are presented in columns (3) and (4) of Table 4. While the price effect on the green invention
level only marginally increases by this alternative construction (0.39 vs. 0.34), the increase in the
price effect on the green invention share is more pronounced (0.61 vs. 0.48).

Testing the robustness of the stock variables

In our main models (Tables 3 and 4) we applied a depreciation rate of 15% in order to
calculate knowledge stocks. Table A.5 (columns 1 to 4) presents the results for alternative depre-
ciation rates of 10% and 30%. The results are relatively independent of the chosen depreciation
rate. The magnitude, significance, and sign of the coefficients remain essentially unchanged.

Checking for outliers

Columns (5) to (8) of Table A.5 show the estimation results with regard to outliers. The
distribution of inventions across industries is very heterogeneous. Consequently we run our esti-
mation excluding the top 1% of performers and the top 5% of the performers, respectively.26 This
only marginally affected our results. We thus conclude that our results are not driven by outliers.

5.3 Extensions

Estimates based on different time lags

In Tables A.6 and A.7 we analyze the dynamics of the price effects based on alternative
lags. The estimation results indicate that the impact of energy prices increases with an increasing
time lag between energy prices and invention activities. To be able to properly identify the time
trends, we alternatively estimate the models for similar samples (columns 6 to 10 of the respective
tables). With respect to the green invention level, the price effect increases from 0.14 to 0.24 when
we extend the time lag from 1 to 5 years (see Table A.6). The effect of energy prices on the green
invention share increases from 0.24 to 0.35 (see Table A.7).

Estimates for different subcategories of green invention

Our estimates are so far based on quite a broad definition of green inventions. Obviously,
energy price shocks should, however, primarily affect inventions that are somehow related to energy
reduction. To deal with this assertion, we estimate our baseline model for the green invention level
separately for the seven environmental areas that are included in the OECD definition (see OECD
2012). To make a prediction about the relative size of the price effects, we first have to get an
understanding of what is really included in the different categories. Based on the OECD Patents
statistics we can identify the relative importance of the different patent fields that are included in
the seven environmental areas (see OECD 2013). ‘General environmental management’ primarily
includes technologies dealing with air or water pollution abatement. ‘Energy generation from re-
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27. Somewhat surprising is the relatively strong positive effect for “transport patents”, as such technologies should
primarily be stimulated by end-user prices and not by industry specific prices. However, we would expect that some of
these inventions are used in the industry, and are thus also affected by industry-specific energy prices. Another explanation
is that innovation activities in a certain field of green innovation are induced by innovation activities in other fields (e.g.,
due to knowledge spillovers). Accordingly, even when innovation activities in a certain field are not directly affected by
energy prices, there may be an indirect effect via other green innovation activities. Some evidence for such interrelations
is the fact that the developments of the number of inventions in the different areas are relatively strongly correlated with
each other (these correlations are not presented here but are available on request).

28. The impact of energy prices on total invention activity is negative but only small in size and not statistically significant
(these estimates are not presented here but are available on request). This finding is not surprising, given that to a large
degree, innovation activities are financed by firms’ cash flow (rather than through external funding). Thus, by raising total
costs of production, higher energy prices are likely to diminish firms’ capacities to finance overall innovation activities.

newable and non-fossil sources’ primarily includes solar photovoltaic energy generation. ‘Com-
bustion technologies with mitigation potential’ primarily includes combined cycles for improved
output efficiency. ‘Technologies specific to climate change mitigation’ mostly refers to CO2 capture
and storage (CCS). ‘Technologies with potential or indirect contribution to emission mitigation’
mostly deal with energy storage or fuel cells. ‘Emission abatement and fuel efficiency in transpor-
tation’ primarily include technologies that control the emissions produced by internal combustion.
Finally, most patents in ‘energy efficiency in buildings and lightings’ deal with lighting.

Based on this information we would expect that the two categories ‘general environmental
management’ and ‘technologies specific to climate change mitigation’ are not directly energy re-
lated. Accordingly, innovation in these areas should primarily be related to general emission costs
(e.g., CO2 prices) rather than specific energy prices.

The estimation results for the different categories are presented in Table A.8. The esti-
mation results show that elasticities are larger for categories that we would suppose are more directly
related to energy. Accordingly, the elasticity is largest for inventions in ‘technologies with potential
or indirect contribution to emission mitigation’ (0.38) and ‘energy generation from renewable and
non-fossil sources’ (0.38).27 A smaller impact can be observed for more general green inventions
dealing with ‘general environmental management’ (0.24). Inventions dealing with ‘technologies
specified to climate change mitigation’ are not even significantly affected by energy price shocks.
This result may also be driven by the fact that these technologies are not mature yet, and thus
probably respond more to technology-push policies than to demand pull policies.

However, overall we have to state, that the variation in the elasticities between the different
categories is relatively small. With the exception of technologies dealing with ‘climate change
mitigation’ the effects vary between 0.24 and 0.38. As we have seen in the robustness section, we
should not over interpret this variation.

5.4 Discussion

Our results indicate that energy prices positively affect both, the level and the share of
green invention. Although we do not explicitly investigate crowding out effects of green innovation
activities (see van Leeuwen and Mohnen 2013, Marin 2014 for crowding out investigations on the
firm-level), the relatively large difference in the price effects for the green invention level (0.34)
and for the price effects for the green share (0.48) indicates some tendency to crowd out non-green
invention; this because the share of green invention responds more to energy prices than the number
of green inventions. Indeed, we find a significantly negative effect of energy prices on non-green
invention in all but one model specification (see Table A.9).28



62 / The Energy Journal

Copyright � 2016 by the IAEE. All rights reserved.

29. Estimates based on a weighted average of lagged energy prices with a discount factor of 0.83.
30. In additional estimates we separately estimated our main model for high energy intensive and low energy intensive

industries. Due to the much lower number of observations, we could not identify statistically significant price effects in the
two models. However, the effect of energy prices turned out to be positive in both models, and the effect of energy prices
was slightly larger for energy-intensive industries.

As described in the introduction, our model is based on a broader data set than most
previous studies. It would thus be interesting to analyze how the breadth of the panel affects the
estimated impact of energy prices. Since previous models either include different control variables
or even use different measures for green innovation, we attempt to draw some comparisons of the
effects of energy prices, yet we stress that these can only be of limited scope.

Crabb and Johnson (2011) focus on energy-efficient automotive patents in the USA and
find a price elasticity of 0.36 (with the retail price of gas as the explanatory variable), which is only
slightly larger than what we find in our best corresponding estimation. Based on a lag structure of
one year we find for the reduced model a price elasticity of 0.20.

Aghion et al. (2012) also focus on the auto industry and analyze the effect of fuel prices
on different innovation variables based on firm-level data across 80 countries. They identify elas-
ticities of 0.97 and –0.57 for the number of ‘clean’ and ‘dirty’ patents, respectively. These elastic-
ities are considerably larger than the figures we find for the total manufacturing sector. Based on a
lag structure of one year we find for the reduced model elasticities of 0.20 and –0.14, respectively
(see Tables A.7 and A.9). In line with our results, they also find that the impact of energy prices
increases with an increasing lag between energy prices and innovation activities.

Popp (2002) analyses the impact of energy prices on energy-related technologies in the
USA and identifies an effect of energy prices on the share of energy-efficient innovations in total
innovations. Though we look at the ratio of green innovations to non-green innovations, the long
run elasticity of 0.34 identified by Popp is similar to the 0.52 that we find when using comparable
energy prices29 for 13 countries (see columns 3 and 4 of Table A.4).

In sum we observe that our results are more similar to studies that focus on a single country
(i.e. Popp 2002 for the USA) than to studies that focus on a single industry (i.e. Aghion et al. 2012
for the auto industry). While the price effect in the USA is somewhat smaller than what we find in
our cross-country study (0.34 vs. 0.52), the effect for the auto industry is significantly larger than
what we find on average of all industries (0.94 vs. 0.20 and –0.57 vs. –0.14). Accordingly, it
seems that the dependency on fuel prices in the auto industry is larger than the dependency on
energy prices in other manufacturing industries. Furthermore, the dependency on energy prices in
the USA seems to be slightly smaller than in other countries. The result by Crabb and Johnson
(2011) that are based on both, the auto industry and the USA, lies somewhere in the middle (0.36
vs. 0.20). However, further investigations are necessary to identify the factors that drive the observed
differences in price elasticities between countries and/or industries.30

Probably more related to our study are the results by Verdolini and Galeotti (2011) that
are based on a panel of 17 countries and 12 technologies. They analyze the impact of country-
specific energy prices (IEA real index for end-use energy prices for industry obtained estimates for
the elasticity of energy prices) on the number of energy-related patents on the technology level.
They obtained estimates for the elasticity of energy prices on the number of energy-related patents
in a range between 0.4 and 0.6, depending on model specification; thus slightly higher than our
best corresponding (in terms of model specification) estimate of 0.2 (Table A.6, column 1). These
differences are likely to be driven by different model specifications. While Verdolini and Galeotti
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(2011) stay on the technology level, we refer to the industry level, and we can thus control for
industry characteristics. Moreover they work with country-level energy prices, while we have in-
dustry-specific prices, which enable us to control for country-specific shocks.

6. CONCLUSIONS

Based on industry-level panel data, this paper investigates the determinants of green in-
vention activities of an industry. We find that energy prices do stimulate both, the level of green
invention as well as the share of green invention. In our model, a 10% increase of the average
energy prices over the previous five years results in a 3.4% and 4.8% increase of the number of
green inventions and the ratio of green to non-green inventions, respectively. While the main focus
is on the impact of energy prices, our model shows several other interesting results. Firstly, we find
that available knowledge stocks serve as an invention-relevant resource for green invention inde-
pendent of whether available knowledge is green-specific knowledge or knowledge in non-green
technologies. Secondly, as a large knowledge stock in non-green technologies represents larger
opportunity costs with respect to green invention, the effect of non-green knowledge on current
green invention is significantly smaller than the effect of green knowledge. Furthermore, the effect
of non-green knowledge on the share of green inventions is significantly negative.

In contrast to previous studies, our results are more general because they are based on a
broader set of industries and countries. While most previous studies focused on certain industries
or countries, our data set includes the whole manufacturing sector and the most important countries
for green invention. Furthermore, we have reduced the probability of an omitted-variable bias by
calculating industry-specific energy prices. When comparing our results with the results of previous
studies, we found that price elasticities seem to vary primarily across industries and not across
countries. Accordingly, energy prices do not seem to be an equally suitable instrument to stimulate
green invention across different industries. Due to the limited number of observations in our data
set, it was unfortunately not possible to compare price elasticities across industries. In order to
improve energy policy, it would be a worthwhile task for future research to identify such inter-
industry differences in innovation response to energy prices.

Despite a large future market potential, firms are probably not willing by themselves to
invest in green technologies, as green innovations currently show lower returns than non-green
innovations (see Marin 2014, Soltmann et al. 2014). Furthermore, as green inventions are primarily
related to green-specific knowledge, industries and countries will have to build up their own green
knowledge when they want to be competitive in this market, even when it is financially not very
attractive at the moment (see Stucki and Woerter 2012). Accordingly, knowledge about potential
policy instruments to stimulate inventions in this area is of large importance. As our study shows,
energy prices may serve as such an instrument. An increase in energy prices may stimulate the
building of a green knowledge stock that: (a) would help to achieve a country’s climate targets; (b)
may serve as an important foundation to establish a cleantech market for which long-term growth
is predicted.
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APPENDIX

A Note on the Construction of Composite Industry-specific Energy Prices

A profit maximizing firm that is exposed to a positive price shock specific to a certain
energy source can be expected to seek technical opportunities for switching to other energy sources
which have, as a result of this price shock, become relatively cheaper. If such substitution oppor-
tunities are abundant in the short run (i.e. they manifest themselves within the same calendar year),
our calculation of industry-specific prices may be criticized on the ground that we weight prices
with consumption shares that are measured at the same time period and thus depend on current
prices themselves. Conventionally, price indices are constructed in a manner to avoid incorporating
such substitution effects, for instance by relying on weights that have been fixed to reflect the
relative importance of different inputs prior to subsequent price changes. For the analysis in the
paper at hand, however, we argue that the composite energy price that firms face after they have
exploited any substitution opportunities is more relevant than the composite energy price they would
observe while holding their energy mix constant. This is motivated by the simple reasoning that if,
in a given industry, technological opportunities exist that would allow a firm to perfectly offset a
price shock for a certain energy source by immediately switching to other energy sources, there is
no financial motive for increased innovation in energy efficiency. What matters for firms’ decisions
to strengthen their efforts in green innovation is the total energy bill they face at the end of each
year, having made use of potential substitution opportunities, rather than the annual energy expen-
diture level they would hypothetically face while holding their energy input mix constant.

Nevertheless, we have conducted estimations of equation (3) of Table 3 incorporating
energy prices that have been calculated on weights based on lagged (by lags of one up to five years)
instead of contemporaneous energy consumption shares. The estimated coefficients for energy prices
do only show a slight tendency to decrease as the lag increases; yet they remain, with one exception,
statistically significant at the 5% level. These results are available from the authors upon request.
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Table A.2: Descriptive Statistics for the Variable Moving_average_energy_priceijt-1 Based
on Alternative Price Baskets

Products included in price basket Mean Std. Dev. Min Max

electricity, light fuel oil, natural gas 519.07 246.09 103.71 1216.79
electricity, light fuel oil, natural gas, steam coal 471.97 224.32 102.49 1216.79
electricity, light fuel oil, natural gas, steam coal, coking coal 456.75 214.98 102.42 1216.79

Notes: Descriptive statistics is based on same sample for all price variables (1,203 observations).



The Impact of Energy Prices on Green Innovation / 69

Copyright � 2016 by the IAEE. All rights reserved.

T
ab

le
A

.3
:

E
st

im
at

es
B

as
ed

on
A

lt
er

na
ti

ve
P

ri
ce

B
as

ke
ts

(s
am

e
ob

se
rv

at
io

ns
fo

r
al

lm
od

el
s)

E
st

im
at

io
n

m
et

ho
d

O
L

S
lo

g
lin

ea
r

fix
ed

-e
ff

ec
ts

re
gr

es
si

on

Pe
ri

od
19

84
–2

00
9

D
ep

en
de

nt
va

ri
ab

le
ln

(G
re

en
_i

nv
en

tio
ns

ij
t)

ln
(G

re
en

_i
nv

en
tio

ns
ij

t)
–

ln
(N

on
_g

re
en

_i
nv

en
tio

ns
ij

t)

Pr
od

uc
ts

in
cl

ud
ed

in
pr

ic
e

ba
sk

et
el

ec
tr

ic
ity

,l
ig

ht
fu

el
oi

l,
na

tu
ra

l
ga

s

el
ec

tr
ic

ity
,l

ig
ht

fu
el

oi
l,

na
tu

ra
l

ga
s,

st
ea

m
co

al

el
ec

tr
ic

ity
,l

ig
ht

fu
el

oi
l,

na
tu

ra
l

ga
s,

st
ea

m
co

al
,c

ok
in

g
co

al

el
ec

tr
ic

ity
,l

ig
ht

fu
el

oi
l,

na
tu

ra
l

ga
s

el
ec

tr
ic

ity
,l

ig
ht

fu
el

oi
l,

na
tu

ra
l

ga
s,

st
ea

m
co

al

el
ec

tr
ic

ity
,l

ig
ht

fu
el

oi
l,

na
tu

ra
l

ga
s,

st
ea

m
co

al
,c

ok
in

g
co

al
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)

ln
(L

ij
t-

1)
–

0.
06

9
–

0.
11

6
–

0.
10

4
–

0.
19

2
–

0.
25

1
–

0.
23

2
(0

.1
57

)
(0

.1
47

)
(0

.1
46

)
(0

.1
91

)
(0

.1
81

)
(0

.1
82

)
ln

(G
re

en
_s

to
ck

ij
t-

1)
0.

44
8*

**
0.

43
9*

**
0.

44
1*

**
0.

29
2*

**
0.

28
1*

**
0.

28
4*

**
(0

.0
70

)
(0

.0
70

)
(0

.0
70

)
(0

.0
89

)
(0

.0
88

)
(0

.0
88

)
ln

(N
on

_g
re

en
_s

to
ck

ij
t-

1)
0.

18
2

0.
19

4*
0.

19
0

–
0.

10
0

–
0.

08
6

–
0.

09
3

(0
.1

15
)

(0
.1

14
)

(0
.1

15
)

(0
.1

11
)

(0
.1

07
)

(0
.1

09
)

ln
(M

ov
in

g_
av

er
ag

e_
en

er
gy

_p
ri

ce
ij

t-
1)

0.
36

4*
*

0.
67

5*
*

0.
65

0*
*

0.
55

3*
0.

92
9*

*
0.

87
1*

*
(0

.1
82

)
(0

.2
74

)
(0

.2
67

)
(0

.2
84

)
(0

.3
79

)
(0

.3
63

)
C

on
st

an
t

–
1.

67
2

–
2.

82
5

–
2.

80
9

–
3.

79
3

–
5.

37
5*

–
5.

17
5*

(2
.1

43
)

(2
.3

25
)

(2
.3

04
)

(2
.8

78
)

(3
.0

29
)

(2
.9

58
)

C
ou

nt
ry

sp
ec

ifi
c

tim
e

fix
ed

ef
fe

ct
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

C
ou

nt
ry

sp
ec

ifi
c

in
du

st
ry

fix
ed

ef
fe

ct
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

N
12

03
12

03
12

03
12

03
12

03
12

03
G

ro
up

s
89

89
89

89
89

89
R

2
w

ith
in

0.
80

0.
80

0.
80

0.
31

0.
32

0.
32

N
ot

es
:

se
e

Ta
bl

e
2

fo
r

th
e

va
ri

ab
le

de
fin

iti
on

s;
st

an
da

rd
er

ro
rs

th
at

ar
e

ro
bu

st
to

he
te

ro
sk

ed
as

tic
ity

an
d

cl
us

te
re

d
at

th
e

in
du

st
ry

-c
ou

nt
ry

le
ve

l
(c

lu
st

er
ed

sa
nd

w
ic

h
es

tim
at

or
)

ar
e

in
br

ac
ke

ts
un

de
r

th
e

co
ef

fic
ie

nt
s;

**
*,

**
,*

de
no

te
s

st
at

is
tic

al
si

gn
ifi

ca
nc

e
at

th
e

1%
,5

%
an

d
10

%
te

st
le

ve
l,

re
sp

ec
tiv

el
y.



70 / The Energy Journal

Copyright � 2016 by the IAEE. All rights reserved.

T
ab

le
A

.4
:

E
st

im
at

es
B

as
ed

on
A

lt
er

na
ti

ve
C

lu
st

er
in

g
L

ev
el

an
d

P
ri

ce
V

ar
ia

bl
e,

R
es

pe
ct

iv
el

y

E
st

im
at

io
n

m
et

ho
d

O
L

S
lo

g
lin

ea
r

fix
ed

-e
ff

ec
ts

re
gr

es
si

on

Pe
ri

od
19

84
–2

00
9

19
81

–2
00

9

D
ep

en
de

nt
va

ri
ab

le
ln

(G
re

en
_i

nv
en

tio
ns

ij
t)

ln
(G

re
en

_i
nv

en
tio

ns
ij

t)
–

ln
(N

on
_g

re
en

_i
nv

en
tio

ns
ij

t)
ln

(G
re

en
_i

nv
en

tio
ns

ij
t)

ln
(G

re
en

_i
nv

en
tio

ns
ij

t)
–

ln
(N

on
_g

re
en

_i
nv

en
tio

ns
ij

t)

C
lu

st
er

in
g

le
ve

l
In

du
st

ry
In

du
st

ry
In

du
st

ry
/c

ou
nt

ry
In

du
st

ry
/c

ou
nt

ry
(1

)
(2

)
(3

)
(4

)

ln
(L

ij
t-

1)
0.

09
8

–
0.

11
1

0.
03

5
–

0.
18

5*
(0

.1
21

)
(0

.0
82

)
(0

.0
72

)
(0

.0
95

)
ln

(G
re

en
_s

to
ck

ij
t-

1)
0.

55
1*

**
0.

29
2*

**
0.

59
1*

**
0.

33
3*

**
(0

.0
58

)
(0

.0
59

)
(0

.0
39

)
(0

.0
46

)
ln

(N
on

_g
re

en
_s

to
ck

ij
t-

1)
0.

16
4*

*
–

0.
29

7*
**

0.
16

4*
**

–
0.

35
9*

**
(0

.0
71

)
(0

.0
84

)
(0

.0
44

)
(0

.0
58

)
ln

(M
ov

in
g_

av
er

ag
e_

en
er

gy
_p

ri
ce

ij
t-

1)
0.

34
2*

*
0.

48
1*

*
(0

.1
06

)
(0

.1
67

)
ln

(P
op

p_
en

er
gy

_p
ri

ce
ij

t-
1)

0.
39

1*
*

0.
61

5*
*

(0
.1

62
)

(0
.2

38
)

C
on

st
an

t
–

3.
88

0*
–

3.
10

1*
*

–
2.

98
4*

**
–

2.
24

1
(1

.8
21

)
(1

.3
33

)
(1

.1
21

)
(1

.5
24

)
C

ou
nt

ry
sp

ec
ifi

c
tim

e
fix

ed
ef

fe
ct

s
ye

s
ye

s
ye

s
ye

s
C

ou
nt

ry
sp

ec
ifi

c
in

du
st

ry
fix

ed
ef

fe
ct

s
ye

s
ye

s
ye

s
ye

s

N
26

69
26

69
27

25
27

25
G

ro
up

s
14

4
14

4
14

3
14

3
R

2
w

ith
in

0.
76

0.
44

0.
80

0.
51

N
ot

es
:

se
e

Ta
bl

e
2

fo
r

th
e

va
ri

ab
le

de
fin

iti
on

s;
st

an
da

rd
er

ro
rs

th
at

ar
e

ro
bu

st
to

he
te

ro
sk

ed
as

tic
ity

an
d

cl
us

te
re

d
at

th
e

in
du

st
ry

-c
ou

nt
ry

le
ve

l
(c

lu
st

er
ed

sa
nd

w
ic

h
es

tim
at

or
)

ar
e

in
br

ac
ke

ts
un

de
r

th
e

co
ef

fic
ie

nt
s;

**
*,

**
,*

de
no

te
s

st
at

is
tic

al
si

gn
ifi

ca
nc

e
at

th
e

1%
,5

%
an

d
10

%
te

st
le

ve
l,

re
sp

ec
tiv

el
y.



The Impact of Energy Prices on Green Innovation / 71

Copyright � 2016 by the IAEE. All rights reserved.

T
ab

le
A

.5
:

E
st

im
at

es
B

as
ed

on
A

lt
er

na
ti

ve
D

ep
re

ci
at

io
n

R
at

es
an

d
C

on
tr

ol
lin

g
fo

r
O

ut
lie

rs
,R

es
pe

ct
iv

el
y

E
st

im
at

io
n

m
et

ho
d

O
L

S
lo

g
lin

ea
r

fix
ed

-e
ff

ec
ts

re
gr

es
si

on

Pe
ri

od
19

84
–2

00
9

D
ep

en
de

nt
va

ri
ab

le
ln

(G
re

en
_i

nv
en

tio
ns

ij
t)

ln
(G

re
en

_i
nv

en
tio

ns
ij

t)
–

ln
(N

on
_g

re
en

_i
nv

en
tio

ns
ij

t)
ln

(G
re

en
_i

nv
en

tio
ns

ij
t)

ln
(G

re
en

_i
nv

en
tio

ns
ij

t)
–

ln
(N

on
_g

re
en

_i
nv

en
tio

ns
ij

t)

D
ep

re
ci

at
io

n
ra

te
10

%
30

%
10

%
30

%
15

%
15

%
15

%
15

%

C
he

ck
in

g
fo

r
ou

tli
er

s
no

no
no

no
dr

op
to

p
1%

dr
op

to
p

5%
dr

op
to

p
1%

dr
op

to
p

5%
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)

ln
(L

ij
t-

1)
0.

10
1

0.
08

9
–

0.
11

4
–

0.
10

3
0.

09
7

0.
09

1
–

0.
11

1
–

0.
11

8
(0

.0
72

)
(0

.0
62

)
(0

.0
86

)
(0

.0
80

)
(0

.0
69

)
(0

.0
68

)
(0

.0
85

)
(0

.0
84

)
ln

(G
re

en
_s

to
ck

ij
t-

1)
0.

55
1*

**
0.

53
9*

**
0.

27
6*

**
0.

32
1*

**
0.

55
1*

**
0.

54
8*

**
0.

29
2*

**
0.

28
8*

**
(0

.0
44

)
(0

.0
40

)
(0

.0
52

)
(0

.0
47

)
(0

.0
43

)
(0

.0
43

)
(0

.0
51

)
(0

.0
51

)
ln

(N
on

_g
re

en
_s

to
ck

ij
t-

1)
0.

16
1*

**
0.

17
7*

**
–

0.
29

3*
**

–
0.

29
9*

**
0.

16
3*

**
0.

15
7*

**
–

0.
29

7*
**

–
0.

30
1*

**
(0

.0
54

)
(0

.0
41

)
(0

.0
72

)
(0

.0
58

)
(0

.0
50

)
(0

.0
48

)
(0

.0
68

)
(0

.0
67

)
ln

(M
ov

in
g_

av
er

ag
e_

en
er

gy
_p

ri
ce

ij
t-

1)
0.

35
6*

*
0.

30
9*

*
0.

49
1*

*
0.

45
8*

*
0.

35
2*

*
0.

32
1*

*
0.

48
6*

*
0.

46
3*

*
(0

.1
46

)
(0

.1
27

)
(0

.1
99

)
(0

.1
82

)
(0

.1
43

)
(0

.1
39

)
(0

.1
99

)
(0

.1
95

)
C

on
st

an
t

–
4.

10
3*

**
–

3.
30

2*
**

–
3.

12
2*

*
–

3.
17

6*
*

–
3.

86
2*

**
–

3.
55

8*
**

–
3.

04
7*

*
–

2.
87

1*
*

(1
.1

44
)

(0
.9

60
)

(1
.4

46
)

(1
.2

92
)

(1
.1

00
)

(1
.0

57
)

(1
.4

32
)

(1
.4

00
)

C
ou

nt
ry

-s
pe

ci
fic

tim
e

fix
ed

ef
fe

ct
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

C
ou

nt
ry

-s
pe

ci
fic

in
du

st
ry

fix
ed

ef
fe

ct
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

N
26

69
26

69
26

69
26

69
26

29
24

94
26

29
24

94
G

ro
up

s
14

4
14

4
14

4
14

4
14

2
13

4
14

2
13

4
R

2
w

ith
in

0.
76

0.
77

0.
44

0.
45

0.
76

0.
74

0.
44

0.
44

N
ot

es
:

se
e

Ta
bl

e
2

fo
r

th
e

va
ri

ab
le

de
fin

iti
on

s;
st

an
da

rd
er

ro
rs

th
at

ar
e

ro
bu

st
to

he
te

ro
sk

ed
as

tic
ity

an
d

cl
us

te
re

d
at

th
e

in
du

st
ry

-c
ou

nt
ry

le
ve

l
(c

lu
st

er
ed

sa
nd

w
ic

h
es

tim
at

or
)

ar
e

in
br

ac
ke

ts
un

de
r

th
e

co
ef

fic
ie

nt
s;

**
*,

**
,*

de
no

te
s

st
at

is
tic

al
si

gn
ifi

ca
nc

e
at

th
e

1%
,5

%
an

d
10

%
te

st
le

ve
l,

re
sp

ec
tiv

el
y.



72 / The Energy Journal

Copyright � 2016 by the IAEE. All rights reserved.

T
ab

le
A

.6
:

E
st

im
at

io
n

R
es

ul
ts

fo
r

th
e

G
re

en
In

ve
nt

io
n

L
ev

el
B

as
ed

on
D

if
fe

re
nt

L
ag

s

E
st

im
at

io
n

m
et

ho
d

O
L

S
lo

g
lin

ea
r

fix
ed

-e
ff

ec
ts

re
gr

es
si

on

Pe
ri

od
19

81
–2

00
9

D
ep

en
de

nt
va

ri
ab

le
ln

(G
re

en
_i

nv
en

tio
ns

ij
t)

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

ln
(L

ij
t-

1)
0.

09
6

0.
10

1
0.

11
1*

0.
13

0*
0.

11
7*

0.
09

2
0.

09
3

0.
09

0
0.

08
7

0.
08

3
(0

.0
67

)
(0

.0
65

)
(0

.0
65

)
(0

.0
67

)
(0

.0
66

)
(0

.0
73

)
(0

.0
73

)
(0

.0
73

)
(0

.0
72

)
(0

.0
72

)
ln

(G
re

en
_s

to
ck

ij
t-

1)
0.

61
3*

**
0.

59
9*

**
0.

58
0*

**
0.

56
4*

**
0.

55
2*

**
0.

54
4*

**
0.

54
4*

**
0.

54
4*

**
0.

54
3*

**
0.

54
1*

**
(0

.0
34

)
(0

.0
35

)
(0

.0
35

)
(0

.0
37

)
(0

.0
37

)
(0

.0
44

)
(0

.0
44

)
(0

.0
43

)
(0

.0
43

)
(0

.0
43

)
ln

(N
on

_g
re

en
_s

to
ck

ij
t-

1)
0.

14
7*

**
0.

15
5*

**
0.

14
7*

**
0.

15
4*

**
0.

17
4*

**
0.

16
6*

**
0.

16
7*

**
0.

17
0*

**
0.

17
2*

**
0.

17
7*

**
(0

.0
41

)
(0

.0
43

)
(0

.0
45

)
(0

.0
47

)
(0

.0
52

)
(0

.0
55

)
(0

.0
55

)
(0

.0
55

)
(0

.0
55

)
(0

.0
55

)
ln

(E
ne

rg
y_

pr
ic

e i
jt

-1
)

0.
20

5*
*

0.
14

4
(0

.0
87

)
(0

.0
94

)
ln

(E
ne

rg
y_

pr
ic

e i
jt

-2
)

0.
20

0*
*

0.
13

0
(0

.0
87

)
(0

.0
97

)
ln

(E
ne

rg
y_

pr
ic

e i
jt

-3
)

0.
22

3*
*

0.
15

9*
(0

.0
87

)
(0

.0
90

)
ln

(E
ne

rg
y_

pr
ic

e i
jt

-4
)

0.
22

2*
**

0.
18

6*
*

(0
.0

80
)

(0
.0

80
)

ln
(E

ne
rg

y_
pr

ic
e i

jt
-5

)
0.

26
5*

**
0.

23
5*

**
(0

.0
87

)
(0

.0
84

)
C

on
st

an
t

–
2.

81
2*

**
–

2.
92

0*
**

–
3.

17
9*

**
–

3.
43

6*
**

–
3.

54
0*

**
–

2.
40

2*
*

–
2.

31
9*

*
–

2.
51

6*
**

–
2.

57
5*

**
–

2.
96

0*
**

(0
.8

93
)

(0
.8

78
)

(0
.8

78
)

(0
.8

86
)

(0
.8

70
)

(0
.9

65
)

(0
.9

40
)

(0
.9

11
)

(0
.8

88
)

(0
.8

90
)

C
ou

nt
ry

-s
pe

ci
fic

tim
e

fix
ed

ef
fe

ct
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

C
ou

nt
ry

-s
pe

ci
fic

in
du

st
ry

fix
ed

ef
fe

ct
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

N
31

42
30

51
29

69
28

99
28

29
25

04
25

04
25

04
25

04
25

04
G

ro
up

s
17

4
17

4
16

4
15

4
15

4
13

6
13

6
13

6
13

6
13

6
R

2
w

ith
in

0.
80

0.
79

0.
78

0.
77

0.
75

0.
75

0.
75

0.
75

0.
75

0.
76

N
ot

es
:

se
e

Ta
bl

e
2

fo
r

th
e

va
ri

ab
le

de
fin

iti
on

s;
st

an
da

rd
er

ro
rs

th
at

ar
e

ro
bu

st
to

he
te

ro
sk

ed
as

tic
ity

an
d

cl
us

te
re

d
at

th
e

in
du

st
ry

-c
ou

nt
ry

le
ve

l
(c

lu
st

er
ed

sa
nd

w
ic

h
es

tim
at

or
)

ar
e

in
br

ac
ke

ts
un

de
r

th
e

co
ef

fic
ie

nt
s;

**
*,

**
,*

de
no

te
s

st
at

is
tic

al
si

gn
ifi

ca
nc

e
at

th
e

1%
,5

%
an

d
10

%
te

st
le

ve
l,

re
sp

ec
tiv

el
y.



The Impact of Energy Prices on Green Innovation / 73

Copyright � 2016 by the IAEE. All rights reserved.

T
ab

le
A

.7
:

E
st

im
at

io
n

R
es

ul
ts

fo
r

th
e

G
re

en
In

ve
nt

io
n

Sh
ar

e
B

as
ed

on
D

if
fe

re
nt

L
ag

s

E
st

im
at

io
n

m
et

ho
d

O
L

S
lo

g
lin

ea
r

fix
ed

-e
ff

ec
ts

re
gr

es
si

on

Pe
ri

od
19

81
–2

00
9

D
ep

en
de

nt
va

ri
ab

le
ln

(G
re

en
_i

nv
en

tio
ns

ij
t)

–
ln

(N
on

_g
re

en
_i

nv
en

tio
ns

ij
t)

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

ln
(L

ij
t-

1)
–

0.
11

7
–

0.
11

2
–

0.
10

6
–

0.
08

0
–

0.
09

7
–

0.
11

9
–

0.
11

9
–

0.
12

3
–

0.
12

8
–

0.
13

1
(0

.0
88

)
(0

.0
88

)
(0

.0
84

)
(0

.0
81

)
(0

.0
76

)
(0

.0
86

)
(0

.0
86

)
(0

.0
85

)
(0

.0
84

)
(0

.0
84

)
ln

(G
re

en
_s

to
ck

ij
t-

1)
0.

36
5*

**
0.

35
0*

**
0.

33
8*

**
0.

32
0*

**
0.

30
5*

**
0.

28
5*

**
0.

28
4*

**
0.

28
4*

**
0.

28
2*

**
0.

28
0*

**
(0

.0
42

)
(0

.0
42

)
(0

.0
44

)
(0

.0
45

)
(0

.0
45

)
(0

.0
51

)
(0

.0
51

)
(0

.0
51

)
(0

.0
51

)
(0

.0
51

)
ln

(N
on

_g
re

en
_s

to
ck

ij
t-

1)
–

0.
36

8*
**

–
0.

35
6*

**
–

0.
33

7*
**

–
0.

30
0*

**
–

0.
29

4*
**

–
0.

30
3*

**
–

0.
30

0*
**

–
0.

29
6*

**
–

0.
29

1*
**

–
0.

28
7*

**
(0

.0
54

)
(0

.0
56

)
(0

.0
57

)
(0

.0
63

)
(0

.0
65

)
(0

.0
70

)
(0

.0
70

)
(0

.0
70

)
(0

.0
70

)
(0

.0
71

)
ln

(E
ne

rg
y_

pr
ic

e i
jt

-1
)

0.
34

5*
**

0.
23

8*
(0

.1
23

)
(0

.1
30

)
ln

(E
ne

rg
y_

pr
ic

e i
jt

-2
)

0.
32

3*
**

0.
22

4*
(0

.1
22

)
(0

.1
30

)
ln

(E
ne

rg
y_

pr
ic

e i
jt

-3
)

0.
36

1*
**

0.
27

1*
*

(0
.1

23
)

(0
.1

26
)

ln
(E

ne
rg

y_
pr

ic
e i

jt
-4

)
0.

36
7*

**
0.

31
7*

**
(0

.1
14

)
(0

.1
16

)
ln

(E
ne

rg
y_

pr
ic

e i
jt

-5
)

0.
36

7*
**

0.
34

8*
**

(0
.1

16
)

(0
.1

16
)

C
on

st
an

t
–

1.
82

3
–

1.
88

7
–

2.
16

0*
–

2.
68

3*
*

–
2.

52
4*

*
–

1.
39

2
–

1.
33

7
–

1.
48

6
–

1.
79

1
–

2.
04

5*
(1

.1
72

)
(1

.1
69

)
(1

.1
07

)
(1

.0
93

)
(1

.0
45

)
(1

.1
20

)
(1

.0
70

)
(1

.0
65

)
(1

.0
92

)
(1

.0
95

)
C

ou
nt

ry
-s

pe
ci

fic
tim

e
fix

ed
ef

fe
ct

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
C

ou
nt

ry
-s

pe
ci

fic
in

du
st

ry
fix

ed
ef

fe
ct

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s

N
31

42
30

51
29

69
28

99
28

29
25

04
25

04
25

04
25

04
25

04
G

ro
up

s
17

4
17

4
16

4
15

4
15

4
13

6
13

6
13

6
13

6
13

6
R

2
w

ith
in

0.
50

0.
48

0.
47

0.
44

0.
43

0.
43

0.
43

0.
43

0.
44

0.
44

N
ot

es
:

se
e

Ta
bl

e
2

fo
r

th
e

va
ri

ab
le

de
fin

iti
on

s;
st

an
da

rd
er

ro
rs

th
at

ar
e

ro
bu

st
to

he
te

ro
sk

ed
as

tic
ity

an
d

cl
us

te
re

d
at

th
e

in
du

st
ry

-c
ou

nt
ry

le
ve

l
(c

lu
st

er
ed

sa
nd

w
ic

h
es

tim
at

or
)

ar
e

in
br

ac
ke

ts
un

de
r

th
e

co
ef

fic
ie

nt
s;

**
*,

**
,*

de
no

te
s

st
at

is
tic

al
si

gn
ifi

ca
nc

e
at

th
e

1%
,5

%
an

d
10

%
te

st
le

ve
l,

re
sp

ec
tiv

el
y.



74 / The Energy Journal

Copyright � 2016 by the IAEE. All rights reserved.

T
ab

le
A

.8
:

E
st

im
at

es
fo

r
D

if
fe

re
nt

T
yp

es
of

G
re

en
In

ve
nt

io
n

E
st

im
at

io
n

m
et

ho
d

O
L

S
lo

g
lin

ea
r

fix
ed

-e
ff

ec
ts

re
gr

es
si

on

Pe
ri

od
19

84
–2

00
9

D
ep

en
de

nt
va

ri
ab

le
ln

(S
pe

ci
fic

_g
re

en
_i

nv
en

tio
ns

ij
t)

Ty
pe

of
gr

ee
n

in
ve

nt
io

ns
:

G
en

er
al

en
vi

ro
nm

en
ta

l
m

an
ag

em
en

t

E
ne

rg
y

ge
ne

ra
tio

n
fr

om
re

ne
w

ab
le

an
d

no
n-

fo
ss

il
so

ur
ce

s

C
om

bu
st

io
n

te
ch

no
lo

gi
es

w
ith

m
iti

ga
tio

n
po

te
nt

ia
l

Te
ch

no
lo

gi
es

sp
ec

ifi
c

to
cl

im
at

e
ch

an
ge

m
iti

ga
tio

n

Te
ch

no
lo

gi
es

w
ith

po
te

nt
ia

l
or

in
di

re
ct

co
nt

ri
bu

tio
n

to
em

is
si

on
m

iti
ga

tio
n

E
m

is
si

on
ab

at
em

en
t

an
d

fu
el

ef
fic

ie
nc

y
in

tr
an

sp
or

ta
tio

n

E
ne

rg
y

ef
fic

ie
nc

y
in

bu
ild

in
gs

an
d

lig
ht

in
g

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

ln
(L

ij
t-

1)
0.

05
3

0.
14

9
0.

03
6

–
0.

00
6

–
0.

00
1

–
0.

00
7

0.
03

1
(0

.0
70

)
(0

.1
03

)
(0

.0
44

)
(0

.0
39

)
(0

.0
75

)
(0

.0
80

)
(0

.0
61

)
ln

(S
pe

ci
fic

_g
re

en
_s

to
ck

ij
t-

1)
0.

46
0*

**
0.

52
6*

**
0.

46
1*

**
0.

59
3*

**
0.

58
0*

**
0.

54
7*

**
0.

55
4*

**
(0

.0
44

)
(0

.0
54

)
(0

.0
44

)
(0

.0
50

)
(0

.0
40

)
(0

.0
39

)
(0

.0
42

)
ln

(S
pe

ci
fic

_n
on

_g
re

en
_s

to
ck

ij
t-

1)
0.

19
8*

**
0.

09
7*

*
0.

03
7

0.
03

4*
*

0.
07

2*
–

0.
01

2
0.

07
8*

*
(0

.0
52

)
(0

.0
41

)
(0

.0
29

)
(0

.0
17

)
(0

.0
39

)
(0

.0
41

)
(0

.0
37

)
ln

(M
ov

in
g_

av
er

ag
e_

en
er

gy
_p

ri
ce

ij
t-

1)
0.

23
9*

0.
37

9*
**

0.
32

8*
**

0.
07

4
0.

38
2*

**
0.

34
2*

**
0.

25
5*

*
(0

.1
35

)
(0

.1
33

)
(0

.1
03

)
(0

.0
87

)
(0

.1
15

)
(0

.1
16

)
(0

.1
20

)
C

on
st

an
t

–
2.

85
1*

*
–

4.
42

9*
**

–
2.

55
8*

**
–

0.
63

8
–

2.
74

6*
*

–
1.

85
1

–
2.

44
2*

*
(1

.0
99

)
(1

.3
69

)
(0

.7
34

)
(0

.6
99

)
(1

.1
11

)
(1

.1
85

)
(1

.0
08

)
C

ou
nt

ry
-s

pe
ci

fic
tim

e
fix

ed
ef

fe
ct

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
C

ou
nt

ry
-s

pe
ci

fic
in

du
st

ry
fix

ed
ef

fe
ct

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s

N
26

69
26

69
26

69
26

69
26

69
26

69
26

69
G

ro
up

s
14

4
14

4
14

4
14

4
14

4
14

4
14

4
R

2
w

ith
in

0.
68

0.
7

0.
52

0.
64

0.
7

0.
65

0.
67

N
ot

es
:

se
e

Ta
bl

e
2

fo
r

th
e

va
ri

ab
le

de
fin

iti
on

s;
st

an
da

rd
er

ro
rs

th
at

ar
e

ro
bu

st
to

he
te

ro
sk

ed
as

tic
ity

an
d

cl
us

te
re

d
at

th
e

in
du

st
ry

-c
ou

nt
ry

le
ve

l
(c

lu
st

er
ed

us
in

g
th

e
sa

nd
w

ic
h

es
tim

at
or

)
ar

e
in

br
ac

ke
ts

un
de

r
th

e
co

ef
fic

ie
nt

s;
**

*,
**

,*
de

no
te

s
st

at
is

tic
al

si
gn

ifi
ca

nc
e

at
th

e
1%

,5
%

an
d

10
%

te
st

le
ve

l,
re

sp
ec

tiv
el

y.



The Impact of Energy Prices on Green Innovation / 75

Copyright � 2016 by the IAEE. All rights reserved.

T
ab

le
A

.9
:

E
st

im
at

io
n

R
es

ul
ts

fo
r

N
on

-g
re

en
In

ve
nt

io
n

L
ev

el

E
st

im
at

io
n

m
et

ho
d

O
L

S
lo

g
lin

ea
r

fix
ed

-e
ff

ec
ts

re
gr

es
si

on

Pe
ri

od
19

81
–2

00
9

19
84

–2
00

9

D
ep

en
de

nt
va

ri
ab

le
ln

(N
on

_g
re

en
_i

nv
en

tio
ns

ij
t)

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

ln
(L

ij
t-

1)
0.

21
3*

**
0.

21
3*

**
0.

21
6*

**
0.

21
0*

**
0.

21
4*

**
0.

22
0*

**
0.

20
9*

**
(0

.0
57

)
(0

.0
62

)
(0

.0
63

)
(0

.0
66

)
(0

.0
62

)
(0

.0
64

)
(0

.0
71

)
ln

(G
re

en
_s

to
ck

ij
t-

1)
0.

24
8*

**
0.

24
8*

**
0.

24
2*

**
0.

24
3*

**
0.

24
7*

**
0.

25
8*

**
0.

25
9*

**
(0

.0
26

)
(0

.0
28

)
(0

.0
31

)
(0

.0
33

)
(0

.0
34

)
(0

.0
30

)
(0

.0
36

)
ln

(N
on

_g
re

en
_s

to
ck

ij
t-

1)
0.

51
5*

**
0.

51
1*

**
0.

48
4*

**
0.

45
4*

**
0.

46
7*

**
0.

52
2*

**
0.

46
2*

**
(0

.0
36

)
(0

.0
39

)
(0

.0
41

)
(0

.0
46

)
(0

.0
43

)
(0

.0
38

)
(0

.0
51

)
ln

(E
ne

rg
y_

pr
ic

e i
jt

-1
)

–
0.

14
0*

(0
.0

71
)

ln
(E

ne
rg

y_
pr

ic
e i

jt
-2

)
–

0.
12

3*
(0

.0
67

)
ln

(E
ne

rg
y_

pr
ic

e i
jt

-3
)

–
0.

13
8*

*
(0

.0
68

)
ln

(E
ne

rg
y_

pr
ic

e i
jt

-4
)

–
0.

14
4*

*
(0

.0
66

)
ln

(E
ne

rg
y_

pr
ic

e i
jt

-5
)

–
0.

10
2*

(0
.0

60
)

ln
(P

op
p_

en
er

gy
_p

ri
ce

ij
t-

1)
–

0.
22

4*
(0

.1
32

)
ln

(M
ov

in
g_

av
er

ag
e_

en
er

gy
_p

ri
ce

ij
t-

1)
–

0.
13

9
(0

.0
91

)
C

on
st

an
t

–
0.

98
9

–
1.

03
4

–
1.

01
9

–
0.

75
3

–
1.

01
6

–
0.

74
4

–
0.

77
9

(0
.7

01
)

(0
.7

46
)

(0
.7

95
)

(0
.8

69
)

(0
.8

21
)

(0
.9

06
)

(0
.9

72
)

C
ou

nt
ry

-s
pe

ci
fic

tim
e

fix
ed

ef
fe

ct
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

C
ou

nt
ry

-s
pe

ci
fic

in
du

st
ry

fix
ed

ef
fe

ct
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

N
31

42
30

51
29

69
28

99
28

29
27

25
26

69
G

ro
up

s
17

4
17

4
16

4
15

4
15

4
14

3
14

4
R

2
w

ith
in

0.
91

0.
91

0.
91

0.
90

0.
90

0.
91

0.
90

N
ot

es
:

se
e

Ta
bl

e
2

fo
r

th
e

va
ri

ab
le

de
fin

iti
on

s;
st

an
da

rd
er

ro
rs

th
at

ar
e

ro
bu

st
to

he
te

ro
sk

ed
as

tic
ity

an
d

cl
us

te
re

d
at

th
e

in
du

st
ry

-c
ou

nt
ry

le
ve

l
(c

lu
st

er
ed

sa
nd

w
ic

h
es

tim
at

or
)

ar
e

in
br

ac
ke

ts
un

de
r

th
e

co
ef

fic
ie

nt
s;

**
*,

**
,*

de
no

te
s

st
at

is
tic

al
si

gn
ifi

ca
nc

e
at

th
e

1%
,5

%
an

d
10

%
te

st
le

ve
l,

re
sp

ec
tiv

el
y.




