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Optical and x-ray technology synergies enabling
diagnostic and therapeutic applications in medicine

Brian W. Poguea,* and Brian C. Wilsonb

aDartmouth College, Thayer School of Engineering, Geisel School of Medicine, Hanover, New Hampshire, United States
bUniversity of Toronto, Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada

Abstract. X-ray and optical technologies are the two central pillars for human imaging and therapy. The
strengths of x-rays are deep tissue penetration, effective cytotoxicity, and the ability to image with robust pro-
jection and computed-tomography methods. The major limitations of x-ray use are the lack of molecular speci-
ficity and the carcinogenic risk. In comparison, optical interactions with tissue are strongly scatter dominated,
leading to limited tissue penetration, making imaging and therapy largely restricted to superficial or endoscopi-
cally directed tissues. However, optical photon energies are comparable with molecular energy levels, thereby
providing the strength of intrinsic molecular specificity. Additionally, optical technologies are highly advanced
and diversified, being ubiquitously used throughout medicine as the single largest technology sector. Both
have dominant spatial localization value, achieved with optical surface scanning or x-ray internal visualization,
where one often is used with the other. Therapeutic delivery can also be enhanced by their synergy, where radio-
optical and optical-radio interactions can inform about dose or amplify the clinical therapeutic value. An emerging
trend is the integration of nanoparticles to serve as molecular intermediates or energy transducers for imaging
and therapy, requiring careful design for the interaction either by scintillation or Cherenkov light, and the nano-
scale design is impacted by the choices of optical interaction mechanism. The enhancement of optical molecular
sensing or sensitization of tissue using x-rays as the energy source is an important emerging field combining
x-ray tissue penetration in radiation oncology with the molecular specificity and packaging of optical probes or
molecular localization. The ways in which x-rays can enable optical procedures, or optics can enable x-ray pro-
cedures, provide a range of new opportunities in both diagnostic and therapeutic medicine. Taken together,
these two technologies form the basis for the vast majority of diagnostics and therapeutics in use in clinical
medicine. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.23.12.121610]
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1 Introduction
Medical devices for diagnostics and therapeutics form the tech-
nological backbone of medicine, the most commonly utilized
devices being radiological or optical in nature. Here we consider
the evolving intersection between the two domains of radiodiag-
nostics/radiotherapeutics and photodiagnostics/phototherapeu-
tics. It is of historical interest that, within a 10-year period,
two of the earliest Nobel Prizes were awarded: to Roentgen for
the discovery of x-rays in 1895 (Physics Prize) and to Finsen for
the therapeutic applications of light in 1903 (Medicine &
Physiology Prize). Of course, since that time, applications in
therapy and diagnostics have flourished, with both domains
having several more prize-winning advances and contributing
in major ways to healthcare discoveries.

Considering first optical technologies, their greatest benefits
revolve around the practical considerations of low cost, com-
pactness, suitability for point-of-care use and positive safety
profile, and especially for their fundamental properties of
molecular sensitivity/specificity and wavelengths on the order
of cellular/tissue structures. As a result, optical technologies
are found throughout medical practice: in primary care, e.g.,
otoscopy, pulse oximetry, bilirubin monitoring in neonates; in
diagnostics, e.g., endoscopical, dermatological, and ophthalmo-
logical imaging; in interventional guidance, e.g., in surgery

and cardiology; and in light-based therapeutics, e.g., surgical,
dermatological and ophthalmological lasers, photodynamic
therapy, and phototherapy. In addition, optical microscopy is
the backbone of histopathology, whereas techniques such as
flow cytometry and light-based biochemical analysis of tissues,
cells, and body fluids are also essential parts of the diagnostic
armamentarium.

Perhaps the most notable feature of optical biotechnologies is
their technical diversity. This comes from a combination of
many enabling optical components and materials (laser and non-
laser light sources, fiber optics, photodetectors, and nonlinear
optical materials) with the multiplicity of light-tissue inter-
actions (absorption, elastic and inelastic scattering, polarizabil-
ity, interference, etc.) that increasingly includes also the
nonlinear domain using ultrafast laser pulses (ablation, multi-
photon fluorescence, harmonic generation, stimulated Raman
scattering, etc.). As a result, optical technologies tend to be
highly specific to the organ, disease, and diagnosis, with differ-
ent devices for different specialties. This contrasts with x-ray
imaging and therapy systems that are much more general
purpose, with a given device spanning a spectrum of clinical
procedures. The clinical users of optical technologies also span
a much wider range of specializations than do x-rays, which are
primarily used within diagnostic radiology, radiation oncology,
and cardiology. The scope of the two domains is expressed
in terms of corresponding commercial markets [Fig. 1(a)]:
perhaps surprisingly, optics-based tools have a much larger
market footprint than do x-ray technologies. Additionally, the
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optical tools are expanding rapidly, due to interest in wearable
and home-care technologies. The biomedical optics sector is
expanding at double-digit annual rates.

The greatest challenge in photodiagnostics/therapeutics
comes from the relatively poor tissue penetration of light
(UV/visible/near-infrared), due to elastic scattering that is
∼1000-fold higher than for x-rays [Fig. 1(b)]. Hence, optical
techniques are restricted to directly accessible sites, such as
the skin, eyes, and oral cavity, or require fiber-optic technologies
in the form of endoscopic or intraoperative imaging, and for
therapeutic light delivery to deep-seated tissues. Optical imag-
ing through several cm of tissue thickness can be done at the cost
of spatial resolution and is commonly used for interventional
guidance, often in real time. The optical absorption and scatter-
ing properties of tissues are also variable over orders of
magnitude from organ to organ and with disease, in a strongly
wavelength-dependent manner, so that quantitative imaging and
accurate energy targeting are extremely challenging, especially
in 3-D. The absorption varies over six orders of magnitude in
the visible range, but the effective attenuation is elastic-scatter
dominated. Far-red and near-infrared (NIR) wavelengths have
the highest tissue penetration, where hemoglobin, melanin,
and water absorptions are low. Most optical imaging systems
probe only a few mm below the illuminated tissue surface
with high spatial resolution. Similarly, in phototherapeutics,
high spatial localization can be achieved only near the exposed
tissue surface or within a small distance from an interstitial light
source, while up to about 1 cm of effective treatment range can
typically be achieved using diffuse light.

By contrast, a major advantage of x-rays is their high tissue
penetration [Fig. 1(b)]. Thus, x-ray imaging, either in the form
of planar transmission techniques (static or dynamic/fluoro-
scopic) or computed tomography, can image all parts of the
body with mm resolution. Likewise, MV x-rays from medical
linear accelerators, guided by sophisticated pretreatment plan-
ning and enabled by dynamic collimation devices, allow precise
therapeutic energy delivery to the target tissue (e.g., tumor).
These capabilities are significantly enabled by the relatively
small variations in the x-ray interaction coefficients within

and between tissues so that generic (water equivalent) values
suffice for most treatment planning purposes and the radiation
dose distribution can be uniform throughout the target volume.
Importantly, however, x-rays lack molecular specificity as the
interactions are at the atomic level. The carcinogenic risk in
imaging and the off-target damage to normal tissues, are also
significant limitations.

In general terms then, the question is: How can the comple-
mentary strengths of the radiation and optical domains be
exploited to address the intrinsic and practical limitations of
either domain? We will consider also how nanotechnologies,
and specifically x-ray and/or photoactive nanoparticles, can
facilitate this.

The use of optical technologies in radiation medicine has a
long history, albeit in a limited sense. Examples include optical
readout of x-ray film, scintillation materials for conversion of
x-rays to light (and then to electrons) for signal detection in
x-ray imaging systems, and dosimeters. More broadly, the
potential uses can be considered separately for x-ray imaging
and radiation therapy or can be broken down along the lines
of physical, biochemical, or biological interactions.

Similarly, x-ray enabling of optical procedures has a broad
range of applications, such as x-ray imaging to guide the
placement or monitor the location of optical devices such as
intravascular probes or capsule endoscopes. One of the most
well-known examples is virtual colonoscopy by x-ray CT, where
the surface topology of the colon is outlined by x-ray imaging to
assess the need for real (i.e., optical) colonoscopy to remove or
biopsy polyps. Intravascular placement of stents or other devices
can also require hybrid x-ray and optical imaging tools.

The existing and potential interfaces between optical and
radiation technologies and their applications may be split into
(1) optical techniques used to enable diagnostic radiology
and therapeutic radiation oncology and (2) x-ray technologies
used to enable photodiagnostics and phototherapies, as shown
in Fig. 2.

The idea depicted here is that there are two different ways
to enhance clinical value by exploiting the complementary
strengths of the optical and x-ray domains. Some aspects of

Fig. 1 (a) The global market sectors (US$ billion/year) for optical and x-ray biomedical technologies.1

(b) The attenuation mechanisms across the usable electromagnetic spectrum for water: note the steep-
ness of absorption and scatter on either side of the red/near-infrared wavelength ranges, and the
presence of high elastic scattering in this optical “window.” Medical imaging is done in each of the three
areas of low attenuation, with x-ray, optical and magnetic resonance imaging techniques.
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these interactions are well known and commonly used, such as
cone beam x-ray CT localization of optical fibers delivering
therapeutic light or optical (laser) alignment in radiotherapy
delivery. However, many of the potential and under-developed
synergies are at a more fundamental biochemical or nanotech-
nological level, as will be considered below. Figure 2 is intended
to stimulate and guide thinking at a more abstract level about the
spectrum of potential synergies along the diagnostics-to-thera-
peutic continuum (downward arrows) and the two-way reciproc-
ity between optical and x-ray interactions (sideways arrows).
Specific practical examples of the intersections are listed in
Table 1.

2 Optics-Enabled X-Ray Techniques
In this section, we will consider the ways in which diagnostic
and therapeutic applications of x-rays are, or could be, enabled
or enhanced by optical technologies.

2.1 Current Medical X-Ray Technologies

Electronic x-ray production is among the most important dis-
coveries in medicine. In imaging, the controlled production
and detection of Kev x-rays provides optimal spatial resolution
and contrast at minimum radiation dose.2–8 As shown in Fig. 3,
x-ray imaging systems have a range of complexity that is related
to the clinical applications, progressing from simple two-dimen-
sional (2-D) projection imaging to 3-D volumetric or cross-
sectional tomography to real-time fluoroscopic guidance of
intervention procedures (e.g., vascular stent placement, aneu-
rysm closure and tissue ablation, including by laser light).
Optical detectors form the core of many x-ray sensor systems,
although there have been major advances in the last decade
toward detectors that use direct conversion of x-rays to elec-
tronically charge. Indirect detectors using intermediate optical
processes continue to evolve from advances in materials science,
including nanotechnology. The latter will be discussed further
below.

In radiation therapy, MV x-ray beams and the resulting 3-D
dose distributions are defined with mm accuracy throughout the
target volume (e.g., tumor) and intervening tissues.9–19 Precision
multileaf collimators control the lateral extent of the beam and
allow shaped targeting. Combined with a rotating gantry and
freedom of movement of the patient table, advanced inverse
treatment planning algorithms allow the maximum uniform
target dose with minimal dose to the intervening organs.

Table 1 Categories of interactions between optical and x-ray procedures, based along the lines of diagnostics and therapeutics (columns) and
physical/technological, biological/functional, and biophysical/biochemical effects (rows).

Optics enable x-rays X-rays enable optics

Diagnostic radiology Radiation oncology Optical diagnostics Optical therapeutics

Physical and
technological

Physical Alignment laser beams Surface mapping Measurement site
localization/planning

Surgical localization and
pretreatment planning

Detector Film, indirect imaging
detectors, flat panel
imagers

Detection/dosimetry film,
portal imagers, point
dosimeters

Real time guidance Real time interventional
guidance

Interactive Scintillation, indirect
detectors

Gel dosimeters,
water-tank imaging

Biological and
functional

Body position Basic alignment Surface mapping Localization of internal
anatomy

Assessing vascular
occlusion

Vascular Vascular: Pulsatile flow,
perfusion, parametric

Dosimetry verification
QA of beam accuracy

Imaging in cardiovascular
procedures

Assessing tissue necrosis

Metabolic Oxygenation, water,
scatter changes, immune,
RNA/DNA sensing

Blood oxygenation,
molecular sensing

Complementary vascular
and cellular treatments

Biophysical
and biotech

Biophysical Radio-luminescence Cherenkov and
scintillator-mediated
molecular probes

X-ray activated optical
reporters

Complementary cellular
damage

Nanotech Molecular probes Optical sensitization X-ray-based molecular
imaging

X-ray activated
photosensitization

Fig. 2 Illustration of approaches to enhancing the cross-over between
the x-ray and optical domains.

Journal of Biomedical Optics 121610-3 December 2018 • Vol. 23(12)

Pogue and Wilson: Optical and x-ray technology synergies enabling diagnostic and therapeutic applications in medicine

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics on 26 Jul 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Optical tools have become pervasive throughout radiation
oncology, with lasers used in almost every treatment unit
for daily patient alignment20–22 and now surface mapping for
patient setup and verification,23 both shown in Fig. 4. Further
information to aid in optimal treatment delivery comes from
the original technology of (optical) film dosimetry as well as
thermoluminescence.24–26 Optical gel dosimeters are under
active development27–30 to enable accurate direct dose verifica-
tion. Fiberoptic-based scintillation dosimetry has also been
developed,31–34 with extension to scintillating fiber arrays for
dose mapping,35,36 where the signal comes from the scintillator
radioluminescence.

2.2 Emerging and Future Medical X-Ray
Technologies Enabled by Optics

In x-ray diagnostics, the evolution of optical positioning devi-
ces will likely continue, with hybrid surface-mapping tools
combined with time-gated imaging to reduce motion artifacts
such as around the lungs or heart. These optical tools are now
widespread throughout clinical medicine and likely to grow in
more use. Optical measurements and imaging based on
Cherenkov light from radionuclides have been reported in
the last decade,38,39–43 with significant investigations into sur-
face/subsurface imaging. The most promising applications to
date have been in small-animal imaging, but initial clinical
studies have also been reported,44,45 e.g., to detect tumor mar-
gins in surgical-specimens.46,47 Early-stage commercial proto-
types have been developed. It is still not yet clear how this
will impact clinical medicine, but trials are emerging now in
margin detection and other surface detection needs in nuclear
medicine.

In x-ray therapeutics, advances are being made using optics-
based technologies and in exploiting intermediate photophysical
or photochemical processes to enhance precision and efficacy.
As shown in Fig. 4, these include fiber optic-based dosimetry

exploiting scintillation detection,31 online monitoring of tissue
oxygenation status using hemoglobin spectroscopy48 and, more
recently, imaging the Cherenkov light generated in tissue by
high-energy secondary electrons from MV x-ray beams during
treatment. This last approach enables the irradiated tissue sur-
face area to be directly visualized in real time and so is a prom-
ising addition to existing tools for quality control and precision
x-ray dose delivery.49–51 While this is just in the early clinical
trial stage, the potential for treatment monitoring seems prom-
ising, as discussed further below.

A complementary aspect of optics-enabled radiation
therapy is radiosensitization. Efforts to exploit radiochemistry
to increase the sensitivity of tumors relative to normal tissues
have been ongoing for decades52 but have not translated into
routine clinical practice. The greatest success has been in com-
bining radiotherapy with chemotherapy, for example, using
cisplatin and 5FU53,54 and other targeted adjuvant biological
therapies to inhibit DNA repair55 or to inhibit cell-signaling
molecules.56,57 Physical radiosensitization using metal
nanoparticles58,59 has shown some promise through the gener-
ation of additional secondary-electron dose. A recent develop-
ment is the use of psoralens with x-ray activation as
photochemical radiation sensitizers. Psoralens are used com-
monly for phototherapeutics in psoralen activation by ultravio-
let A radiation (PUVA) treatment of benign skin diseases (e.g.,
psoriasis) where, upon activation by externally applied UVA
light, they intercalate into DNA and prevent cell division.
Mediated by the Cherenkov light generated by MV x-rays,
psoralens have recently shown radiosensitizing properties
for low-dose fractionated radiotherapy, both in vitro and in pre-
clinical tumor models in vivo.60,61 This novel approach is
thought to be based on fundamentally different mechanisms
of action than conventional physical or chemical radiosensi-
tizers. There are also potential synergistic interactions in
x-ray-induced photosensitization using nanoparticles, as dis-
cussed below.

Fig. 3 X-ray diagnostic and therapy systems in 2-D and 3-D: diagnostic x-ray imaging systems are widely
used in (a) 2-D and (b) 3-D imaging as well as (c) dynamic 2-D (“2.5-D”) during fluoroscopy-guided
procedures. In radiotherapy, geometric precision of dose deposition is critical and (d) dose control is
obtained laterally by beam collimators and (e) axially by the choice of the beam energy or particle
type. Together these axial and lateral controls are used with computational treatment planning tools
to optimize a dose plan (f) with a dose volume histogram that maximizes the % area of planning treatment
volume while minimizing dose to organs as risk.
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3 X-Ray Enabled Optical Techniques
In this section, we will consider ways in which x-rays are or
could be used to overcome existing limitations of photodiagnos-
tics and phototherapeutics, particularly the low penetration of
visible/NIR light in tissue.

3.1 Current Biomedical Optics Technologies

Photodiagnostics and phototherapeutics cover an extremely
diverse set of technologies and clinical applications, so that
this topic is not exhaustively covered here. Photodiagnostic
techniques include: pulse oximetry based on optical spectros-
copy of hemoglobin; ophthalmological, dermatological, and
endoscopic imaging techniques in vivo; cytological and histopa-
thological techniques ex vivo for disease detection, localization
and staging; low-cost, point-of-care spectroscopic and imaging
devices; systems for interventional guidance, particularly in sur-
gery but also in applications such as wound care, as well as in
radiotherapy as seen above. These optical technologies are often
used stand-alone but increasingly are seen also in combination
with other optical or nonoptical methods. Optical diagnostic

techniques/technologies can utilize many different light-tissue
interactions, both linear (signal proportional to local light
intensity) and emerging approaches that utilize nonlinear
interactions. Either may be “label free,” i.e., based on endog-
enous biomolecular composition or tissue microstructure, or
may use topically- or systemically administered exogenous
molecular or nanoparticulate optical “reporters.” Opportunities
and challenges in translating these various technologies into
clinical use have been discussed in several recent papers.62–66

The sensitivity and specificity of the optical signals from tis-
sue are indicatives of biochemical and/or ultrastructural features
associated either with normal morphological/physiologic/
molecular processes or with changes in these diseases. The
molecular sensitivity of optical diagnostics has been widely uti-
lized with both endogenous and exogenous signals. Endogenous
approaches include: volumetric diffuse reflectance or transmit-
tance spectroscopy/spectral imaging based on a combination of
absorption (biochemical content) and elastic scattering (tissue
microstructure) and used for low-resolution tomography, vascu-
lar perfusion, and blood-flow imaging; tissue autofluorescence
from collagen, porphyrins and various metabolic cofactors;

Fig. 4 Examples of optical technologies applied to radiation medicine. (a) Patient positioning by laser
lines projected onto fiducial markers. (b) Surface projector/camera systems that use stereo vision or
active illumination to map 3-D surfaces for patient position verification. (c) Measurement of blood oxy-
genation by pulse oximeter tracking the subtle attenuation changes from arteriole fluctuations.
(d) Spectroscopic measurements from hemoglobin, water, fat or scattering to quantify constituents.
(e) Direct Cherenkov imaging of radiation beams on tissue to verify delivery in real time.
(f) Scintillation fiber-based dosimetry for accurate quantitative measurements of radiation in situ during
radiotherapy.37 © Institute of Physics and Engineering in Medicine. Reproduced by permission of IOP
Publishing. All rights reserved.
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Raman scattering that probes intra-molecular vibrational states;
optical coherence tomography showing cross-sectional micro-
heterogeneities in refractive index due to intercellular and
intracellular membrane structures; and elastic-scattering spec-
troscopy in which the fine details of the diffuse optical spectrum
depend on the nuclear size distribution that changes between
normal and malignant cells (increased ploidy). Nonlinear optical
imaging techniques, based on the interaction of ultrashort (fs)
laser pulses with tissue, include multiphoton absorption and har-
monic scattering that provides access to new cellular and extrac-
ellular features such as collagen ultrastructure and distribution in
the extracellular matrix that is an important element in tumor
growth and spread.67,68 Exogenous optical reporters may be dis-
ease-targeted, with correspondingly optimized instrumentation,
to enable, e.g., mapping of blood perfusion/flow, metabolic
enzyme activity, mineral content, pH, oxygen, or cell-signaling
molecules.69–72 The advantage is that there is wide latitude in
“designer” reporter molecules to probe specific biological
functions. The use of nanoparticle-based optical reporters also
increases the detection sensitivity and expands the range of
biological targets.

An important recent trend has been the development of
hardware and software for hybrid optical-radiation imaging
tools, for example, x-ray CT combined with fluorescence or bio-
luminescence, where the former provides gross morphological
information to help localize and quantify the optical signals.73

To date, this has focused primarily on preclinical small-animal
imaging,74,75–77 but some combinations could be moved into
clinical applications, e.g., x-ray CT (or MRI, ultrasound)-guided
fluorescence endoscopy or intravascular imaging. This could be
achieved either by simply using the technologies independently
or by true instrumental hybridization. Although not in the x-ray
domain, an example of hybrid optical/nonoptical technologies is
photoacoustic imaging where, after being spatially diffused by
elastic scattering, short (ns) pulses of laser light are absorbed
locally in the tissue by hemoglobin or exogenous agents,
causing thermal expansion that in turn generates acoustic
waves that are detected by ultrasound arrays.78–80 This is now
moving rapidly into clinical translation, as it combines the
depth capability of ultrasound with the molecular specificity
of light.

Optical therapeutics similarly covers a very broad range of
light-tissue interactions and corresponding technologies.
The choice of wavelength and power density determines,
which interaction mechanism is dominant (Fig. 5): biomodula-
tion using red/NIR light at very low power densities
(∼0.01 Wcm−2 continuous or long-pulse) that is likely mediated
by triggering of endogenous metabolic pathways; photochemi-
cal treatments such as PUVA or photodynamic therapy that use
photosensitizers and vis/NIR light (∼0.1 Wcm−2, continuous)
to target mammalian cells (cancer/precancer, vascular diseases)
or micro-organisms (localized infections); photothermal treat-
ments (∼1 Wcm−2 continuous or ∼ms pulsed) used in derma-
tology for the removal or suppression of blood vessels,81

hair, acne82 and tattoos83 and for skin resurfacing,84 and in
other medical specialties for deeper treatments via endoscopic
or interstitial fiber-optic light delivery for surgery and
photocoagulation;85–88 photomechanical ablation of tissues,
either via direct molecular bond breaking using UV lasers
(∼109 to 1013 Wcm−2, 10−13 to 10−9 s pulsed) for high-preci-
sion surgery such as corneal reshaping or by direct photophys-
ical ejection of material (∼105 to 109 Wcm−2, 10−8 to 10−5 s

pulses) as used in laser surgery; photoelectromechanical
ablation mediated by plasma and subsequent microbubble
formation/collapse, as used, for example, to break kidney stones
via fiber-optic light delivery (∼103 to 106 Wcm−2, 0.001 to
1 s).85–88 Photochemical/photodynamic treatments using exog-
enous photoactive agents add a further degree of molecular
specificity over and above the light targeting.89–91 These act
through a variety of photobiological mechanisms: necrotic,
apoptotic or autophagic tumor cell kill; damage to the microvas-
culature as in treatment of age-related macular degeneration,92

AMD;93 and/or triggering of systemic immune responses.94,95

These cytotoxic effects are mediated by the photogeneration of
excited radical states, such as singlet oxygen, which has also
been a primary focus in the development of radiation-enabled
phototherapeutics, as discussed below.

While ablative and thermal phototherapeutic technologies
have had the greatest clinical and commercial penetration to
date,96 they tend to have limited tissue specificity, and the
targeting is purely photophysical. This contrasts with photo-
chemical/photodynamic treatments that have the potential for
higher specificity based upon molecular or cellular uptake
and retention of an activatable material. In general, treatments
that shift from macroscopic to more microscopic or molecular
biological targeting enhance the specificity of damage. For
example, vascular damage is rather nonspecific, whereas cellu-
lar targeting can be more specific to the disease (e.g., cancer).97

In particular, targeting of biomarkers, such as cell surface
receptors in immunophotodynamic therapy,98,99–101 which are
overexpressed in diseased cells, or localization of the photoac-
tive material in intracellular organelles,102 including the
nucleus,103,104 can enhance specificity of the therapy. Higher
specificity leads to superior therapeutic ratio, because in the
end cancer treatment is about the relative killing efficacy to
the tumor relative to surrounding tissues or normal organs at
risk of damage. This so-called therapeutic ratio determines
the value of a treatment, in terms of tumor to normal tissue dam-
age. Higher targeting specificity can improve this ratio signifi-
cantly, and intelligent combinations of optical-x-ray therapies
can maximize this.

Fig. 5 Schematic of the dependence of the dominant photophysical
interaction and resulting biological effects as a function of the light
pulse length for a given optical energy density. Which effect is dom-
inant also depends strongly on the localization of the optical absorber,
and the specificity increases with more intraorganelle or nuclear
targeting. Microlocalization and longer treatment times both generally
provide superior specificity. Increasing specificity to tumor cells
relative to the surrounding normal organs is key to maximizing the
‘therapeutic ratio’ of kill between tumor and normal tissue.
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3.2 Emerging and Future Biomedical Optical
Technologies

3.2.1 Scintillation and Cherenkov light

The interaction of ionizing radiation with matter can take
many forms, from radiochemistry to radioluminescence.105,106

Enhancement of radiation damage through molecular radiosen-
sitizers and nanoparticles typically involves a complex cascade
of many secondary events.107 However, the events that directly
precede molecular damage in therapy or molecular excitation in
diagnostics can be preferentially enhanced by the addition
of scintillation materials or by the intrinsic Cherenkov light
generated in tissue.

Scintillation light is generated from direct transfer of energy
from x-ray photons to electrons through the photoelectric effect
in high atomic number materials. The resulting spectrum is
common in the UV to blue–green wavelength range that has
poor penetration in tissue, although red-emitting scintillation
nanoparticles have been reported based on materials.108,109

Cherenkov light is produced by the interaction of charged
particles traveling near the velocity of light in a dielectric
material.110–112 This emission is broadband, peaking in the
UV-blue region and decaying as the inverse square of the wave-
length. In water this is seen as blue light, but in tissue the blood
absorption means that the red/NIR components propagate the
furthest.

Both scintillation and Cherenkov light have been investi-
gated for x-ray-mediated imaging and therapy as shown in
Fig. 6 and appear promising as each x-ray photon can generate

∼103 Cherenkov photons or ∼103 to 105 scintillation photons.
For the latter, however, the volume fraction of the scintillator in
tissue, as well as the spectral ranges, determine how much of the
light is biologically effective. Most nanoscintillators could be
administered in a pharmaceutical formulation, but at best
would achieve ∼0.1% volume fraction [Fig. 6(c)]. The quantum
yield for nanoscintillation also decreases with x-ray photon
energy so that there is a trade-off between light generation
and x-ray penetration depth. By contrast, Cherenkov light is
generated throughout the exposed tissue volume but has an
energy threshold of ∼220 Kev, with the output rising rapidly
[Fig. 6(d)] and plateauing in the MeV range.

Many scintillators have been developed for KeV x-ray
detection: in film screens, as indirect digital sensors and in
CT. Inorganic CsI(Tl), CsF, BaF2, CaWO4 BGO, and LSO
crystals have been used in a range of x-ray imaging
applications.113–117 More recently, nanoparticles,118–120 nanofib-
ers,121 and nanowires122–124 have been investigated for imaging
and sensing, exploiting their enhanced luminescence and
short decay times that result in higher light output per unit
radiation dose.

Historically, cancer patients have reported seeing
(Cherenkov) light during therapeutic irradiation of the head
with 6 to 18 MeV electrons,125 and studies of therapeutic
beams have shown that this light is readily detectable.49,126,127

Cherenkov emission from linacs, as well as from radioisotopes,
has recently been investigated for in vivo optical molecular im-
aging using high-sensitivity camera systems.40,128,129–134 Gamma
rays and MeV x-rays generate Cherenkov light via secondary
electrons, and the intensity is governed only by the tissue refrac-
tive index and the secondary electron velocity.

3.2.2 Nanotechnology-mediated, x-ray-induced optical
interactions

Advances in nanomaterials and their surface chemistry have
diversified the options for generating light in tissue from
x-rays. This includes direct x-ray interactions with metal or
scintillating nanoparticles, as well as Cherenkov-mediated
energy transfer from x-rays to UV/vis absorbers such as photo-
catalysts or photosensitizers as shown in Fig. 7.

In the therapeutic realm, there are reports of direct (i.e., non-
light-mediated) activation of photodynamic sensitizers by x-rays,
although the biological efficiency is modest.135 Alternatively,
scintillation nanoparticles have been investigated for light
generation within target tissues upon x-ray irradiation to
activate photosensitizers139–143 particularly for cancer treatment.
Inorganic nanomaterials have been conjugated to organic photo-
sensitizers in several studies to convert the x-ray photons to vis-
ible light that overlaps with the excitation spectrum of the
photosensitizer.136,144–146 There may also direct resonant energy
transfer between the excited scintillator and the photosensitizer
molecules, which should have orders-of-magnitude higher effi-
ciency than the two-step process of light generation followed by
light absorption (see below).

Although not light-mediated and so outside the scope of this
discussion, gold and platinum nanoparticles have been tested
as radiation sensitizers,59,147 with dose-enhancement factors
as high as about 50% in some reports.148–150 However, it is
unclear if the enhancement is simply due to increased DNA
damage151 as much of the sensitization is thought to be from
short-range Auger electron emission that may not be colocated
with the relevant biological targets. A major challenge in metal

Fig. 6 Direct and secondary x-ray (or radionuclide) interactions pro-
ducing light via (a) scintillation or (b) Cherenkov. (c) Order-of-magni-
tude estimates of the light yields in tissue. (d) Energy dependence of
the two processes.
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nanoparticle-based radiosensitization is to achieve robust
enhancement at biologically relevant concentrations.

Photochemical therapies that utilize UVor short-wavelength
visible light can also exploit x-ray Cherenkov.152,153 Likely
candidate photosensitizers are UV-excited photocatalytic nano-
particles, such as TiO2 or Al2O3. These have complex surface
chemistry but can be designed to maximize electron-transfer
that increases the efficacy.154,155 Alternatively, organic mole-
cules such as porphyrins, bacteriochlorins, phthalocyanines,
and smaller cyclic structures that absorb UV/violet–blue light
operate through generation of biologically active free radicals
or excited-state oxygen.156–158

Direct x-ray excitation is dominant in metals and scintilla-
tors, and there are multiple excitation mechanisms in photoca-
talysts and photosensitizer molecules. The choices to achieve
maximum energy transfer here are not obvious because of
the complexity of initiating events and the cascade of secondary
events in the energy-transfer process.159 Quantitative compari-
son of the physical efficiency and resulting biological effective-
ness of these approaches remains challenging.

Higher biological efficacy is generally possible when the
nanoparticles are modified to achieve better biotargeting or
biodispersity to specific tissues, or to enhance catalysis or
subsequent photosensitization as shown in Fig. 8. Selecting
the optimal combination of specific excitation mechanisms
with specific target localization is critical to advance these
approaches.

3.2.3 Resonant energy transfer in x-ray–optical
interactions

In the use of nanoparticles for which energy is transferred opti-
cally, the distance, d, between the scintillator and the acceptor
photosensitizer molecule is critically important, as the probabil-
ity of resonant energy transfer varies as 1∕R6 [Fig. 9(a)]. This
contrasts with the 1∕d2 dependence of nonresonant transfer or
1∕R dependence of diffuse light [Fig. 9(c)]. Typical scintillators
emit mainly in the UV/blue–green where the tissue attenuation
is very high, so that strong colocalization of scintillator and
photosensitizer minimizes this attenuation. Figures 9(d) and
9(e) show how the relative contributions of scintillation and
Cherenkov light depend on the scintillator-photosensitizer
separation.

The x-ray cross section of typical scintillators decreases
with energy, so that Kev photons are more efficient than MeV
photons. Conversely, the use of MV linacs is standard in
radiotherapy as it provides superior tissue penetration, dose uni-
formity, skin sparing and beam control. The optimal trade-off
between these factors has not been quantitatively determined
and will markedly affect the clinical translatability of x-ray-
mediated photosensitization, at least for treatment of deep-
seated tumors.

For imaging applications where collecting molecular infor-
mation is the objective, the various physical/biophysical factors
involved are quantitatively somewhat different than in x-ray-
mediated phototherapies, as optical signals can be detected

Fig. 7 X-ray interactions mediated by nanoparticles. (a) Metal nanoparticles generating direct electron
emission, (b) nanoscintillators generating light that then activate photosensitizers, (c) photocatalyst medi-
ating photoelectron and free-radical generation, and (d) direct generation of biologically active species
from x-ray absorption in photosensitizers.58,135,136,137,138

Fig. 8 Nanoparticle modifications, going from the active core, through stabilizing coatings, biomarker
targeting, catalyst, or other active layers or coupling with light- or electronically-activated sensitizers,
and incorporation into microstructures.
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down to the level of single photon counting. The largest fraction
of radioisotope imaging is the use of PET scanning for disease
staging, using 18F-deoxyglucose, largely for metastasis staging.
Hence, there is particular value in obtaining molecular informa-
tion using external x-ray sources and longitudinal molecular im-
aging during a course of fractionated radiotherapy. However, an
important wavelength factor must be considered in the use of
external x-ray-generated Cherenkov light: the local light fluence
from the emission is shown in Fig. 9(d), but the scattered fluence
that will account for most of the signal generation is more like
that shown in Fig. 9(e) so that the optimum molecular absorp-
tion spectrum is not well established.160,161

Modulated MV beams and conformal radiotherapy tech-
niques for Cherenkov excitation of molecular sensors are in
place, so that clinical translation will depend on available
low-toxicity luminescent agents that sense biologically-relevant
factors, such as tissue oxygen or pH. The need to time-gate the
light detection with linac activation currently limits the molecu-
lar lifetime to the microsecond range.161 However, methods to
effectively sample fluorescent agents may be realized soon by
deploying different classes or tumor-targeted microparticles or
nanoparticles.

4 Molecular Therapy Applications Using
X-Ray–Optical Interactions

Many types of doped fluoride nanoparticles have been com-
bined with different photosensitizers (Fig. 10), with the most
common objective of these x-ray-activated photodynamic
therapy (XPDT) systems being to achieve tumor cell kill at
low x-ray dose (∼ < 10 Gy).142,162,163,164 One example is the

use of x-ray-generated Cherenkov light to excite psoralens
[Fig. 10(a)] that were mentioned above in the context of
optics-enabled radiation therapy for sensitization of fractionated
radiotherapy. Psoralens have intrinsic nuclear uptake and, upon
photoactivation, cross link to adenine and thymine residues in
DNA, leading to proliferative cell death.165 As recently sug-
gested,166 explicit nuclear targeting of photosensitizers com-
bined with x-ray-generated Cherenkov or scintillation light
may be particularly effective, as PDT mediated by direct light
activation is known to have orders-of-magnitude greater cell kill
for the same photosensitizer and light doses than when the pho-
tosensitizer is localized to extra-nuclear organelles.167,168 This
may overcome the relatively low light levels of the scintillation
and Cherenkov light.

Radio-sensitization has been investigated using the molecu-
lar dye acridine orange that intercalates into DNA upon inter-
action with x-rays to enhance cell damage.169 An analogous
but less potent effect is seen with the structurally similar methyl-
ene blue.170 The use of acridine orange has advanced to initial
clinical trials171–174 and shows promise in sarcomas and other
cancers. These effects likely come from Cherenkov light,
although other damage effects may also be involved such as
complementary biological insult unrelated to optical excitation
of the molecule.

A second example [Fig. 10(b)] is the use of photosensitizers
conjugated to CeF3 scintillation nanocrystals, with MV linac
irradiation. Both singlet oxygen generation and tumor cell
kill in vitro have been demonstrated, and resonant energy trans-
fer between the nanocrystals and the photosensitizer likely con-
tributes to the efficacy. It is noteworthy that these studies utilized

Fig. 9 Schematic of the dependence of effective photoactivation on the nanoscintillator- photosensitizer
distance. (a) Resonant energy transfer at ∼ < 10 nm, (c) nonresonant energy transfer through light emis-
sion by the donor and subsequent absorption by the acceptor, (b) combined distance dependence, with
transition region near R ∼ 10 nm, (d) intrinsic scintillation and Cherenkov emission spectra in nearfield
areas (R∼ < effective attenuation distance), and (e) preferential blue/green light attenuation in tissue.
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a clinically-approved photosensitizer [Verteporfin (VP)], which
should facilitate future clinical translation. Several other
preclinical nanoscintillator–photosensitizer studies have also
shown efficacy in vitro and in vivo under MeV x-ray irradiation.
Activation of photosensitizer from persistent luminescence
nanoscintillators that emit light for several minutes after
x-ray excitation has also been investigated.175

Cherenkov-mediated PDT using high-energy (but low dose)
x-ray beams has the significant advantage that accurate dose
delivery allows greater precision and minimal “off-target”
damage. An alternative approach is Cherenkov-mediated
photosensitization using β-emitting radionuclides, as recently
demonstrated137,176 in preclinical tumor models with surface-
modified TiO2 nanoparticles that act as UV-excited photocata-
lysts. The in vivo responses were also substantial, although both
the TiO2 and 65Cu radionuclides were administered by direct
intratumoral injection at high doses, which may restrict the
clinical applicability.

5 Molecular Imaging from X-Ray–Optical
Hybrid Systems

The use of x-rays to stimulate optical signals for diagnostic pur-
poses has not been deployed clinically, yet there have been a
series of promising developments in the past decade. The appli-
cations can be roughly divided according to whether the mecha-
nism of light generation is scintillation or Cherenkov. The value
of scintillation is that it can be quite bright and local, and the
FRET or near-source effects shown in Fig. 7 can be utilized.

5.1 Scintillation-Based Molecular Imaging In Vivo

KeV x-rays used in radiography and computed tomography for
anatomical imaging provide no molecular information. As indi-
cated above, molecular imaging can be achieved based upon
high-sensitivity CCD camera detection of the luminescence
from scintillation materials activated by these x-rays within
the tissue volume of interest.177 X-ray-activated persistent lumi-
nescence imaging based on ZnGa2O4∶Cr nanoparticles has also
been reported.178 Full 3-D tomographic molecular imaging can
be achieved by rotational excitation (Fig. 11), while x-ray lumi-
nescence computed tomography (XLCT)177,179,181 can simulta-
neously provide 3-D molecular and anatomical information.

To date, the luminescent agents have been largely inorganic
and further development will be required to enable this approach
to be used routinely. The narrow XLCT beams lead to a rela-
tively long sampling time, so that a polycapillary lens has
been utilized to generate a focused high-intensity micrometer-
sized x-ray spot,182,183 enabling faster scanning without degrad-
ing spatial resolution or imaging depth. Cone-beam XLCT sys-
tems can also fully utilize the x-ray dose and shorten the scan
time at the cost of reduced resolution.184–186 The benefit of
XLCT is that the excitation signal is determined by the x-ray
beam, so that high-resolution molecular (optical) imaging is
possible even in the presence of significant light scattering.
Further, this approach might be extended to single-point detec-
tors by scanning the radiation beam, analogous to the geometry
of a confocal scanning microscope. Advancing this method to
clinical use would require low-toxicity, biologically relevant
(microenvironment sensitive) contrast agents with good Kev
x-ray cross-section.

5.2 Cherenkov-Based Molecular Imaging In Vivo

The discovery that higher Kev and MeV x-rays or gamma rays
could excite molecular probes in tissue has illustrated how
Cherenkov light could be used instead of scintillation or
fluorescence.42,43,187–194 Scanned x-ray beam excitation of the
Cherenkov light using the precision delivery of MeV radiation
via multileaf collimators134,195 has been demonstrated (Fig. 12).
Tomographic recovery is possible and the geometry between the
x-ray beam and the detected luminescence remains to be fully
optimized198,199 but could encompass raster scanning, line scan-
ning or broad-beam excitation.134,195 A major benefit of using
Cherenkov light is its broad emission spectrum, which allows
a range of organic molecular dyes to be used as molecular
probes. One example is based on a platinum-porphyrin den-
drimer complex (PtG4) to image tissue pO2, while other lumi-
nescent agents absorbing in the visible range and detecting in the
NIR range are also possible.161 The key to maximizing signal-to-
noise in this approach has been the use of time-gated detection,
where the noise and Cherenkov signal (in 4 μs bursts) from the
original excitation beam can be eliminated. The current data
suggest that it is feasible to sense nanomolar probe concentra-
tions up to 30-mm deep in tissue.200 Additionally, there could be
benefits from basic spectroscopic processing of the Cherenkov

Fig. 10 Examples of x-ray-mediated phototherapeutics with psoralen photosensitization by Cherenkov
light. (a) Spectral overlap of Cherenkov light and psoralen absorption, relative to the UVA light used in
PUVA.61 (b) Scintillating CeF3 nanocrystals coupled with photosensitizer (VP), with spectral overlap of
the scintillation emission with the Soret band of VP, producing singlet-oxygen (1O2) from collisional
quenching by molecular oxygen (O2).

135 (c) X-ray Cherenkov excitation of TiO2 nanoparticles from
64Cu, producing cytotoxic photosensitization in tumor cells.137
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signal as shown recently.201,202 Sampling the tumor oxygen sat-
uration in fractionated radiotherapy could be of value to adapt
the treatment for more hypoxic tumors.

6 Discussion
These x-ray and optical intersections are multifaceted, with vari-
ous established clinical and preclinical systems as well as many
emerging applications. In this final section, we focus on sepa-
rating them into x-rays enabling photomedicine and vice versa,

for both diagnostic and therapeutic values. The key values of
the two lie in their mutual tissue penetration ability and the
advanced nature of the commercialized technology in both
areas.

6.1 X-Rays Enabling Optical Diagnostics

The range of existing applications using x-rays to enable optical
diagnostics is relatively small, being largely in the positioning of
endoscopic devices in which accurate targeting for biopsy is

Fig. 11 X-ray luminescence computed tomography. (a) Rotational geometry of a KeV x-ray source.
(b) resulting sinograms and reconstructed images of NIR emission in tissue phantoms.179

(c) Example of in vivo planar imaging of lymph nodes using rare-earth-doped nanoscintillators at 45 min
after injection.180

Fig. 12 Cherenkov luminescence molecular oxygen imaging. (a) Schematic of orthogonal line scanning
from a 6 MV x-ray linac beam used to excite the luminescence that is captured by a time-synchronized
camera. (b) Resulting reconstructed image in vivo from three orthogonal sheet scans.196 (c) Human body
phantom197 with 1-D scanning, using (d) PtG4 samples on the chest cavity to simulate lymph nodes, and
(e) covered with artificial skin. (f, g) Maximum-intensity projection Cherenkov and luminescence images.
(h) CELSI image overlaid on the x-ray scans of the body phantom.
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particularly challenging. The most basic approach is an x-ray
exam followed by an endoscopic or surgical exam. This is a
seemingly trivial synergy, although widely practiced in clinical
medicine today, as the x-ray provides the cross-sectional imag-
ing by radiology, and the optical scan provides the surface im-
aging that is more directive of the tissue sampling such as biopsy
or inspection.

A more ambitious approach is to use the x-rays as an energy
source to excite a molecular reporter in a true hybrid diagnostic
system, e.g., in scintillation- or radioluminescence-based imag-
ing or Cherenkov-excited luminescence imaging (Figs. 11 and
12) using either kV or MV sources. This has been explored in
only a few preclinical studies to date, but the use in biomedical
research is likely to grow with advances in molecular sensors.
As shown in Fig. 9, the packaging required to maximize the
x-ray–optical effect is seemingly critical, with careful thought
needed to maximize the likelihood of specific interaction
between the emitted optical signal and any other reporter or
detector. For example, scintillation-based probes are seemingly
well suited to blue wavelengths and tight physical coupling to
reporters, whereas Cherenkov-based probes are likely well
excited throughout a volume, but only if red wavelengths are
needed. Cherenkov probes coupled to isotope emitters have
a lot of potential as self-emitting agents that can be used in
molecular sensing or targeted therapy. As these are developed,
further clinical implementations will require toxicity-tested and
cost-effective molecular probes, for which the added informa-
tion would significantly alter patient management.

6.2 Optics Enabling X-Ray Diagnostics

The range of applications where diagnostic optical approaches
enable x-ray diagnostics is again relatively small at present, re-
volving mainly around positioning tools. Simple systems such
as laser alignment and surface scanning are widely adopted in
both diagnostic and therapeutic x-ray use for accurate patient
positioning. Applications involving optical measurements of tis-
sue oxygenation or blood/tissue metabolites are good examples
where the molecular specificity of light would be complemen-
tary to the more structural information obtained from x-ray
imaging. An example is Raman spectroscopy to characterize
bone mineralization,203–206 providing complimentary clinical
information. Optical measurements that provide molecular
information that might better inform the x-ray exam use or syn-
chronization to biology, are also possible, providing added com-
plementary information between optical diagnostics and x-ray
diagnostics.

Further translation of clinical chemistry or immunochemistry
principles to in vivo optical sensing may also occur and would
be synergistic with 2-D or 3-D x-ray imaging in interventional
applications that require information beyond the macroscopic
morphological imaging that is provided by x-rays.

6.3 Optics Enabling X-Ray Therapeutics

There are many intersections where optical tools currently en-
able clinical x-ray therapy for positioning, dosimetry, and oxi-
metry (Fig. 4) to improve the safety, efficacy, or management
process. The delivery of clinical x-ray radiation therapy is
actually completely dependent upon the accuracy that these
positioning devices bring to the daily patient setup.

Procedures such as photodynamic therapy have niche roles in
radiation medicine and there is evidence of complementary

efficacy between PDT and radiation treatments that have
different subcellular targets and mechanisms of action207 or
vasculature.92 This class of interactions can be thought of
threeways: (1) complimentary adjuvant therapies, (2) synergistic
therapies where one enhances the effect of the other, or (3) nano-
technology-mediated interaction where x-rays actually produce
a photodynamic effect. The latter is a relatively new line of
research (Figs. 11 and 12), achieving radiosensitization with
the benefits of specificity and packaging of optical agents,157,158

and a number of efforts in materials chemistry have produced
some extremely promising in vivo tumor killing results in the
last few years. The key to advancing this approach to human
use is to have nanoparticle agents that have low toxicity and
are produced for human use, which is seemingly costly and
currently uncertain. The same technologies for scintillator and
Cherenkov imaging during radiotherapy at the macroscale will
likely inform the development of microscale nanotherapeutic
agents.

6.4 X-Rays Enabling Optical Therapeutics

The use of x-rays to enable optical interventions is common-
place, with open surgical, laparoscopical, orthopedical, gastro-
enterological, and cardiological procedures being guided by
x-ray fluoroscopy or cone beam CT, exploiting the high penetra-
tion, bone contrast of x-rays, and soft tissue contrast of CT.
Emerging applications where the x-rays are used as the energy
source for phototherapies also take advantage of the deep pen-
etration, through direct or indirect x-ray activation of optical
agents such as molecular photodynamic agents or nanoparticles
as described in Sec. 3.2. There are many nuances to optimize
these techniques and to quantify the unique synergistic effects,
particularly in the case of nanoparticles where many factors are
involved: nanoparticle material and structure, x-ray cross-sec-
tion, efficiency of energy transfer, subcellular localization and
tissue level distribution (Figs. 7 and 8), and spectral overlap
(Fig. 9).

7 Conclusions
The various examples discussed here of the ways in which opti-
cal and x-ray sciences and technologies intersect are intended
both to illustrate the current state-of-the-art and, more impor-
tantly, to point to emerging trends. It should be clear that,
while radiation medicine and photomedicine have evolved
largely separately and have been driven by different technologi-
cal capabilities and clinical/preclinical applications, there will be
increasing synergistic overlap between these domains. Taken
together, x-ray radiation technologies and optical technologies
cover perhaps the vast majority of all advanced diagnostics and
therapeutics in medicine today. Their intersections that fully uti-
lize the strategic strengths of each will offer new opportunities in
R&D, clinical translation and commercialization. These inter-
sections also require thought about the training of new cadres
of interdisciplinary thinkers and doers, such as those designing
smart nanotechnologies for diagnostics or therapeutics, requir-
ing expertise in surface and materials chemistry as well as
aspects such as medicinal pharmacology and system engineer-
ing. These intersections should inspire new ventures and oppor-
tunities in a technology-driven approach to medicine.

Disclosures
Brian Pogue is the president and cofounder of DoseOptics LLC,
a company developing radiation therapy dosimetry systems

Journal of Biomedical Optics 121610-12 December 2018 • Vol. 23(12)

Pogue and Wilson: Optical and x-ray technology synergies enabling diagnostic and therapeutic applications in medicine

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics on 26 Jul 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



capturing Cherenkov light imaging of dose delivery in radiation
therapy.
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