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I.  Introduction 

Scherer (1965, 1966, 1967a, 1967b, 1984) provided seminal analysis of the theory and 

empirics of innovation rivalry.   At the heart of his analysis was rivalry’s effects on value (the 

present value of the streams of profits from innovations) and costs (the present value of the 

streams of costs of innovative investments).1  This paper develops and applies a theory of 

innovative rivalry that is inspired by and grounded in Scherer’s seminal analyses wherein the 

effects of rivalry are to be understood by examining rivalry’s effects on value and costs and 

hence the incentives for R&D investment.  We develop the theory of rivalry in research and 

development (R&D) investment introduced in Scott (2009), and we apply it to test hypotheses 

about the effects of rivalry on R&D investment.  Our theory follows in the line of work initiated 

in Scherer (1967b), and our empirical analysis follows the literature originating in Scherer (1965, 

1967a).  We extend the theory and empirics to augment the classic hypothesis test of the 

inverted-U relation between innovative rivalry and R&D investment with the hypothesis that 

under specified conditions the relation is a U shape rather than an inverted-U shape. 

Following the argument in Scott (2009), our premise is that competitive pressure is 

perceived differently in structurally competitive markets than in oligopolistic markets.  In 

structurally competitive markets, R&D competitive pressure is perceived as exogenous.  In 

oligopolistic markets, it is perceived as endogenous Nash noncooperative equilibrium.  The 

effect of competitive pressure on R&D will depend on whether competitive pressure is perceived 

as exogenous or instead as endogenous R&D rivalry.  For the particular sample used in this 

paper, we hypothesize a U relation between R&D investment and competitive pressure.  In other 

words, we hypothesize that greater competition will increase the representative firm’s R&D 

when competitors perceive exogenous competitive pressure, but greater competition will reduce 

the representative firm’s R&D when competitors perceive interactive R&D and reach 

noncooperative equilibrium strategy combinations.  We do in fact find the U relationship in our 

data. 

Many theories imply an inverted-U relation between R&D intensity and seller 

concentration, assumed to be an inverse measure of competitive pressure, and in the empirical 

literature, there have been many sightings of the inverted-U relation (Gilbert, 2006; Cohen, 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Baldwin and Scott (1987) place Scherer’s seminal contributions in the context of the early literature 
about R&D and technological change. 
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2010).  Also, previous studies have found the inverted-U relation disappears given sufficient 

controls for differences in the opportunities for R&D apart from those due to the seller 

concentration (Gilbert, 2006; Cohen, 2010).2  Although seemingly contradictory, the many 

different findings in the literature about the relation between competitive pressure and R&D 

investment can be explained by a general theory of R&D investment (Scott, 2009). 

In this paper, we develop the theory in Scott (2009) and apply it to a hypothesis test with 

a sample for which the theory supports the expectation of a U relation, in addition to the usual 

inverted-U relation, between R&D intensity and seller concentration.  Our sample and our 

experiment differ from those about the inverted-U reviewed in Gilbert (2006) and Cohen (2010) 

because we examine the evidence about seller concentration and R&D investment by focusing 

on a single type of R&D—the R&D of manufacturing firms aimed at reducing problems created 

by the emissions of a specific group of chemicals (the U.S. Title III Clean Air Act Amendment 

chemicals) that are used throughout manufacturing industry.  The idea is to look at, broadly 

speaking, a single type of R&D, but one that is performed by firms that operate in a variety of 

competitive environments.   

Although an inverted-U was observed without the controls, Scott (1984) could not 

observe, after controls for differences in opportunity for R&D apart from those correlated with 

seller concentration within broad industries, a link from competitive pressure (as indicated 

inversely by seller concentration in markets) to R&D behavior.3  Possibly, we might discern a 

relation between competitive pressure and R&D for a particular type of R&D—Title III 

emissions reducing R&D—in a sample of manufacturing firms that do such R&D but do so in a 

variety of competitive environments.  In Scott (1984), the variance in seller concentration within 

broad industries was not correlated with R&D intensity after firm effects were controlled.  Yet, if 

that variance within the broad industries were correlated with opportunity differences for 

different types of R&D, a relation between competitive pressure and R&D might have been 

hidden by the opportunity differences within the broad industries.  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 Scott (1993, pp. 84-86) discusses several of these studies in the context of Scherer’s seminal work. 
3 In his seminal papers, Scherer (1965, 1967a) anticipates this result, showing that the effects of market 
structure on innovative activity—inputs and outputs—diminish when controls for differences in 
technological opportunity are included in the empirical specifications and that opportunity differences 
explain more than differences in market structure.  The U.S. Federal Trade Commission line-of-business 
data used by Scott (1984) allowed a more extensive set of controls, than had previously been possible, 
because there was more industry detail and then observations of each firm’s R&D activity in the various 
industries where it had R&D. 
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Given that competitive pressure can have many different theoretical effects, and given 

that those effects may be very different even within broad industries, even with all of the firm 

effects and all of the broad industry effects included in Scott (1984), there may not be sufficient 

control for differences, other than seller concentration, across the narrow industries within each 

broad industry to allow an effect for competitive pressure to be observed.  The Scott (1984) 

experiment shows that inverted-Us observed in samples examining the R&D activity of many 

different industries disappear given controls for firm and broad industry effects, yet it may be 

possible that effects of competitive pressure can be observed in a sample that focuses on a 

particular type of R&D performed in different competitive environments.  The particular type of 

R&D examined in this paper is product R&D to reduce Title III emissions problems—certainly a 

more uniform type of R&D than what is observed in the usual cross-industry studies in the 

literature reviewed by Gilbert (2006) and Cohen (2010).  Thus, this paper addresses Scherer's 

(1965, 1967a) observation that differences in technical opportunity may explain more than 

differences in structural competition by using data on a single type of R&D performed in most 

industries, thereby giving us the variance in structural competition with arguably little variance 

in technical opportunity. 

In Section II, we introduce our key hypotheses, and Section III explains the theory.  

Section IV then presents a statistically significant U relationship between structural competition 

and R&D investment.  Section V concludes by first integrating the U relationship with Scherer’s 

original inverted-U relationship and then testing our theory that is able to predict a non-quadratic 

relationship between structural competition and R&D intensity.  We find a very significant U 

relationship and, with an appropriately generalized empirical specification, we find a non-

quadratic relationship with both the U and the inverted-U appearing in the same data over the 

different ranges of structural competition as predicted by the theory. 

 

II. Two Hypotheses 

In the next section, we explain a theory in which a firm’s R&D depends on its relative 

innovative performance—the probability distribution over the relative performance of its R&D 

investment and the value of relative performance.  The firm’s relative innovative performance 

will depend on its performance relative to the state of the art innovation.  Thus, the perception of 

the anticipated state of the art technology in the post-innovation market will be the linchpin of 
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the firm’s decisions about R&D investment.  We use the theory presented in Section III to 

develop the following hypotheses that imply a U relationship between competitive pressure and 

R&D investment. 

 

• Hypothesis 1: With structural competition and firms’ perception that competitive 

pressure is exogenous, greater competition will increase the representative firm’s R&D.  

• Hypothesis 2: With concentrated market structures and firms’ perception that  

competitive pressure is endogenous (with competitors reaching noncooperative 

equilibrium strategy combinations), greater competition will reduce the representative 

firm’s R&D. 

 

Hypothesis 1 follows (1) because we do not observe non-cooperative Nash equilibrium in 

such cases—with innumerable competitors, the firms in the structurally competitive markets take 

rivals’ behavior as given and ignore the effects of adjustments in their behavior—and (2) because 

we conjecture that with more competitors, rivals will be focused on the expectation that the state 

of the art in the post-innovation market will be higher because of the larger number of firms 

pursuing innovation.  We develop Hypothesis 1 further in Section III.  We expect that 

Hypothesis 1, showing the stimulus effect for more structurally competitive market structures, 

will hold in our sample over the lower range of observed seller concentration.   

In Section III, we also explain that we expect, over the higher range of seller 

concentration, Hypothesis 2 will be supported in our sample of firms doing product R&D to 

reduce toxic emissions.  We explain that in our sample rivals’ R&D is expected to have a big 

negative impact on the likely value of the firm’s own R&D, and the endogenous Nash 

equilibrium forces the firms’ focus on that effect.  We explain the necessary and sufficient 

conditions for total R&D investment to increase as the number of firms falls. 

In sum, the theory to be explained in Section III, in the context of the sample of firms that 

we describe in Section IV, can support the expectation of a U relationship between structural 

competition and R&D investment. 

 

III. A Theory of Innovative Investment 
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We begin with the theoretical description of innovative investment in Scott (2009), but 

we develop some new results to apply the model to our empirical work.4  Investment in risky 

R&D results in innovations—new commercialized processes or products with better technical 

performance as indexed by the random variable x.  The measure, x, of technical performance is 

necessarily relative technical performance—that is, performance relative to the anticipated state 

of the art.  Better technical performance reflects higher quality of the firm’s completed R&D 

project.  The probability distribution for the measure of performance x is given by the probability 

density f(x; α), where greater values of the distribution’s parameter α shift the probability 

distribution rightward over higher levels of performance. 

The parameter α is determined by the amount of R&D investment R and an additional set 

of explanatory variables X that are referred to as distribution-shifting variables.  Thus, α = 

α(X,R).  Greater R&D investment, R, is associated with a greater α.  Hence, if a company 

increases its R&D, its distribution over performance outcomes is shifted rightward over higher 

values of the index of performance x.  The R&D investment R is the present value of the R&D 

cost schedule chosen by the firm.  The details of the R&D cost schedule are described with the 

partial derivatives and cross-partials for α(X,R). 

A company’s innovation has a value that increases at a decreasing rate with its technical 

performance x.  The innovation’s value is given by V(x; γ), where V given x increases with the 

parameter γ and the impact of that parameter on V increases with x, and where given the 

parameter γ, value for relative performance x is positive and increases with x at a decreasing rate.  

Value increases at a decreasing rate because of diminishing marginal utility for the increased 

performance measured by x given the parameter γ. The value parameter γ is a function of a set of 

explanatory variables Z that are referred to as value-shifting variables.  Thus, γ = γ(Z).  Value 

reflects the present discounted value of the stream of benefits generated by the innovation; 

details about the stream of benefits are in the partial derivatives and cross-partials for γ(Z).  

Thus, for the ith firm, the expected value E of the investment R is

∫ −−= dxRXXxfZZxVE iiii )),,(;()),(;( αγ , where the subscript i denotes the ith firm and the 

subscript -i denotes its rivals. The firm chooses R to maximize expected profit (E – R).  Table 1 

collects the information about the firm’s objective function. 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 A part of our discussion in this section is taken from Scott (2009), and that paper provides the proofs for 
the six results stated in this section. 
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Table 1 about here 

One can think of competitive pressure as an X variable.  For example, let x, the measure 

of relative technical performance be the relative speed of an innovative computer.  Given the 

state of competition, x is a measure of relative speed—speed relative to the speed for the best 

alternative computer from the firm’s R&D competitors.  The measure x is then the ratio of the 

new computer’s speed to the speed of the best alternative.  A given R&D investment, R, gives 

the firm its probability distribution of speed, and hence the distribution of its relative speed—i.e., 

the distribution f(x) for the performance evaluation x. 

More “competitive pressure” means that firms anticipate a more advanced state of the art, 

and that expectation results in a leftward shift of the probability distribution over the 

performance outcome for any given amount of R&D.  The performance that matters is relative 

performance—i.e., performance relative to the anticipated state of the art technology.  In Figure 

1, for the probability distribution on the right, an outcome for x is not the computer’s speed itself, 

but the assessment of the quality, m, of the technical performance represented by the speed.   

With more competition, for the distribution on the left, the same speed is associated with a lower 

quality, c, of technical performance, because with more rivals doing R&D the best alternative 

speed is faster.  The probability distribution over x has shifted leftward as competition increases. 

Figure 1 about here 

 For the model of R&D investment grounded in relative innovative performance, Scott 

(2009) shows that if competitors perceive exogenous competitive pressure (i.e., no strategic 

interaction), then for a variable that shifts value up as it increases, R&D increases as that variable 

increases.  For a variable that shifts value down as it increases, R&D decreases as that variable 

increases.  Also, for a variable that shifts the probability distribution left as it increases, R&D 

increases as that variable increases.  In contrast, for a variable that shifts the probability 

distribution right as it increases, R&D decreases as that variable increases.  These relationships 

are summarized with Result 1 and Result 2 in Table 2. 

For an example of a value-shifting variable, consider the hypothesis that firm size will 

have positive effects on the value of innovative investment because larger firms have better 

marketing, better distribution channels, and more sales of the product embodying innovation 
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(product or process) with price marked up over post-innovation cost.  If firm size increases the 

value (and also we would expect the increase in value to be increasing in the relative quality of 

the R&D outcome) of any R&D outcome, then it increases the marginal value of doing more 

R&D to shift the probability distribution for x rightward.  Figure 2 illustrates the hypothesis. 

 

Figure 2 about here 

 

 For an example of a probability shifting variable, suppose there is more R&D from all 

other firms and that the firm perceives the greater R&D from others as exogenous competitive 

pressure in the form of an increase in the state of the art anticipated from best practice.  That will 

decrease the relative quality of any given technical outcome from the firm’s R&D.  For any 

given amount of R&D investment by a firm, the distribution over relative quality of technical 

outcomes has shifted leftward because of the better anticipated state of the art.  That leftward 

shift in the distribution increases the firm’s marginal value of doing more R&D.  Figure 3 

illustrates the effect, on the firm’s R&D investment, of the leftward shift in the distribution. 

 

Figure 3 about here 

 If instead of exogenous competitive pressure there is interactive or strategic rivalry and 

Nash equilibrium strategy combinations, Scott (2009) shows (and Table 2 summarizes as Result 

3) that if a stability condition obtains, where that condition is that any strategic complementarity 

of rivals’ R&D investments is not too extreme, then the sign of the change in the firm’s R&D 

with respect to a value-shifting variable is the same as for Result 1.  Also, with interactive rivalry 

and Nash equilibrium strategy combinations, the sign of the change in the firm’s R&D with 

respect to a probability-shifting variable is the same as for Result 2, and that finding is 

summarized in Table 2 as Result 4. 

Next, to develop an understanding of the U (rather than the customary inverted-U) 

relation between seller concentration and R&D, Scott (2009) introduces the Schumpeterian 

condition. 

• The Schumpeterian condition: The marginal-value-reducing effect (because of post-

innovation competition) of rivals’ R&D outweighs (1) the positive impact of rivals’ R&D 
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on the marginal value of a firm’s R&D resulting from the leftward shift in the probability 

distribution and (2) the possibly positive impact from complementary rival R&D. 
 

The final two results (summarized in Table 2 as Result 5 and Result 6) from Scott (2009) 

establish conditions, given interactive rivalry and Nash equilibrium strategy combinations, for 

the effect of more competitors on the individual firm’s Nash equilibrium R&D and on the total 

R&D in the market. 

 

• Result 5 The sign of the change in Nash equilibrium R&D investment for each firm as 

the number of competitors increases is negative given the stability condition and the 

Schumpeterian condition, and the effect becomes smaller as the number of firms in the 

equilibrium increases. 

• Result 6 Total R&D investment could rise or fall as the number of competitors increases. 

Result5 implies that the equilibrium R&D investment for each firm will fall as the 

number of firms increases; however, the total investment in the market could rise given 

the set of conditions in Result5. Even given that the firm’s R&D falls, the total R&D will 

rise if a firm’s own R&D investments have effects on the marginal benefit of its R&D 

that are larger in absolute value than the marginal-benefit-dampening effects that result 

from the R&D investments of its rivals. 

 

The foregoing theory suggests the two hypotheses introduced in Section II.   The 

conjecture supporting Hypothesis 1 is that, given an increase in the amount of exogenous 

competitive pressure perceived, the R&D-increasing effect of the leftward shift in the 

distribution for relative performance outweighs the effect of dampened value for relative 

performance, and the firm increases its R&D investment.  Also, if we begin with a Nash non-

cooperative equilibrium, we show in the Appendix that if strategic interaction among an 

industry’s R&D rivals decreases as the number of rivals increases, then each firm’s reduction in 

equilibrium choice for R&D becomes vanishingly small as the number of rivals and hence 

structural competition increases.  Thus, in that case too, as long as R&D is profitable, the amount 

of R&D done in the industry will increase as the number of competitors increases.  Hypothesis 1, 
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showing the stimulus effect for more structurally competitive market structures, is expected to 

hold in our sample over the lower range of observed seller concentration.   

We expect, over the higher range of seller concentration, Hypothesis 2 will be supported 

in our sample of firms doing product R&D to reduce toxic emissions because we expect that the 

Schumpeterian condition will hold in such a sample.  We expect that the Schumpeterian 

condition will hold in our sample because rivals’ R&D has a big negative impact on the likely 

value of the firm’s own R&D, and the endogenous Nash equilibrium forces the firms’ focus on 

that effect.  Having a “green” product alone would be quite valuable; having one among several 

green products, much less so.  In the Appendix, we explain that for the total R&D investment to 

increase as the number of firms doing R&D decreases, a necessary but not sufficient condition is 

that the R&D investments of the firms are strategic substitutes.  For total R&D investment to 

increase as the number of firms falls, a sufficiently strong strategic substitute effect is needed. 

Table 2 highlights the key results and conditions for our relative-performance model of 

R&D investment.  In sum, the theory, in the context of the sample of firms that we now describe, 

can support the expectation that over the range of lower seller concentration, R&D investment 

will fall, other things being the same, as seller concentration increases, while over the range of 

higher seller concentration, R&D investment will increase with seller concentration.  Moreover, 

in the Appendix we develop Result 5 and show that as structural competition increases, the 

reduction in Nash equilibrium R&D for each individual firm is getting smaller and eventually 

vanishes.  That finding would support the smooth shape at the bottom of the U relation between 

R&D investment and structural competition if the stimulus effect of structural competition takes 

hold gradually and with increasing force.  In any case, the theory can support a U relation rather 

than the usual inverted-U relation with the bottom of the U being more or less smooth depending 

on how rapidly the stimulus effect takes over as the range of Schumpeter’s prediction shows 

diminishing reductions in R&D. 

Table 2 about here 

 

IV. The Estimated U Relation 

 We use historical data from a well-documented data set, presenting new estimation and 

some new robustness statistics using the sample, data and variables, and econometric model in 

Scott (2003, 2005) where, if needed, clarifications can be found in detailed discussions about the 
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sample, data, and variables.  We reinterpret the findings in terms of our development of the 

theory of the expected U relation between seller concentration and R&D investment, other things 

being the same, and here for the first time, the sample, data, and variables are used to adduce in a 

single estimated equation both the inverted-U and the U relations over different ranges of seller 

concentration.   

Our data about U.S. industrial environmental R&D come from the first of our two 

surveys—one administered in 1993 and the other in 2001.  Both survey instruments are provided 

in Scott (2003), and the samples and the data we collected are carefully detailed there.  The 1993 

survey was sent to parent companies in the Business Week R&D Scoreboard for that year.  

Scoreboard companies that year were companies with sales of at least $58 million and R&D 

expenditures of at least $1 million.  The 2001 follow-up survey was sent to a representative 

group of respondents to the first survey and documented the stability of the environmental R&D 

investments observed. To estimate the model for this paper, we used the 1993 survey information 

that we collected from industrial respondents about their environmental R&D, and also 

additional information that we developed from the Business Week R&D Scoreboard, the U.S. 

Environmental Protection Agency, the U.S. Census, and other sources of information about 

industrial companies and their industries.  In our estimation, we examine for 132 firms the 

product R&D that is aimed at reducing the emissions of the chemicals targeted by Title III of the 

U.S. Clean Air Act Amendments of 1990 as chemicals of concern for which new regulations 

should be developed.5  

An appropriate procedure for analyzing the determinants of the presence of company 

R&D aimed at Title III chemicals is Tobit analysis (Maddala, 1983, Chapter 6; Greene, 2003, pp. 

764–6).  The basic Tobit model makes the following assumptions for the jth observation—here 

the observations are companies.  The model assumes that for the dependent variable jy  and the 

fixed k×1  vector jx  of explanatory variables, and an index function jjj xy εβ +=* , then 

*yy j =  if *y  exceeds 0, while 0=jy  if 0*≤jy .  β  is a k ×1 vector of unknown parameters, 

while jε  are independently and normally distributed errors with expected value of zero and 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 Scott (2003) describes Title III of the Clean Air Act Amendments and provides a complete list of the 
Title III chemicals and a description of their incidence in industry and in the operations of the sampled 
and the responding firms. 
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homoscedastic variance σ 2.  We check the estimates’ robustness to modification of these 

assumptions. 

For the present problem, jy  is either zero or, when positive, it is the observation of 

ln(PRD3RDT) the natural logarithm of the 1992 Title III product R&D scaled in thousands of 

1992 dollars for the jth of the 132 companies with manufacturing operations.  Scaled in 

thousands, all nonzero R&D values PRD3RDT are greater than one.  PRD3RDT is zero for 95 of 

the 132 observations.  For the remaining 37 observations for which PRD3RDT exceeds zero, the 

mean is $12,395 thousands and the range is from $4 thousands to $367,500 thousands.  The 

Tobit model estimates β  and σ 2 using the 132 observations on PRD3RDT, described in Table 3, 

and the explanatory variables that we now describe. 

Table 3 about here 

The Tobit model uses the following variables which are denoted with the same variable 

names used in Scott (2003, 2005) to allow easy reference to additional details about the sample, 

the data, and the variables.6   

The Company.  NTAPC measures the extent of a company’s Title III emissions problems.  

It is the average value of NTAP, the number of Title III toxic air pollutants associated with a 

manufacturing industry, across the four-digit manufacturing Standard Industrial Classification 

(SIC) industries in which the company operates.  SALES is the measure of a company’s size in 

1992.  For each company, SALES is measured as sales in millions of dollars, for the company’s 

most recent fiscal year as of May 18, 1993. 

The Company’s Environmental R&D.  PRODOTHER is a dummy variable that takes the 

value one if a company’s product R&D to reduce emissions received additional financing from 

other companies or from the government;  otherwise, it equals zero.  COOP is a dummy variable 

that takes the value one if the company reported that it had at least some Title III environmental 

R&D that was performed in a cooperative venture with other firms;  otherwise it equals zero.  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 For example, the average count measure NTAPC for toxic pollutants and the average seller 
concentration measure CR4C described below were conscious choices for the best measures of a 
company’s emissions problems and of the seller concentration that would affect its R&D investment 
decisions.  The lengthy discussion about why those measures are the best ones is provided in Scott (2003, 
pp. 71-73). 
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DBACKGROUND is a dummy variable that equals one if a respondent reported background 

research on emissions;  otherwise it equals zero.  DPROCESS is a dummy variable that equals 

one if a respondent reported process R&D to reduce emissions;  otherwise it equals zero. 

The Company’s Industries.  IMPSC measures average import competition faced by the 

company in its industries.  The measure of import competition is IMPS, the ratio of imports to 

shipments for each four-digit manufacturing industry.  Then, for each company IMPSC is the 

average value of IMPS across the four-digit manufacturing industries in which a company 

operates.  CR4C measures average seller concentration for a company’s industries.  The 

concentration ratio of the value of industry shipments is CR4, the four-firm seller concentration 

ratio as a percentage for each four-digit manufacturing SIC industry.  Then, for each company 

CR4C is the average value of CR4 across the four-digit manufacturing industries in which a 

company operates.  The industry dummy variables are for the two-digit manufacturing SIC 

industries.  For the purpose of defining these broad industry qualitative variables, each company 

is assigned to the broad industry in which its primary four-digit manufacturing industry is 

located. 

Table 4 provides the descriptive statistics for the explanatory variables used in the Tobit 

model shown in Table 5. We have considered sample selection, heteroscedasticity, clustering, 

and endogeneity, and we now discuss each of those issues. 

Table 4 about here 

Table 5 about here 

Sample Selection. Scott (2005) jointly estimates a probit model of selection into the 

sample simultaneously with the Tobit model shown in Table 5.  Although the selection model is 

well estimated, the jointly estimated models with industry effects show that the correlation of 

their errors is small and not significantly different from zero, supporting the simpler estimation 

in Table 5 of the Tobit model alone.  Comparing the results reported in Table 5 with the 

estimates for the full information maximum likelihood joint estimation of the probit model of 

selection and the Tobit model of Title III product R&D shows that Table 5’s results are robust to 

the control for sample selection.   
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	   Heteroscedasticity.  The full information maximum likelihood models of the Tobit model 

with selection for PRD3RDT in Scott (2005) assume homoscedasticity of the error in the Tobit 

model.  To check for the presence of different error variance across the observations, we 

modeled the error variance for the ith observation as a function of the measure of firm size, 

ln(Sales), and four qualitative variables describing broad groups of industries.7  The likelihood 

ratio and Wald tests for heteroscedasticity do not reject the null hypothesis that the errors are 

homoscedastic.8  For the likelihood ratio test, the chi-squared statistic with 5 degrees of freedom 

is 4.90;  given the null hypothesis, the probability of a greater chi-squared is 0.428.  The Wald 

statistic is 0.723 with 5 degrees of freedom;  the probability of a greater value is 0.982 given the 

null hypothesis. 

 Clustering.  Table 5’s second column shows the standard errors with intragroup 

correlations in the errors in the Tobit model when errors are clustered by primary industry, 

showing that the essential results for significance are robust to clustering the data—indeed, the 

statistical significance of the U-relation is greater when the errors are clustered.  Greene (2002, p. 

E21-12) expresses skepticism about the usefulness of clustering the errors in the context of the 

Tobit model with sample selection as presented in Scott (2005), because “. . . the specification of 

the censored normal regression model is fairly fragile, and robust estimation of the asymptotic 

covariance is essentially a moot point.”9  Nonetheless, the procedure can be implemented.  Using 

the software accompanying Greene (2002) and replicating the specifications in Scott (2005) with 

clustered data gives essentially the same story for the significance of the variables. 

 Endogeneity.  The positively sloped portion of the U relation estimated in Table 5 and 

illustrated in Figure 4 is attributed to the endogenously determined R&D investments in a Nash 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7 Firm size has often been associated with heteroscedastic error in the empirical literature of industrial 
organization.  For the broad groups of industries, one variable represented chemicals, petroleum, and 
plastics;  another metals and metal fabrication, another machinery and transportation equipment;  another 
electronics and instruments;  with the remaining “traditional” industries the baseline case.  The variance 
term for the heteroscedastic disturbance in the Tobit model is modeled as in Greene (2002, p. E21-41).  
The square root of the variance, iσ , for each observation’s error is equal to σ  multiplied times the base 
to the natural logarithms raised to the power of a linear combination of the variables that determine the 
different error variances. 
8 These tests are described by Green (2002, p. E21-44). 
9 “The recent literature contains numerous applications of ‘robust’ covariance matrix estimation. . .  .  
[For] the maximum likelihood estimators of the coefficients in the censored regression models . . .  . [i]t is 
difficult to construct a case for the estimator . . .” (Greene, 2002, p. E21-12). 
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noncooperative equilibrium given interactive rivalry.  Over a sufficiently long time series, of 

course the numbers of firms themselves will be endogenously determined.  However, here we are 

examining contemporaneous market structure and the concomitant R&D investments of the 

interactive rivals.  Error in the observed R&D spending by a firm is not expected to be correlated 

with error in the contemporaneous seller concentration, and there is no reason to expect a 

simultaneity bias in our model.  In the empirical application here, it is the rivals’ R&D that is 

endogenous, not the number of firms or seller concentration more generally.  Over time, of 

course, entry and exit are anticipated, the number of firms and seller concentration will evolve, 

and thus the hypothesis testing becomes more complicated. 

The estimates in Table 5 show that environmental product R&D to address Title III 

pollutants increases with their importance in a company’s operations.  That effect for NTAPC is 

consistent with R&D-value-increasing effects when pollution problems are more severe.  It is 

also consistent with a probability distribution-shifting effect that would result if with a bigger 

pollution problem to be solved, the firm’s R&D problem is more difficult, resulting in the 

distribution over relative performance shifting leftward for any given R&D investment. 

Larger companies do more Title III product R&D.  The result is consistent with greater 

sales having the R&D value-increasing effect described earlier.  The environmental product 

R&D increases more than proportionately with company size, a result that should be understood 

in the specific context here—namely, we are observing a very specialized type of R&D (rather 

than total R&D for each firm) that is performed across many U.S. manufacturing industries. 

The Tobit model for PRD3RDT shows a negative effect for import competition—

measured by IMPSC—on Title III process R&D.  The model shows that greater import 

competition is associated with less emissions-reducing R&D investment, ceteris paribus.  

Possibly, firms find it unprofitable to invest in R&D for improved environmental performance 

and compete with the foreign firms not required to meet emissions standards of U.S. regulations.  

Jaffe et al. (1995) conclude that the competitiveness of firms does not appear to have suffered 

greatly because of environmental regulation.  The result here suggests that there may well be a 

cost associated with maintaining that competitiveness.  Firms facing import competition appear 

to have cut their environmental R&D. 
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The reason for the reduction in environmental R&D in the face of import competition is 

not certain.  Import competition could lower the value of good R&D performance because in the 

presence of import competition expenditures for emissions-reducing product innovations might 

not be recouped with sufficiently high post-innovation prices in international markets where 

emissions performance is not valued uniformly across nations.  Further, environmental R&D is 

not mandated by law; it is forward-looking, with product improvements in the future and 

uncertain.  In the present and near-term, companies doing environmental R&D would have to set 

product prices that meet the prices of foreign competitors who may not incur such R&D 

expenditures.  Greater import competition reduces the pre-innovation margins of domestic firms, 

leaving fewer internally generated funds for the R&D investments with uncertain payouts. 

The positive coefficients for PRODOTHER and COOP support the hypotheses that 

funding from others and cooperative activity with others make more valuable the company’s 

own investments in product R&D to improve the emissions performance of products.  Also 

supported are the hypotheses that the outside funding and the cooperative R&D are used with 

more challenging product R&D projects, shifting leftward the distribution over relative 

performance, ceteris paribus. 

Similarly, the positive coefficients for DBACKGROUND and for DPROCESS support the 

hypotheses that investment in background research to understand the emissions themselves and 

in process R&D make more valuable the applied R&D to improve the emissions performance of 

a company’s products.  Further, there is support for the hypotheses that the findings developed 

with the background research and the process R&D are used with more challenging product 

R&D. 

Title III product R&D is least at intermediate levels of seller concentration because the 

coefficient on CR4C is negative and the coefficient on its square is positive.  The U relation is 

consistent with the theory that the effect of competitive R&D pressure depends on whether firms 

perceive that pressure as exogenous, or instead perceive interactive R&D rivalry and reach a 

Nash noncooperative equilibrium.  Using the Tobit model, we can illustrate the relation. 

Following the derivation in Maddala (1983, pp. 158–9), with jφ  denoting the density 

function of the standard normal distribution evaluated at σβjj xz = , and jΦ  denoting the 
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cumulative distribution function also evaluated at σβjj xz = , we have for the expected value of 

ln(PRD3RDT) given that R&D is done: 

  )()|()0*|)3(ln( jjjjjjjjj xxExyRDTPRDE Φ+=−>+=> φσββεεβ  

To illustrate the U relation, the expected amount, in thousands of dollars, of Title III 

product R&D for a company that performs such R&D is then estimated as 

 ))(exp()0|3( jjjjj xyRDTPRDE Φ+=> φσβ , 

where exp(p) denotes the base to the natural logarithms e  raised to the power p.  We then have 

the Title III product R&D, in thousands of dollars, shown in Figure 4 as a function of seller 

concentration.10  Observe that the simulation uses the broad industry effects in the intercept, with 

other industry effects set to zero, and thus is for the firms operating in broad industries where 

typically there is less Title III product R&D, but the point is that whatever the industry of 

operation, the U relation obtains. 

 

Figure 4 about here 

  

Figure 5 uses the information in Figure 4 for a representative firm to illustrate an 

industry’s total Title III product R&D as seller concentration varies.  Structural competition 

stimulates total industry R&D over the lower range of seller concentration, but over the higher 

range R&D is greater as structural competition is decreased.  As explained earlier, the theory 

predicts positive and negative effects as well as the smooth bottom of the estimated U relation. 

 

Figure 5 about here 

 

V. Discussion 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
10 An analogous estimate of the expected amount of Title III product R&D for a company drawn from the 

population is ))(exp()(0)1()3( jjjjjj xRDTPRDE Φ+Φ+Φ−= φσβ . 
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 Observe that in the range of seller concentration for which more structural competition 

reduces R&D, concentration is high and the effect is different from what is observed in the range 

of concentration where Scherer (1980, p. 429) identified the “market room factor”.  Scherer’s 

market room factor occurs when seller concentration is low rather than high, and it results when 

there are many firms that reduce the profitability of R&D investment because of the high 

probability of post-innovation competition from other firms, some that would successfully 

imitate an innovation and some that would offer competing innovations.  Scherer (1980, p. 429) 

observes (italics in original): 

 

What we find then is a clash of structural propensities.  In terms of the 

marginal conditions for profit maximization, an increase in the number 

of sellers is conducive to more rapid innovation.  This influence can be 

called the stimulus factor.  But in terms of the requirement that 

expected profits from innovation be non-negative, an increase in the 

number of firms can, beyond some point, discourage rapid innovation.  

This influence might appropriately be called the market room factor. 

 

Figure 6 illustrates Scherer’s stimulus and market room factors in the relation between 

seller concentration and R&D investment, other things being the same, and also shows our range 

of high seller concentration where the oligopolists’ R&D efforts are strategic substitutes and the 

conditions we have identified obtain and result in a Schumpeterian positive association between 

concentration and R&D. 

 

Figure 6 about here 

 

 Since both the U and the inverted-U relations can in theory occur, we have added a cubic 

concentration term to the model in Table 6.  Using that polynomial functional form allows us to 

ask if both relations occur in our sample as seller concentration ranges from very low to very 

high.  Table 6 shows the results of the estimations;  both the U and the inverted-U relations are 

found in the data, but (not unsurprisingly given the fairly small size of the sample) in terms of 

statistical significance the relations are very faint.  To highlight the hint of marginal statistical 
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significance and thereby to stimulate interest in estimating the relations more precisely in larger 

samples, the table provides the one-tailed levels of significance.11 

 

Table 6 about here 

 

Figure 7 simulates the polynomial relation for an individual firm using the estimates in 

Table 6.  Figure 8 uses the information for the representative firm to simulate at the industry 

level both the U and the inverted-U relations for total industry R&D as seller concentration and 

hence the number of firms changes.  For very low levels of seller concentration, we would expect 

and we indeed do find evidence of Scherer’s market room effect.  Over moderate levels of seller 

concentration, we find his stimulus effect for structural competition.  Finally, over high levels of 

seller concentration, we observe the effect of Schumpeterian competition among concentrated 

sellers that increase their R&D investments as seller concentration increases. 

 

Figure 7 about here 

 

Figure 8 about here 

 

 
 In this paper, we have developed a theory to explain when a U relationship between seller 

concentration and R&D investment is expected.  Our U relationship is not a substitute for the 

inverted-U relation in the literature, but instead complements that story.  To the legacy of the 

literature on the Schumpeterian hypothesis, we add that theoretically both the U and the inverted-

U relations can obtain in the right circumstances, and we have shown that both relations can be 

observed with our sample of firms doing product R&D to reduce the emissions of Title III toxic 

chemicals.12  We have addressed Scherer's (1965, 1967a) observation that differences in 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
11 Note that Scherer’s (1967a, p. 530) seminal presentation of the inverted-U effect had only a modest 
effect for the squared concentration term, yet the observation led to a large literature. 
12 To establish the theoretical expectation of the presence of both the U and inverted-U relations as seller 
concentration changes, we have developed the theory in Scott (2009), developing and stating more 
directly the stability and Schumpeterian conditions.  Also with the illustration of both the U and the 
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technical opportunity may explain more than differences in structural competition.  We do so by 

using data on a single type of R&D performed in most industries, thereby giving us the variance 

in structural competition with arguably little variance in technical opportunity.  We have tested a 

theory that is able to predict a non-quadratic relationship between structural competition and 

R&D intensity.   We in fact find (a) a very significant U relationship and (b), when allowed by 

an appropriate specification, a non-quadratic relationship with both the U relationship and 

Scherer’s inverted-U relationship being present over different ranges of structural competition as 

predicted by the theory.   

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
inverted-U relations over different ranges of seller concentration in the same sample, we have added to 
the empirical results in Scott (2003, 2005). 
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Appendix 

 

The expected value of R&D expenditure 𝑅! to firm 𝑖 is 

𝐸 = 𝑉 𝑥; 𝛾 𝑍! ,𝑍!! ,𝑍! 𝑓 𝑥;𝛼 𝑋! ,𝑋!! ,𝑋! ,𝑅! 𝑑𝑥 

where the variables ZR and XR denote the sum of the R&D expenditures of the rivals of firm i.  

Note that the variables ZR and XR replace the Z and X variables that denoted the extent of competitive 
pressure in the case of a “competitive” firm facing exogenous competitive pressure.  Those variables will 

be ∑ ≠

n

ij jR where Rj denotes the investment of the jth firm among n firms. 

That is, ∑ ≠
==

n

ij jRR RXZ . 

The first-order condition for maximizing 𝐸 − 𝑅! with respect to 𝑅! is 

𝑉
𝜕𝑓
𝜕𝛼

𝜕𝛼
𝜕𝑅!

𝑑𝑥 = 1 

and the second-order condition is 

𝑉
𝜕𝑓
𝜕𝛼

𝜕!𝛼
𝜕𝑅!

! +
𝜕𝛼
𝜕𝑅!

𝜕!𝑓
𝜕𝛼!

𝜕𝛼
𝜕𝑅!

𝑑𝑥 = 𝜓 < 0. 

 

Displacing the equilibrium by changing 𝑍!, we derive !!!
!!!

 as follows: 

𝑉
𝜕𝑓
𝜕𝛼

𝜕!𝛼
𝜕𝑅!𝜕𝑋!

𝑑𝑋!
𝑑𝑍!

+
𝜕!𝛼
𝜕𝑅!

!
𝑑𝑅!
𝑑𝑍!

+ 𝑉
𝜕𝛼
𝜕𝑅!

𝜕!𝑓
𝜕𝛼!

𝜕𝛼
𝜕𝑋!

𝑑𝑋!
𝑑𝑍!

+
𝜕𝛼
𝜕𝑅!

𝑑𝑅!
𝑑𝑍!

+
𝜕𝑓
𝜕𝛼

𝜕𝛼
𝜕𝑅!

𝜕𝑉
𝜕𝛾

𝜕𝛾
𝜕𝑍!

+
𝜕𝛾
𝜕𝑍!

𝑑𝑍!
𝑑𝑍!

𝑑𝑥 = 0 

⇒
𝑑𝑅!
𝑑𝑍!

=

𝜕𝑓
𝜕𝛼

𝜕𝛼
𝜕𝑅!

𝜕𝑉
𝜕𝛾

𝜕𝛾
𝜕𝑍!

𝑑𝑥

−𝜓  
+

𝑑𝑅!
𝑑𝑋!

𝑑𝑋!
𝑑𝑍!

, 

where  

𝑑𝑅!
𝑑𝑋!

= −
𝜙
𝜓
=

𝑉 𝜕𝑓
𝜕𝛼

𝜕!𝛼
𝜕𝑅!𝜕𝑋!

+ 𝜕𝛼
𝜕𝑅!

𝜕!𝑓
𝜕𝛼!

𝜕𝛼
𝜕𝑋!

+ 𝜕𝑓
𝜕𝛼

𝜕𝛼
𝜕𝑅!

𝜕𝑉
𝜕𝛾

𝜕𝛾
𝜕𝑍!

𝑑𝑥

−𝜓
. 
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Appendix Remark 1:  Since 𝜓 < 0 by the second-order condition, the sign of !!!
!!!

 is that of 𝜙.  

That is, R&D expenditures are strategic complements if 𝜙 > 0 and strategic substitutes if 𝜙 < 0. 

It is reasonable to think that !!!
!!!

 (and !!!
!!!

) should be proportional to !!!
!!!

 in general, and in the 

special case of 𝑛 identical firms we have !!!
!!!

= 𝑛 − 1 !!!
!!!

 (since in that case 𝑋! = 𝑍! =

𝑛 − 1 𝑅!).  Making this substitution in the expression for !!!
!!!

 and rearranging yields Eq. (10) in 

Scott (2009): 

𝑑𝑅!
𝑑𝑍!

=

𝜕𝑓
𝜕𝛼

𝜕𝛼
𝜕𝑅!

𝜕𝑉
𝜕𝛾

𝜕𝛾
𝜕𝑍!

𝑑𝑥

−𝜓
−
𝜙
𝜓

𝑛 − 1
𝑑𝑅!
𝑑𝑍!

 

⇔
𝑑𝑅!
𝑑𝑍!

1 + 𝑛 − 1
𝜙
𝜓

=

𝜕𝑓
𝜕𝛼

𝜕𝛼
𝜕𝑅!

𝜕𝑉
𝜕𝛾

𝜕𝛾
𝜕𝑍!

𝑑𝑥

−𝜓
 

⇔
𝑑𝑅!
𝑑𝑍!

= −

𝜕𝑓
𝜕𝛼

𝜕𝛼
𝜕𝑅!

𝜕𝑉
𝜕𝛾

𝜕𝛾
𝜕𝑍!

𝑑𝑥

𝜓 + 𝑛 − 1 𝜙
. 

Appendix Remark 2:  If the strategic interaction is to become irrelevant as 𝑛 gets large, 
𝑛 − 1 𝜙 must get smaller as 𝑛 gets bigger.  For 𝑛 so large that the strategic interaction among 

firms is negligible, 𝑛 − 1 𝜙 should be essentially zero.  This means that 𝜙  must be decreasing 
as 𝑛 increases, quickly enough that even 𝑛 − 1 𝜙 vanishes as 𝑛 gets big.  Looking at  

𝜙 = 𝑉
𝜕𝑓
𝜕𝛼

𝜕!𝛼
𝜕𝑅!𝜕𝑋!

+
𝜕𝛼
𝜕𝑅!

𝜕!𝑓
𝜕𝛼!

𝜕𝛼
𝜕𝑋!

+
𝜕𝑓
𝜕𝛼

𝜕𝛼
𝜕𝑅!

𝜕𝑉
𝜕𝛾

𝜕𝛾
𝜕𝑍!

𝑑𝑥, 

it does seem plausible that !!!
!!!!!!

, !"
!!!

, and !"
!!!

 would all become small as the number of firms 

becomes large and 𝑅! becomes relatively small compared with 𝑋! = 𝑍! = 𝑛 − 1 𝑅!. 

 

Displacing the equilibrium by changing 𝑋!, we derive !!!
!!!

 in similar fashion: 

𝑉
𝜕𝑓
𝜕𝛼

𝜕!𝛼
𝜕𝑅!𝜕𝑋!

+
𝜕!𝛼

𝜕𝑅!𝜕𝑋!
𝑑𝑋!
𝑑𝑋!

+
𝜕!𝛼
𝜕𝑅!

!
𝑑𝑅!
𝑑𝑋!

+ 𝑉
𝜕𝛼
𝜕𝑅!

𝜕!𝑓
𝜕𝛼!

𝜕𝛼
𝜕𝑋!

+
𝜕𝛼
𝜕𝑋!

𝑑𝑋!
𝑑𝑋!

+
𝜕𝛼
𝜕𝑅!

𝑑𝑅!
𝑑𝑋!

+
𝜕𝑓
𝜕𝛼

𝜕𝛼
𝜕𝑅!

𝜕𝑉
𝜕𝛾

𝜕𝛾
𝜕𝑍!

𝑑𝑍!
𝑑𝑋!

𝑑𝑥 = 0 

⇒
𝑑𝑅!
𝑑𝑋!

=
𝑉 𝜕𝑓

𝜕𝛼
𝜕2𝛼

𝜕𝑅𝑖𝜕𝑋𝑖
+ 𝜕𝛼
𝜕𝑅!

𝜕2𝑓
𝜕𝛼2

𝜕𝛼
𝜕𝑋𝑖

𝑑𝑥

−𝜓
+

𝑑𝑅!
𝑑𝑋!

𝑑𝑋!
𝑑𝑋!

, 
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where again 

𝑑𝑅!
𝑑𝑋!

= −
𝜙
𝜓
=

𝑉 𝜕𝑓
𝜕𝛼

𝜕!𝛼
𝜕𝑅!𝜕𝑋!

+ 𝜕𝛼
𝜕𝑅!

𝜕!𝑓
𝜕𝛼!

𝜕𝛼
𝜕𝑋!

+ 𝜕𝑓
𝜕𝛼

𝜕𝛼
𝜕𝑅!

𝜕𝑉
𝜕𝛾

𝜕𝛾
𝜕𝑍!

𝑑𝑥

−𝜓
. 

Again, with 𝑛 identical firms we have !!!
!!!

= 𝑛 − 1 !!!
!!!

 (since in that case 𝑋! = 𝑍! =

𝑛 − 1 𝑅!).  Making this substitution in the expression for !!!
!!!

 and rearranging yields Eq. (12) in 

Scott (2009): 

𝑑𝑅!
𝑑𝑋!

=
𝑉 𝜕𝑓

𝜕𝛼
𝜕2𝛼

𝜕𝑅𝑖𝜕𝑋𝑖
+ 𝜕𝛼
𝜕𝑅!

𝜕2𝑓
𝜕𝛼2

𝜕𝛼
𝜕𝑋𝑖

𝑑𝑥

−𝜓
−
𝜙
𝜓

𝑛 − 1
𝑑𝑅!
𝑑𝑋!

 

⇔
𝑑𝑅!
𝑑𝑋!

1 + 𝑛 − 1
𝜙
𝜓

=
𝑉 𝜕𝑓

𝜕𝛼
𝜕2𝛼

𝜕𝑅𝑖𝜕𝑋𝑖
+ 𝜕𝛼
𝜕𝑅!

𝜕2𝑓
𝜕𝛼2

𝜕𝛼
𝜕𝑋𝑖

𝑑𝑥

−𝜓
 

⇔
𝑑𝑅!
𝑑𝑋!

= −
𝑉 𝜕𝑓

𝜕𝛼
𝜕2𝛼

𝜕𝑅𝑖𝜕𝑋𝑖
+ 𝜕𝛼
𝜕𝑅!

𝜕2𝑓
𝜕𝛼2

𝜕𝛼
𝜕𝑋𝑖

𝑑𝑥

𝜓 + 𝑛 − 1 𝜙
. 

 

Appendix Remark 3:  Eq. (13) in Scott (2009) has !!
!!
= − !"

!! !!! !
, which is negative when the 

Schumpeterian condition (S-2 in Scott (2009)) holds.  This expression gets smaller in absolute 
value as 𝑛 increases, not because of the 𝑛 − 1  in the denominator, but rather in spite of 
𝑛 − 1 𝜙 decreasing as 𝑛 increases (from Appendix Remark 2) and because of the 𝑅𝜙 in the 

numerator (both 𝑅 and 𝜙  get smaller as 𝑛 gets bigger).  Suppose the Schumpeterian condition 

holds, so 𝜙 < 0 and !!
!!
= − !"

!! !!! !
< 0.  We want to show !

!!
!!!

> 0.  That is, !!
!!

 gets bigger—

less negative—as 𝑛 increases.13  Since 

𝑑
𝑑𝑛

−𝑅𝜙
𝜓 + 𝑛 − 1 𝜙 =

−𝑅 𝑑𝜙𝑑𝑛 − 𝜙
𝑑𝑅
𝑑𝑛 𝜓 + 𝑛 − 1 𝜙 − −𝑅𝜙 𝑑𝜓

𝑑𝑛 + 𝜙 + 𝑛 − 1 𝑑𝜙
𝑑𝑛

𝜓 + 𝑛 − 1 𝜙 !  

we need only show −𝑅 !"
!"
− 𝜙 !"

!"
𝜓 + 𝑛 − 1 𝜙 − −𝑅𝜙 !"

!"
+ 𝜙 + 𝑛 − 1 !"

!"
> 0. 

Expanding dR /dn, cancelling R, and rearranging, we have 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
13 In our discussion here, we are treating 𝑛 like a continuous variable, but for our purposes that does not 
create a problem. 
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But !"
!"
= 0, 2𝜙! > 0,   𝜓 < 0 by second-order condition, and !"

!"
> 0 (if 𝜙 < 0 then !"

!"
 must be 

positive if 𝜙 is to vanish as 𝑛 gets big as Appendix Remark 2 says it should). 

From Section 4 of Scott (2009),  ! !"
!!

= 𝑛 !!
!!
+ 𝑅 = 𝑅 1− !"

!! !!! !
= 𝑅 !!!

!! !!! !
.  Since 

𝜓 + 𝑛 − 1 𝜙 < 0 by the stability condition (S-1 in Scott(2009)), the only way that total R&D 
could increase if the number of firms fell would be if 𝜓 − 𝜙 > 0.  Since 𝜓 < 0 by second-order 
condition, this would require not only that 𝜙 < 0 but also that 𝜙 > 𝜓 . 

Appendix Remark 4:  From Appendix Remark 1, R&D expenditures are strategic complements 
if 𝜙 > 0 and strategic substitutes if 𝜙 < 0.  Therefore, strategic substitute investment is 
necessary but not sufficient for total R&D to increase as 𝑛 falls.   
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Table 1.  Relative-Performance Model of R&D Investment: The Objective Function 

•  The firm’s objective function is ∫ −− dxRXXxfZZxV iiii )),,(;()),(;( αγ  – R, where for the ith firm, 
the value V of its R&D investment R  increases at a decreasing rate with its technical 
performance x. 
   
•  The innovation’s value is given by V(x; γ), where V given x increases with the parameter γ and 

0>∂∂ γV  increases with x, and given the parameter γ, 0)( and ,0)( ,0)( <ʹ′ʹ′>ʹ′> xVxVxV . 
 
•  The value parameter γ is a function of a set of explanatory variables Z.  Thus, γ = γ(Z).  Value 
reflects the present discounted value of the stream of benefits generated by the innovation; 
details about the stream of benefits are in the partial derivatives and cross-partials for γ(Z). Value 
increases at a decreasing rate because of diminishing marginal utility for the increased 
performance measured by x given the parameter γ. 
 
•  Investment in risky R&D results in innovations—new commercialized processes or products 
with better technical performance as indexed by the random variable x.  The measure, x, of 
technical performance is necessarily relative technical performance—that is, performance 
relative to the anticipated state of the art.  Better technical performance reflects higher quality of 
the firm’s completed R&D project.  The probability distribution for the measure of performance 
x is given by the probability density f(x; α), where greater values of the distribution’s parameter 
α shift the probability distribution rightward over higher levels of performance. 
 
•  The parameter α is determined by the amount of R&D investment R and an additional set of 
explanatory variables X.  Thus, α = α(X,R).  Greater R&D investment, R, is associated with a 
greater α.  Hence, if a company increases its R&D, its distribution over performance outcomes is 
shifted rightward over higher values of the index of performance x.  The R&D investment R is 
the present value of the R&D cost schedule chosen by the firm.  The details of the R&D cost 
schedule are described with the partial derivatives and cross-partials for α(X,R). 
 
•  Thus, the integral is the expected value E of the investment R, and the firm chooses R to 
maximize expected profit (E – R). 
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Figure 1.  Competitive Pressure and the Probability Distribution for Relative Performance 
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Figure 2 
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Figure 3 
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Table 2.  Relative-Performance Model of R&D Investment:  The Results 

For exogenous competitive pressure (i.e., no strategic interaction):  

 

• Result 1 If ∂V/∂γ > 0 and is increasing with x, then dR/dZi > 0 if ∂γ /∂ Zi > 0 and dR/dZi < 0        

if ∂γ /∂ Zi < 0.  For a variable that shifts value up (down) as it increases, R&D increases 

(decreases) as that variable increases. 

• Result 2 If ∂2α/∂ Xi ∂ R has a sign that is the opposite of the sign of ∂α/∂ Xi , or alternatively is 

sufficiently small, then dR/dXi > 0 if ∂α/∂ Xi <0 and dR/dXi <0 if ∂α/∂ Xi > 0.  For a variable that 

shifts the probability distribution left (right) as it increases, R&D increases (decreases) as that 

variable increases. 
 

For interactive or strategic rivalry and Nash equilibrium strategy combinations: 

 

• Result 3 With noncooperative Nash equilibrium, the sign for the derivative of R with respect to a 

value shifting variable Zi will be the same sign as given in Result 1 if the equilibrium is stable in 

the special sense that rivals’ R&D is not too complementary. 

• Result 4 With Nash equilibrium and given the stability condition, the sign for the derivative of R 

with respect to a probability shifting variable Xi will be the same sign as given in Result 2. 

• The Schumpeterian condition: The marginal-value-reducing effect (because of post-innovation 

competition) of rivals’ R&D outweighs (1) the positive impact of rivals’ R&D on the marginal 

value of a firm’s R&D resulting from the leftward shift in the probability distribution and (2) the 

possibly positive impact from complementary rival R&D. 

• Result 5 The sign of the change in Nash equilibrium R&D investment for each firm as the 

number of competitors increases is negative given the stability condition and the Schumpeterian 

condition, and the effect becomes smaller as the number of firms in the equilibrium increases. 

• Result 6 Even given the conditions in Result 5 so that the firm’s R&D falls, the total R&D will 

rise if a firm’s own R&D investments have effects on the marginal benefit of its R&D that are 

larger in absolute value than the marginal-benefit-dampening effects that result from the R&D 

investments of its rivals. 
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Table 3.  Descriptive Statistics for PRD3RDT, Title III Product R&D in Thousands of 1992 Dollarsa 

Variable Mean Standard 

Deviation 

Minimum Maximum Number of 

Observations 

PRD3RDT 12,395.29 60,312.76 4.00 367,500.00 37 

ln PRD3RDT 6.1473 2.4838 1.3863 12.8145 37 

 

aNote that the distribution of PRD3RDT is quite skewed.  The average of the natural logarithms 
corresponds to a much smaller amount of Title III product R&D than the average value for PRD3RDT.  
The logarithms for the minimum and maximum values of course do correspond to the minimum and 
maximum values for PRD3RDT.  There are 95 of the 132 responding companies that report they do not 
do Title III product R&D;  the mean for PRD3RDT in the 132 observation sample is 3,474.44. 
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Table 4.  Explanatory Variables for the Tobit Model of Title III Product R&Da 

Variable Mean Standard Deviation Number of observations 
ln(NTAPC) 3.229 0.6596 132 
NTAPC 30.80 19.47 132 
ln(SALES) 6.375 1.611 132 
SALES 2721.09 7721.90 132 
ln(IMPSC) – 1.913 0.9178 132 
IMPSC 0.2268 0.2963 132 
PRODOTHER 0.02273 0.1496 132 
COOP 0.09848 0.2991 132 
CR4C 36.05 11.27 132 
DBACKROUND 0.3182 0.4675 132 
DPROCESS 0.4394 0.4982 132 

Noncensored observations (PRD3RDT > 0) 
ln(NTAPC) 3.492 0.6673 37 
NTAPC 39.92 23.90 37 
ln(SALES) 7.190 1.803 37 
SALES 6096.21 12971.89 37 
ln(IMPSC) – 2.207 0.6899 37 
IMPSC 0.1342 0.08355 37 
PRODOTHER 0.08108 0.2767 37 
COOP 0.2703 0.4502 37 
CR4C 33.52 10.69 37 
DBACKROUND 0.5946 0.4977 37 
DPROCESS 0.7568 0.4350 37 
 

aNote that the average of the natural logarithms for a variable does not correspond to the average value for 
the variable. 
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                    Table 5.  The Tobit Model for ln(PRD3RDT).a 

       
Variable Coefficient (Standard 

Error)b 
Standard Error with Intragroup 
Correlation (clustered errors)b 

Constant – 20.0 (8.31)**** 5.28***** 
 ln(NTAPC) 2.34 (1.37)*** 1.64* 
 ln(SALES) 1.71 (0.566)***** 0.548***** 
 ln(IMPSC) – 2.82 (1.28)**** 0.899***** 
 PRODOTHER 9.18 (3.54)**** 2.35***** 
 COOP 2.86 (2.27) c 1.30**** 
CR4C –0.538 (0.295)*** 0.256**** 
CR4C2 0.00539 (0.00362)** 0.00276*** 
DBACKGROUND 2.85 (1.87)** 1.63*** 
DPROCESS 2.95 (1.74)*** 1.62*** 
 Industry Effectsd Yes  
 SIGMA 5.29 (0.710)***** 0.543***** 
 Log likelihood –143.90  
Chi-square (d.f. =19)e 66.99*****  
 No. of Observations 132  
 

aThe dependent variable for the Tobit model is ln(PRD3RDT) for the 37 nonzero observations of Title III R&D and 
is zero for the remaining 95 observations of companies responding to the survey.  Column (1) is the basic Tobit 
model estimated with StataCorp (2011).  Column (2) shows the standard errors estimated using Stata’s cluster option 
for estimating the variance-covariance matrix corresponding to the parameter estimates with the Tobit command.  
The covariance matrix for the model is adjusted for clustering, allowing for intragroup correlation of the errors in 
each specified cluster of observations.  The clustering of the errors does not affect the estimated coefficients, but 
changes the standard errors and the variance-covariance matrix of the estimators.  The sample of 132 observations 
contained 15 clusters with each cluster being one of the 15 broad industries listed in note (d) below and with each 
firm assigned to the cluster that represents its primary manufacturing industry.  Six of the 132 firms have a non-
manufacturing industry as their primary industry but have significant manufacturing operations too.  For purposes of 
determining the 15 clusters those six firms were assigned to their primary manufacturing industry.  

bSignificance levels for two-tailed tests:  * p ≤ 0.20;  ** p ≤ 0.15;  *** p ≤ 0.10;  **** p ≤ 0.05;  ***** p ≤ 0.01.  

cThis note is to indicate the p value for the ratio of the coefficient to the standard error for estimated parameters 
(other than the coefficients for the industry dummy variables) where the ratio is greater than one yet not great 
enough for a two-tailed p value ≤ 0.20.  For the coefficient of COOP in specification (1), the p value is 0.21. 

dCorresponding exactly to the specification used for the two-step estimates of the Tobit model of Title III product 
R&D with selection into the sample in Scott (2003, Table 6.5, p. 88) and also to the full information maximum 
likelihood models in Scott (2005) that converged when jointly estimating the models of selection and R&D, industry 
effects for operations in 10 broad industry categories (food, textiles, furniture, paper, rubber and plastics, fabricated 
metal, industrial machinery, electronics, transportation, and instruments) were estimated, with operations in the 
remaining five broad industry categories (lumber and wood, chemicals, petroleum, primary metals, and 
miscellaneous manufacturing), for which the industry effects were indistinguishable from each other, left in the 
intercept. There were no respondents with their primary activities in five of the broad Standard Industrial 
Classifications—tobacco, apparel, printing, leather, and stone, clay, and glass.  

eThe likelihood ratio chi-square test of the joint significance of all the variables in the model as described by Greene 
(2002, p. E21-7);  the chi-squared statistic has 19 degrees of freedom. 
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Figure 4.  A Firm’s Expected Title III Product R&D Conditional on Performance of Title III 
Product R&D, as a Function of Seller Concentration, Ceteris Paribusa 

Expected Title III Product R&D (thousands of dollars) 

  CR4C 

aSimulated using the estimation in Table 5 for a firm not in one of the 10 broad industries for which 
industry effects are estimated  (all included industry qualitative variables set to zero, so the broad industry 
effect reflected in the intercept is used—see the notes to Table 5) with ln(NTAPC), ln(SALES), and 
ln(IMPSC) set at their means for the sample of firms performing Title III product R&D, and with COOP, 
DBACKGROUND, and DPROCESS set at 1, and PRODOTHER = 0 (since very few firms, even among 
those with Title III product R&D, have PRODOTHER = 1). 
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Figure 5.  An Industry’s Total Title III Product R&D as a Function of Seller Concentration.a 

 

Expected Total Title III Product R&D (thousands of dollars) 

CR4C 
aSimulated using the results from Figure 4 for the representative firm and using 100/(CR4C/4) for the 
number of firms at each level of CR4C. 
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Figure 6.  Structural Competition and R&D Investment 
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   Table 6.  The U and the Inverted U in the Tobit Model for ln(PRD3RDT).a 

       
Variable Coefficient (Standard Error)b Standard Error with Intragroup 

Correlation (clustered errors)b 
Constant – 33.9 (13.8)*****  10.3***** 
 ln(NTAPC) 1.64 (1.44)** 1.49** 
 ln(SALES) 1.62 (0.560)***** 0.567***** 
 ln(IMPSC) –2.74 (1.25)**** 0.891***** 
 PRODOTHER 8.72 (3.48)***** 2.22***** 
 COOP 2.70 (2.24)** 1.21**** 
CR4C 0.887 (1.11) 0.878* 
CR4C2 –0.0305 (0.0274)** 0.0205*** 
CR4C3 0.000274 (0.000208)*** 0.000150**** 
DBACKGROUND 3.14 (1.87)**** 1.63**** 
DPROCESS 3.15 (1.72)**** 1.66**** 
 Industry Effectsc Yes  
 SIGMA 5.19 (0.696)***** 0.521***** 
 Log likelihood –143.02  
Chi-square (d.f. =20)d 68.74*****  
 No. of Observations 132  
 

aThe dependent variable for the Tobit model is ln(PRD3RDT) for the 37 nonzero observations of Title III R&D and is zero for the 
remaining 95 observations of companies responding to the survey.  Column (1) is the basic Tobit model estimated with StataCorp 
(2011).  Column (2) shows the standard errors estimated using Stata’s cluster option for estimating the variance-covariance 
matrix corresponding to the parameter estimates with the Tobit command.  The covariance matrix for the model is adjusted for 
clustering, allowing for intragroup correlation of the errors in each specified cluster of observations.  The clustering of the errors 
does not affect the estimated coefficients, but changes the standard errors and the variance-covariance matrix of the estimators.  
The sample of 132 observations contained 15 clusters with each cluster being one of the 15 broad industries listed in note (c) 
below and with each firm assigned to the cluster that represents its primary manufacturing industry.  Six of the 132 firms have a 
non-manufacturing industry as their primary industry but have significant manufacturing operations too.  For purposes of 
determining the 15 clusters those six firms were assigned to their primary manufacturing industry.  

bSignificance levels for one-tailed tests:  * p ≤ 0.20;  ** p ≤ 0.15;  *** p ≤ 0.10;  **** p ≤ 0.05;  ***** p ≤ 0.01. With the three 
terms for seller concentration to estimate a polynomial allowing the illustration of both the traditional inverted-U over the lower 
range of concentration and the U relation over the higher range, the statistical significance for the concentration terms is certainly 
not present at anything approaching the usual levels of confidence.  Arguably, at this point we are testing a hypothesis with a very 
clear a priori expectation of a positive sign for CR4C, a negative sign for its square, and a positive sign for its cube, so to show 
what hint of significance there may be, we have used the one-tailed p values in this table.  Doubling them, of course, yields the 
two-tailed tests. 

cCorresponding exactly to the specification used for the two-step estimates of the Tobit model of Title III product R&D with 
selection into the sample in Scott (2003, Table 6.5, p. 88) and also to the full information maximum likelihood models in Scott 
(2005) that converged when jointly estimating the models of selection and R&D, industry effects for operations in 10 broad 
industry categories (food, textiles, furniture, paper, rubber and plastics, fabricated metal, industrial machinery, electronics, 
transportation, and instruments) were estimated, with operations in the remaining five broad industry categories (lumber and 
wood, chemicals, petroleum, primary metals, and miscellaneous manufacturing), for which the industry effects were 
indistinguishable from each other, left in the intercept. There were no respondents with their primary activities in five of the 
broad Standard Industrial Classifications—tobacco, apparel, printing, leather, and stone, clay, and glass.  

dThe likelihood ratio chi-square test of the joint significance of all the variables in the model as described by Greene (2002, p. 
E21-7);  the chi-squared statistic has 20 degrees of freedom. 
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Figure 7.  The U and the Inverted-U for a Firm’s Expected Title III Product R&D Conditional on 
Performance of Title III Product R&D, as a Function of Seller Concentration, Ceteris Paribusa 

Expected Title III Product R&D (thousands of dollars) 

  CR4C 

aSimulated using the estimation in Table 6 for a firm not in one of the 10 broad industries for which 
industry effects are estimated  (all included industry qualitative variables set to zero, so the broad industry 
effect reflected in the intercept is used—see the notes to Table 6) with ln(NTAPC), ln(SALES), and 
ln(IMPSC) set at their means for the sample of firms performing Title III product R&D, and with COOP, 
DBACKGROUND, and DPROCESS set at 1, and PRODOTHER = 0 (since very few firms, even among 
those with Title III product R&D, have PRODOTHER = 1). 
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Figure 8.  Illustrating Both the U and the Inverted-U Relation for an Industry’s Total Title III 
Product R&D as a Function of Seller Concentration.a 

 

Expected Total Title III Product R&D (thousands of dollars) 

CR4C 
aSimulated using the results from Figure 7 for the representative firm and using 100/(CR4C/4) for the 
number of firms at each level of CR4C. 
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