
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Open Dartmouth: Published works by 
Dartmouth faculty Faculty Work 

10-24-2017 

Addition of T2-Guided Optical Tomography Improves Noncontrast Addition of T2-Guided Optical Tomography Improves Noncontrast 

Breast Magnetic Resonance Imaging Diagnosis. Breast Magnetic Resonance Imaging Diagnosis. 

Jinchao Feng 
Dartmouth College 

Junqing Xu 
Xijing Hospital 

Shudong Jiang 
Dartmouth College 

Hong Yin 
Xijing Hospital 

Yan Zhao 
Dartmouth College 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa 

 Part of the Medicine and Health Sciences Commons 

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation 
Feng, Jinchao; Xu, Junqing; Jiang, Shudong; Yin, Hong; Zhao, Yan; Gui, Jiang; Wang, Ke; Lv, Xiuhua; Ren, 
Fang; Pogue, Brian W.; and Paulsen, Keith D., "Addition of T2-Guided Optical Tomography Improves 
Noncontrast Breast Magnetic Resonance Imaging Diagnosis." (2017). Open Dartmouth: Published works 
by Dartmouth faculty. 3963. 
https://digitalcommons.dartmouth.edu/facoa/3963 

This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has 
been accepted for inclusion in Open Dartmouth: Published works by Dartmouth faculty by an authorized 
administrator of Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/facoa
https://digitalcommons.dartmouth.edu/facoa
https://digitalcommons.dartmouth.edu/faculty
https://digitalcommons.dartmouth.edu/facoa?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3963&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa/3963?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3963&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


Authors Authors 
Jinchao Feng, Junqing Xu, Shudong Jiang, Hong Yin, Yan Zhao, Jiang Gui, Ke Wang, Xiuhua Lv, Fang Ren, 
Brian W. Pogue, and Keith D. Paulsen 

This article is available at Dartmouth Digital Commons: https://digitalcommons.dartmouth.edu/facoa/3963 

https://digitalcommons.dartmouth.edu/facoa/3963


RESEARCH ARTICLE Open Access

Addition of T2-guided optical tomography
improves noncontrast breast magnetic
resonance imaging diagnosis
Jinchao Feng1,2†, Junqing Xu3†, Shudong Jiang1, Hong Yin3*, Yan Zhao1, Jiang Gui4, Ke Wang3, Xiuhua Lv3,
Fang Ren3, Brian W. Pogue1 and Keith D. Paulsen1*

Abstract

Background: While dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) is recognized as the most
sensitive examination for breast cancer detection, it has a substantial false positive rate and gadolinium (Gd) contrast
agents are not universally well tolerated. As a result, alternatives to diagnosing breast cancer based on endogenous
contrast are of growing interest. In this study, endogenous near-infrared spectral tomography (NIRST) guided by T2
MRI was evaluated to explore whether the combined imaging modality, which does not require contrast injection or
involve ionizing radiation, can achieve acceptable diagnostic performance.

Methods: Twenty-four subjects—16 with pathologically confirmed malignancy and 8 with benign abnormalities—were
simultaneously imaged with MRI and NIRST prior to definitive pathological diagnosis. MRIs were evaluated independently
by three breast radiologists blinded to the pathological results. Optical image reconstructions were constrained by
grayscale values in the T2 MRI. MRI and NIRST images were used, alone and in combination, to estimate the diagnostic
performance of the data. Outcomes were compared to DCE results.

Results: Sensitivity, specificity, accuracy, and area under the curve (AUC) of noncontrast MRI when combined with T2-
guided NIRST were 94%, 100%, 96%, and 0.95, respectively, whereas these values were 94%, 63%, 88%, and 0.81 for DCE
MRI alone, and 88%, 88%, 88%, and 0.94 when DCE-guided NIRST was added.

Conclusion: In this study, the overall accuracy of imaging diagnosis improved to 96% when T2-guided NIRST was added
to noncontrast MRI alone, relative to 88% for DCE MRI, suggesting that similar or better diagnostic accuracy can be
achieved without requiring a contrast agent.

Keywords: T2 MRI-guided, Near infrared spectral tomography, Breast cancer, Noncontrast MRI

Background
Clinically, magnetic resonance imaging (MRI) is recog-
nized as the most sensitive examination for breast
cancer surveillance [1–7]. However, dynamic contrast-
enhanced (DCE) breast MRI has a substantial false
positive rate [8, 9] due to its reliance on gadolinium
(Gd) as a nonspecific contrast agent which produces
high sensitivity, albeit with moderate specificity [10, 11].
Unfortunately, Gd-based contrast agents are not

universally well tolerated because of the risk of adverse
reactions [12] and contraindications in patients with im-
paired renal function [13]. The US Food and Drug
Administration (FDA) has noted that higher than rec-
ommended doses or repeat doses of Gd appear to in-
crease the risk for nephrogenic systemic fibrosis in those
who have kidney disease [14]. The FDA is also investi-
gating the risk of brain deposits with repeated use of Gd
with MRI [15].
Relative to DCE MRI, T2 scans distinguish fibroglandular

and vascular tissues from fat based on endogenous contrast
achieved through loss in transverse magnetization due to
spin dephasing from random interactions with surrounding
molecules. Diffusion-weighted imaging (DWI) has been
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used to characterize breast lesions by measuring their ran-
dom motion of free water protons with relatively high spe-
cificity (reported to be 84% in one meta-analysis) [10]. The
combination of T2 and DWI has also been considered for
diagnosis of breast cancer [16, 17]. Unfortunately, the
diagnostic accuracy of either T2 or DWI alone or in com-
bination has not been sufficient to replace DCE MRI in
clinical breast imaging [16–19].
Near-infrared spectral tomography (NIRST) is attractive

because it is noninvasive, fast, relatively inexpensive, and
poses no risk of ionizing radiation [20–25]. In this case,
NIRST illuminates the breast with multiple wavelengths
of near-infrared light to image its optical properties from
which hemoglobin concentration, oxygen saturation,
water, and lipids, as well as scattering properties, can be
inferred [20, 21, 26, 27]. While changes in these quantities
(relative to their values in normal breast tissue) appear to
be indicative of cancer, using them to detect and discrim-
inate small breast abnormalities has not met clinical needs
in diagnostic breast imaging to date.
Recovering the physiological properties accessible with

NIRST by combining it with structural information avail-
able from another high (spatial) resolution imaging
method may overcome this significant clinical limitation.
Indeed, studies have shown that NIRST guided by MRI
provides quantitative maps of optical properties [28–30],
and may be a way of increasing the specificity of DCE
MRI breast examinations [31]. The diagnostic advantages
of combining optical image data with other breast imaging
modalities have also been recognized [25, 27]. To date,
only DCE MRI has been used to guide NIRST image re-
construction [31]. In this study, NIRST was guided by and
added to noncontrast MRI to explore whether the
combined image data, the acquisition of which does not
require contrast injection or involve ionizing radiation,
achieves acceptable diagnostic performance in a prelimin-
ary study of women with undiagnosed breast abnormal-
ities at the time of the imaging examination.

Methods
Subjects
The imaging protocol for human subject participation was
approved by the Committee for the Protection of Human
Subjects at Dartmouth and Xijing Hospital in Xi’an,
China. Women presenting with a clinical breast abnor-
mality scheduled for surgical resection without known
contraindications for MRI or Gd injection were invited to
participate. Written informed consent was obtained from
each participant. Twenty-four women were involved in
the study and fell into an age range from 24 to 64 years.
Of these 24 patients, 16 were found to have pathologically
confirmed breast cancer and 8 had benign conditions. The
average ages of the malignant and benign groups were 48
± 11 years (range 24–64 years) and 31 ± 8 years (range

20–44 years), respectively. Mean body mass index (BMI)
was 23.3 ± 3.6 kg/m2 while breast sizes were distributed as
10 A-cup, 8 B-cup, 3 C-cup, and 3 D-cup. Because most
women in China do not participate in breast screening
programs, patients did not have prior mammography. As
a result, breast density was assessed based on MRI, and
categorized as 1 fatty, 10 scattered, 7 heterogeneously
dense, and 6 extremely dense. Subject data are summa-
rized in Additional file 1 (Table S1).

Imaging procedures
NIRST was performed with a hybrid frequency domain
(FD)-continuous wave (CW) optical imaging system de-
scribed in detail previously [30, 31]. The device included
six FD wavelengths (spanning from 660 nm to 850 nm)
and three CW wavelengths (900 nm to 950 nm). NIRST
data were acquired at all nine wavelengths simultan-
eously with MRI by attaching an optical fiber interface
to the commercial breast coil system already in place for
clinical use [20]. To acquire the optical data, sixteen
sequential source positions illuminated the breast
through a custom optical switch. During each individual
source illumination, the remaining 15 fibers detected
transmitted light, yielding a total of 240 measurements
at each wavelength. For FD measurement, the amplitude
and phase of the detected light were collected by lock-in
detection. For CW measurement, only amplitude data
were recorded. The total NIRST imaging time per breast
was 15 min.
MRI was performed using a Siemens MAGNETOM

Trio 3.0 T scanner and involved standard clinical se-
quences. Specifically, acquisitions included a bilateral T1
precontrast scan (slice thickness < 3 mm), a unilateral T2
turbo spin echo sequence with fat suppression (slice thick-
ness < 5 mm, TR/TE = 6490/61 ms, flip angle = 120°, voxel
size = 1.0 × 1.0 × 4.0 mm, FOV= 332 mm2, and 100% FOV
phase), bilateral DWI with eight b-values ranging from 0
to 1400 s/mm2, and a series of five bilateral T1 postcon-
trast scans spaced 90 s apart. Apparent diffusion coeffi-
cient (ADC) maps were calculated automatically by
software on the MRI system. To achieve coregistration
between MRI and NIRST data, fiducial markers were
placed at the end of each NIRST fiber bundle.

MRI image analysis
MRI examinations were evaluated independently by three
radiologists experienced in diagnostic breast MRI (JX,
more than 15 years; XL, more than 10 years; and KW,
more than 8 years) who were blinded to pathological re-
sults; they scored the image data according to the Breast
Imaging Reporting and Data System (BIRADS). Noncon-
trast images were assessed based on morphological
features in the T2 scans with ADC values as references. In
cases of disagreement, the final MR diagnosis (benign
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versus malignant) was based on majority consensus be-
tween the three radiologists. All lesions were measured
along three orthogonal axes, and the greatest diameter was
considered in the statistical analysis. In cases of multifocal
or multicentric abnormalities, only the largest lesion was
evaluated. DCE images were assessed according to Teifke
criteria for contrast enhancement in focal breast lesions
[32], which incorporates shape, border characteristics, en-
hancement kinetics, and enhancement pattern and maps to
a BIRADS category based on cumulative scores [33]. Suspi-
cious regions were manually segmented by a radiologist
(JX) to create regions-of-interest (ROIs) for subsequent op-
tical property assessment using either the T2 and DWI im-
ages (for noncontrast MRI analyses) or the DCE results (for
comparative DCE MRI analyses). For DCE images, ROI
segmentation was based on subtraction images formed by
subtracting precontrast images from postcontrast images
acquired 78 s after contrast injection. OsiriX image pro-
cessing software (OsiriX MD 7.0, Pixmeo SARL, Bernex,
Switzerland) was used to process all MRI data.

NIRST image reconstruction guided by T2 MRI
Breast images were processed and reconstructed based
on the open-source software platform NIRFAST [34].
Prior to NIRST reconstruction, a patient-specific finite
element mesh was generated from T1 MR images
(Fig. 1a). Then, data calibration was performed with a
reference phantom to correct for small variations in de-
tector response and light delivery, and to obtain initial
estimates of optical properties for NIRST image recon-
struction. Finally, NIRST image reconstruction was
constrained by MR-derived spatial priors encoded

through an automated direct regularization method that
does not require MR segmentation [35], in which a
weighted matrix, L, has the form:

Lij¼
1 i¼j
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where γi and γj are the grayscale values in the 16-bit
MR image data (Fig. 1b for DCE-guided or Fig. 1c for
T2-guided) mapped to nodes i and j on the FEM
mesh, ri and rj are the coordinate positions of nodes i
and j. Mi is a factor chosen for ith row in L, and

satisfies Mi ¼
Xn

j¼1;j≠i

Lij∀i ¼ 1;…; n where n is the num-

ber of finite element nodes. max(|ri − rj|) is the max-
imum distance between any two finite element nodes.
The function, θ(⋅), is the Heaviside step function,
which determines the local weight applied to the ith
NIRST image reconstruction position. σg is the character-
istic grayscale difference over which to apply
regularization, and σd is a factor related to the distance of
influence of elements in the weight matrix relative to
NIRST image position i. The operator, L, encodes optical
property uniformity by penalizing similarly gray MR loca-
tions in the NIRST image to have similar update values at
each iteration of the NIRST image reconstruction algo-
rithm. In this study, parameters in L were fixed based on
previous tests [35, 36], and set to be σg = 0.01, and σd = 0.4.
The regularization parameters used in our experiments

Fig. 1 Example patient with a malignant lesion. a T1 MRI; b DCE MRI; c T2 MRI; d,e reconstructed HbT images with DCE-guided and T2-guided
methods, respectively. Reconstructed images are overlaid on the T1 MRI cross-section. DCE dynamic contrast-enhanced, HbT total hemoglobin,
MRI magnetic resonance imaging, NIRST near-infrared spectral tomography
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were 10 * max(diag(Jk
TJk)), where Jk is the Jacobian matrix

at the kth iteration in the update equation:

Δxk ¼ JTk Jk þ λLTL
� �−1

J Jk d−f xk−1ð Þð Þ

where Δxk is the update to the chromophore concentra-
tions, d is the measured data, f(xk − 1) is the forward
solution using the estimated parameters from the k − 1th
iteration, and the superscript T denotes the transpose
operation.
After NIRST image reconstruction, total hemoglobin

(HbT) contrast was computed as the ratio of the average
HbT in the abnormal ROI to the average HbT in the rest
of the breast, and used to assess differences in benign
and malignant abnormalities in subsequent diagnostic
performance analyses. For evaluations based on noncon-
trast MRI data, ROIs segmented from the noncontrast
MRI images were used whereas ROIs segmented from
the DCE data were applied in the comparative DCE
analysis.

Statistical analysis
Student’s t tests were performed to access statistical dif-
ferences in mean values (HbT contrast ratio, BIRADs
score, and their combination) for breast abnormalities
pathologically classified as benign or malignant.
Receiver-operating characteristic (ROC) analysis was
completed to evaluate differences in differentiation of
benign versus malignant lesions as a function of cutoff
value (HbT contrast ratio for NIRST, BIRADS score for
MRI). The threshold corresponding to the largest sum-
mation of the average sensitivity and specificity on the
ROC curve was considered to be the best cutoff point.
To assess the combination of MRI and NIRST, multiple
logistic regression coefficients were assembled into a
single score which minimized the difference between the
combined variables and the pathological diagnosis.
Significance for all statistical tests was assumed at a
confidence interval of 95% (P < 0.05) for a two-tailed
distribution. The corresponding sensitivity and specifi-
city in the ROC analysis are reported and NIRST recon-
struction results guided by DCE MRI are also listed for
comparison.

Results
Case 1: malignant finding
A woman with an undiagnosed 11 × 21 × 14 mm3 lesion
in her right breast, later pathologically confirmed to be
malignant, was imaged with MR-guided NIRST. Figure 1
shows NIRST HbT images overlaid on the correspond-
ing T1 scans, based on DCE and T2 guidance. The DCE
MRI result in Fig. 1b was formed by subtracting precon-
trast images from postcontrast images acquired 78 s
after contrast injection. The sequence used to acquire

the DCE MRI was nonfat-suppressed as shown in Fig. 1a.
HbT contrast in the ROI (determined independently
from DCE or noncontrast MRI image data) was 1.5 and
2.8, respectively, which is indicative of malignancy.

Case 2: benign finding
A woman with a 21 × 34 × 26 mm3 abnormality in her
left breast, pathologically confirmed as cystic hyperpla-
sia, underwent a MR-guided NIRST examination prior
to definitive diagnosis. Figure 2 shows representative
MR and HbT images based on DCE- and T2-guided
methods. As in Fig. 1, the DCE MRI acquisition was
nonfat-suppressed, and postcontrast subtraction images
are presented. HbT contrast in the ROI (determined in-
dependently from DCE or noncontrast MRI image data)
was 0.9 and 0.5, respectively, for the two guidance
methods, which is indicative of a benign lesion.

Case 3: disagreement in diagnosis
Figure 3 presents two cases where noncontrast MRI
and/or DCE MRI images resulted in misdiagnoses. The
top row contains a false negative case in which the sub-
ject had a 10 × 25 × 25 mm3 lesion in her right breast
that was interpreted as benign based on T2 + DWI MRI.
Data from NIRST indicated the abnormality was malig-
nant given its HbT contrast (average HbT in abnormal
ROI to the average HbT in the rest of the breast) of 3.3
(higher than the cutoff value of 1.1) extracted from the
T2-guided NIRST images. Postsurgical pathological re-
sults confirmed the tissue was malignant.
The bottom row of Fig. 3 shows a noncontrast MRI

and DCE MRI false positive case where the diagnosis
based on either noncontrast MRI or DCE MRI was ma-
lignant. In comparison, the T2 MRI did not exhibit
much regional enhancement, and was used to guide
HbT contrast from NIRST to reveal a value of 0.9 (lower
than the cutoff value of 1.1) suggesting a benign diagno-
sis. Postsurgical pathological analysis confirmed the tis-
sue was benign (adenosis).

Diagnostic performance
Diagnostic performances of MRI alone, MR-guided
NIRST alone, and the combination of MRI with NIRST
are summarized in Table 1. Assuming a BIRADS 4 (or
higher) image rating to be positive for cancer,
noncontrast-enhanced MRI (T2 + DWI) yielded sensitiv-
ity, specificity, and diagnostic accuracy of 88%, 88%, and
88%, respectively, compared to values of 100%, 63%, and
88% for DCE MRI using the same cut-off (i.e., BIRADS ≥
4 as a cancer diagnosis). ROC analysis of MRI alone
yielded area under the curve (AUC) of 0.88 and 0.81 in
the noncontrast MRI and DCE MRI cases. Standard
deviations in the sensitivity, specificity, and accuracy
results from the MRI assessments performed
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independently by the three radiologists were 6%, 0%, and
4%, respectively.
For T2- and DCE-guided NIRST, a significant differ-

ence was found in mean HbT contrast (P ≤ 0.001) be-
tween pathologically confirmed malignant and benign
abnormalities in the study participants (Fig. 4). For an
HbT contrast cutoff value of 1.1, sensitivity, specificity,
and diagnostic accuracy were 88% for both T2- and
DCE-guided NIRST breast examinations. ROC analysis
(Fig. 5) yielded AUCs of 0.91 and 0.90 in the two guid-
ance cases.
When noncontrast MRI (T2 + DWI) and T2-guided

NIRST were combined, sensitivity, specificity, diagnostic
accuracy, and AUC increased to 94%, 100%, 96%, and

0.95, respectively. When DCE MRI was combined with
DCE-guided NIRST, sensitivity, specificity, and accuracy
remained at 88%, although AUC increased to 0.94.
No statistically significant difference was found in the

diagnostic performance of noncontrast MRI relative to
DCE MRI (P = 0.6), or from the combination of
noncontrast-enhanced MRI (T2 + DWI) and T2-guided
NIRST relative to the combination of DCE MRI and
DCE-guided NIRST (P = 0.89).

Discussion
While DCE is the clinically accepted standard for breast
MRI, it has two important limitations: moderate specifi-
city (~80%) and Gd contrast injection that increases

Fig. 2 Example patient with a benign lesion. a T1 MRI; b DCE MRI; c T2 MRI; d,e Reconstructed HbT images with DCE-guided and T2-guided
methods, respectively. Reconstructed images are overlaid on the T1 MRI cross-section. DCE dynamic contrast-enhanced, HbT total hemoglobin,
MRI magnetic resonance imaging, NIRST near-infrared spectral tomography

Fig. 3 Two cases where the diagnosis produced with T2-guided NIRST disagreed with results derived from T2 +DWI or DCE MRI. Top row: a malignant
case misdiagnosed by DCE MRI as a false negative. Bottom row: a benign case misdiagnosed by T2 +DWI or DCE MRI as a false positive. a T1 MRI; b DCE
MRI; c T2 MRI; d,e Reconstructed HbT images with DCE-guided and T2-guided methods, respectively. Reconstructed images are overlaid on the T1 MRI
cross-section. DCE dynamic contrast-enhanced, HbT total hemoglobin, MRI magnetic resonance imaging, NIRST near-infrared spectral tomography
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examination time and cost, and risk of side effects [37, 38].
As a result, interest in T2 and DWI acquisitions has
continued [16–19]. For example, 78% sensitivity and 87%
specificity for breast cancer detection was achieved with
noncontrast MRI in a recent study of 67 women [11]. How-
ever, the diagnostic performance of T2 sequences, with or
without DWI, has not been sufficient to replace DCE MRI
in clinical breast imaging to date.
To the best of our knowledge, this study is the first to

investigate combinations of MR-guided NIRST based on
T2 and DWI sequences to differentiate benign from
malignant breast abnormalities. The approach yielded a
sensitivity of 94%, specificity of 100% and diagnostic ac-
curacy of 96%, which was improved over the perform-
ance achieved with T2 and DWI MRI alone and better
than that attained with DCE MRI and DCE MR-guided
NIRST [31], although statistically significant differences
were not demonstrated. The importance of this finding
is that MRI when combined with NIRST may achieve
clinically acceptable diagnostic performance in women
without contrast injection.
Other noncontrast-injection breast imaging methods,

including x-rays [27] and ultrasound (US) [25], have
been combined with optical tomography. Fang et al. [27]
found statistically significant differences in optical prop-
erties of pathologically confirmed benign versus malig-
nant breast abnormalities. Contrast in absolute and

normalized HbT in cancers was 1.4 or less on average,
or 1.2 or less in benign conditions. No estimates of diag-
nostic performance based on the data were reported.
Statistically significant differences in optical properties
were also presented by Zhu et al. [25] when optical im-
aging was guided by US, and estimates of sensitivity and
specificity ranged from 97% to 100%, and 77% to 83%,
respectively, for two reading radiologists when US and
optical data were combined and imaging results were
compared to pathology classifications. Relative to these
reports, the combination of noncontrast MRI and T2-
guided NIRST offered less sensitivity (94%) but better
specificity (100%).
The sample size in this study is small, and is an im-

portant limitation in extrapolating results to larger
numbers of patients. However, our focus in this study
was to demonstrate that the diagnostic performance of
noncontrast MRI for breast cancer detection could be
improved by adding NIRST during an imaging trial.
While the results of this limited patient cohort showed
that the specificity of T2 + DWI MRI was better than
that of DCE MRI, the trial was not designed to answer a
mechanistic physiological hypothesis. Our interpretation
is that the NIRST guided by T2/DWI or DCE would be
similar in a larger cohort but that, in general, T2/DWI
weighted by water is sufficiently similar to DCE to pro-
vide the guidance needed for NIRST recovery. Clearly

Table 1 Diagnostic performance of MRI, MR-guided NIRST, and MRI combined with NIRST

MRI MRI-guided NIRST Combined MRI and NIRST

DCE T2 + DWI DCE-guided T2-guided MRI DCE + DCE-guided MRI T2 + DWI + T2-guided

P values <0.001 <0.001 0.001 <0.001 0.001 0.002

AUC 0.81 0.88 0.90 0.91 0.94 0.95

Sensitivity 0.94 0.88 0.88 0.88 0.88 0.94

Specificity 0.63 0.88 0.88 0.88 0.88 1

Accuracy 0.88 0.88 0.88 0.88 0.88 0.96

n = 24 patients
P values result from statistical tests of the mean diagnostic parameter in benign versus malignant cases classified by pathology
AUC area under the curve, DCE dynamic contrast-enhanced, MRI magnetic resonance imaging, NIRST near-infrared spectral tomography

Fig. 4 Boxplots of HbT contrast in malignant (n = 16) and benign (n = 8) groups obtained by a T2-guided and b DCE-guided methods, respectively.
DCE dynamic contrast-enhanced, HbT total hemoglobin, NIRST near-infrared spectral tomography
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lesions which have DCE contrast will also have some
level of T2/DWI contrast. It is unlikely that this will be
true for all lesions, but larger patient studies would be
needed to tease out which lesions are more readily im-
aged by T2/DWI NIRST versus DCE NIRST. Addition-
ally, the breast abnormalities evaluated were presented
clinically prior to imaging, and do not reflect the full
population expected in diagnostic breast MRI. Nonethe-
less, the study is the first to examine how a noncontrast
MRI breast examination, when augmented by simultan-
eous optical imaging, compares to DCE MRI, and even
DCE MRI when combined with NIRST in the same
group of patients with undiagnosed breast abnormalities
at the time of the imaging examination. Results showed
that the diagnostic accuracy of combining T2-guided
NIRST with noncontrast MRI was 96%, which was
better than the performance of DCE MRI (88%) in the
subjects evaluated. Enrollment of women in a larger
study will allow more definitive estimates of the diagnos-
tic performance of endogenous contrast in breast abnor-
malities examined with MRI combined with NIRST.
Interestingly, subjects with breast abnormalities that

proved to be benign were predominantly premenopausal
(7/8) and had denser breast tissue. While this study did
not contribute confirmatory data, the diagnosis of be-
nign lesions in postmenopausal subjects with less dense
breasts would likely be improved compared to the re-
sults shown here. Indeed, the quality of T2 + DWI and
NIRST images in less dense breast tissue is typically bet-
ter than in the dense breast, in part because the signal to
noise ratio of detected optical signals is usually much
higher. Thus, we would expect that the T2 + DWI and
NIRST diagnostic performance would improve in classi-
fying benign lesions in postmenopausal breasts that are
more likely to have lower radiographic densities.
In addition to using HbT contrast to assess differences

in the benign and malignant breast abnormalities that

were imaged, other optical chromophores such as oxy-
gen saturation, water, lipids, and scattering properties
were also extracted from the images of all patients. A
statistically significant difference between the benign and
cancer cases was found in HbT contrast but not in any
of these other parameters individually, and we did not
evaluate multiparameter indices or consider combina-
tions of properties in the analyses reported here.
The MRI-guided NIRST reconstruction method used in

this study is influenced by the MRI grayscale contrast and,
as a result, both the ROI volume and the regularization
scaling are different depending on whether T2 MRI or
DCE MRI is applied. These differences led to the differ-
ences observed in the recovered HbT contrast obtained
with the two methods in individual subjects. Information
on grayscale contrast and ROI volume has been added to
Additional file 1 (Table S1) so that these differences can
be appreciated in each case.
ROIs were defined based on the morphology but not

the brightness of the T2 signal. Although the T2 signal
of many breast lesions, especially malignant lesions, is
brighter than the surrounding normal tissue, the degree
of enhancement depends on the specifics of pathological
tissue composition and/or lesion progression (i.e., nec-
rotic fibrosis in lesions, and so forth); hence, the T2 sig-
nal in some lesions is darker than the surrounding
normal tissue, as in Fig. 3c. Moreover, the T2 signal
levels in some lesions are heterogeneously mixed, being
brighter and darker in neighboring areas. Figure 3c is a
good example of the difficulty in identifying breast
cancers without specific radiology training and experi-
ence, and how optical imaging can add diagnostic power
to noncontrast breast MRI.

Conclusions
In this study, women with undiagnosed breast abnor-
malities were imaged with noncontrast MRI combined

Fig. 5 ROC curves for a DCE-guided NIRST, DCE MRI, and combined DCE MRI and DCE-guided NIRST, and b T2-guided NIRST, T2 + DWI MRI, and
combined T2 +DWI MRI and T2-guided NIRST. DCE dynamic contrast-enhanced, MRImagnetic resonance imaging, NIRST near-infrared spectral tomography
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with NIRST. The overall accuracy of imaging diagnosis
improved to 96% when T2-guided NIRST was added to
noncontrast MRI alone, relative to 88% for DCE MRI.
This result suggests that T2 MRI-guided NIRST may
offer diagnostic imaging of breast abnormalities with ac-
curacy comparable to DCE MRI in patients for whom
contrast examinations are contraindicated.

Additional file

Additional file 1: Table S1. Complete MRI and optical data from 24
patients analyzed. Data in the DCE and T2 + DWI columns are the results
of radiologist interpretation, where “1” and “0” indicate malignant and
benign diagnoses, respectively. Data in DCE-NIRST and T2-NIRST columns
are the contrast ratio of HbT in the abnormal ROI relative to the rest of
the breast. (PDF 32 kb)
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