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Bruce and Young (1986) proposed a model for face
processing that begins with structural encoding,
followed by a split into two processing streams: one for
the dynamic aspects of the face (e.g., facial expressions
of emotion) and the other for the invariant aspects of
the face (e.g., gender, identity). Yet how this is
accomplished remains unclear. Here, we took a
psychophysical approach using contrast negation to test
the Bruce and Young model. Previous research suggests
that contrast negation impairs processing of invariant
features (e.g., gender) but not dynamic features (e.g.,
expression). In our first experiment, participants
discriminated differences in gender and facial
expressions of emotion in upright, inverted, and
contrast-negated faces. Results revealed a profound
impairment for contrast-negated gender discrimination,
whereas expression discrimination remained relatively
robust to contrast negation. To test whether this
differential effect occurs during perceptual encoding, we
conducted three additional experiments in which we
measured aftereffects following upright, inverted, or
contrast-negated face adaptation for the same
discrimination task as in the first experiment. Results
showed a mild impairment with contrast negation during
perceptual encoding for both gender and expression,
followed by a marked gender-specific deficit during
contrast-negated face discrimination. Taken together, our
results suggest that there are shared neural mechanisms
during perceptual encoding, and at least partially
separate neural mechanisms during recognition and
decision making for dynamic and invariant facial-feature
processing.

Introduction

The human race is a highly social species that
frequently uses the face to communicate social signals.
These signals may include dynamic information such as
our current emotional state, environmental features
capturing our attention (i.e., directed eye gazes), and
even facial expressions of language (e.g., speech
movements and American Sign Language nonmanuals;
see McGurk & MacDonald, 1976; Reilly, McIntire, &
Bellugi, 1990). Alternatively, they may be static in
nature, such as with gender and identity. When the
ability to process these facial cues is diminished, poor
facial-recognition skills develop as well as impairments
in social communication skills, such as those observed
with autism spectrum disorders (American Psychiatric
Association, 2013). However, our understanding of the
neural mechanisms subserving face perception is still
limited. It was proposed by Bruce and Young (1986)
that face processing begins with basic structural
encoding (i.e., eyes above a nose above a mouth) and
then separates into two divergent pathways, one for
processing the dynamic features of the face (e.g.,
emotion, eye gaze, speech) and the other for processing
the invariant features of the face (e.g., identity, gender,
race). Consistent with the Bruce and Young model,
there is accumulating neuroimaging evidence suggest-
ing a dissociation between the representation of
invariant and dynamic aspects of faces (for a review,
see Haxby, Hoffman, & Gobbini, 2000). Moreover, this
model is supported by studies of prosopagnosia, in
which identity recognition is impaired but emotion
recognition is usually spared (Duchaine, Germine, &
Nakayama, 2007; Duchaine, Murray, Turner, White, &
Garrido, 2009; Duchaine, Parker, & Nakayama, 2003;
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Humphreys, Avidan, & Behrmann, 2007). However,
recent research suggests that individuals with develop-
mental prosopagnosia (DP) have great difficulty
encoding configural information for both expression
and identity. Since the incoming information is
compromised, it is possible that the preserved ability in
DP to recognize emotion may result from compensa-
tory strategies rather than a separated, and therefore
intact, emotion-processing pathway (Palermo et al.,
2011).

A few behavioral paradigms have been developed to
test the relationship between the processing of dynamic
and invariant facial cues. One such method is to
measure irrelevant-dimension effects. An irrelevant-
dimension effect occurs when the processing of
information from one stimulus dimension is altered or
impaired by variations in a second, ancillary stimulus
dimension. This indicates that the two dimensions are
not orthogonal but rather interrelated. In the context of
processing facial expressions of emotion and identity,
variations in identity decrease accuracy for recognition
of facial expressions of emotion and vice versa (Galster,
Kahana, Wilson, & Sekuler, 2009; Ganel & Goshen-
Gottstein, 2004; Schweinberger & Soukup, 1998;
White, 2001). These results suggest that the processing
of facial expressions of emotion and identity are
interrelated and hence share at least some neural
circuitry, which conflicts with Bruce and Young’s
theory. Yet when irrelevant-dimension effects are
measured in the context of adaptation, the size of the
aftereffects following adaptation to facial expressions
of emotion are stronger when identity remains con-
stant, whereas the contrary cannot be said for identity
(Ellamil, Susskind, & Anderson, 2008; Fox & Barton,
2007). That is, the size of aftereffects resulting from
adaptation to identity is not influenced by variations in
facial expression of emotion. In contrast to the
irrelevant-dimension effect for recognition, these results
suggest a unidirectional dependency in which process-
ing of facial expressions of emotion is influenced by the
representation of identity. Explaining all these results
would require a modified version of Bruce and Young’s
(1986) model. Accordingly, Calder and Young (2005)
have suggested that dynamic- and invariant-feature
processing may share neural circuitry before deviating
for domain-specific processing. However, it remains
unknown which neural circuitry is shared and at what
point during face processing the split might occur.

Here we focus on the possible differentiation of face
processing for emotional expressions and gender, from
the perceptual encoding stage to recognition and
decision making. We investigate which of these
processing stages involve shared neural circuitry and
which are likely to proceed independently. To do this,
we use a highly sensitivite perceptual-discrimination
task to compare dynamic and invariant pathway

processing based upon the lexical information con-
veyed in the face (e.g., angry or happy, male or female).
This psychophysical approach allows us to test whether
dynamic and invariant facial information is processed
jointly or independently at the recognition and
decision-making stage. We presented participants with
upright, inverted, and contrast-negated faces. Since
inversion is thought to impair the encoding of face
configuration (i.e., facial-feature arrangement and
holistic percept; reviewed in Farah, Wilson, Drain, &
Tanaka, 1998; McKone & Yovel, 2009; Young,
Hellawell, & Hay, 1987), we expect that it will also
impair the processing of dynamic and invariant facial
information. This is because our psychological repre-
sentations of both dynamic and invariant informa-
tion—for example, expression and identity—generally
require some level of configural encoding (see, e.g.,
Calder & Jansen, 2005; Young et al., 1987). On the
other hand, contrast negation (i.e., a contrast reversal
or photographic negative) produces faces that are very
different from those viewed in daily life (the whites of
the eyes are black, the pupils are white, etc.), but still
identifiable as faces. Despite being a fully reversible
manipulation without any information loss, contrast
negation leads to great difficulty in recognizing the
identity of a face (see, e.g., Galper, 1970; Gilad, Meng,
& Sinha, 2009; Kemp, McManus, & Pigott, 1990;
Nederhouser, Yue, Mangini, & Biederman, 2007;
White, 2001) but spares the recognition of facial
expressions of emotion (White, 2001). These results
suggest that contrast negation may only interfere with
face recognition after it has separated from expression
processing. Notably, Gilad et al. (2009) suggest that
ordinal luminance relations between the eyes and their
surrounding region are crucial for normal facial
processing. Contrast negation destroys these otherwise
highly reliable ordinal luminance relations and there-
fore impairs face processing. Analyzing these ordinal
relations involves comparing averaged luminance levels
across different facial regions and cannot be accom-
plished at the stage when only specific local cues are
encoded. Consistent with this notion, we hypothesize
that if there is a split in processing pathways (i.e., after
initial encoding of local features but before recognition
and decision making), then contrast negation should
impair the discrimination of invariant facial features
(e.g., identity and gender) but not necessarily dynamic
features (e.g., facial expression). However, if contrast
negation impairs the discrimination of both to a
comparable level, then this would suggest that the
processing of invariant and dynamic facial information
may not necessarily be separated.

Of course, it should also be examined whether a split
in processing pathways could exist in the initial stages
of face processing, that is, during perceptual (holistic)
encoding. Holistic processing involves the binding of
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the internal facial features and their spatial arrange-
ment with the external contour of the face, creating a
single face percept (Sergent, 1984). In the Bruce and
Young (1986) model, this level of perceptual processing
occurs after basic structural encoding. Visual adapta-
tion to faces is one powerful tool with which to study
the neuronal basis of perceptual (holistic) encoding
(see, e.g., Jiang, Blanz, & O’Toole, 2006; Leopold,
O’Toole, Vetter, & Blanz, 2001; Leopold, Rhodes,
Mueller, & Jeffery, 2005; Oruç & Barton, 2011;
Webster, Kaping, Mizokami, and Duhamel, 2004;
reviewed in Webster & MacLeod, 2011). Thus, we also
included experiments that measured aftereffects fol-
lowing visual adaptation to a face. Notably, aftereffects
reflect the adjustment of sensory neurons during
adaptation so as to maintain the perception of the
prevailing average sensory experience (Webster,
Werner, & Field, 2005). Adaptation with neuronal-
response attenuation is found in both low-level visual
aftereffects—for example, color, orientation, and spa-
tial frequency (Graham, 1989; Webster, 1996; Webster
& Mollon, 1991; Westheimer & Gee, 2002)—and high-
level visual aftereffects such as those viewed with faces
(see, e.g., Leopold et al., 2001; Rhodes, Jeffery,
Watson, Clifford, & Nakayama, 2003; Watson &
Clifford, 2003; Webster & MacLin, 1999; reviewed in
Webster & MacLeod, 2011). Of particular relevance to
the current study is evidence for aftereffects following
gender or expression adaptation. In the case of gender,
adapting to, for example, a male face will result in the
perception of a female in a face that is actually gender-
neutral (Webster et al., 2004). Similarly, adapting to,
for example, an angry face will result in the perception
of happiness in a face that is actually 50% angry and
50% happy (Webster et al., 2004).

Here we exploit the possibility of a differential effect
of contrast negation on each processing pathway by
measuring aftereffects for the perception of dynamic
information (e.g., expression) and invariant informa-
tion (e.g., gender) following adaptation to either an
original or a contrast-negated face. As face aftereffects
may reflect adaption of the neural substrates that
encode faces, if a split in processing pathways occurs
after perceptual encoding, then aftereffects caused by
visual adaptation should be, by and large, equivalent
for both types of information regardless of whether the
adapting face is upright, inverted, or contrast negated.
However, if different effects of adaptation are ob-
served, then a split in processing pathways will likely
have occurred during perceptual encoding, and our
hypothesis will have been wrong.

An additional feature of the present study, and not
present in many of the previously mentioned studies, is
that we chose gender as our invariant property rather
than identity. While emotions are pervasive and extend
from person to person, identity is unique. Thus the

exposure to any one identity, particularly an unfamiliar
identity in an experiment, is bound to be less than the
exposure to different facial expressions of emotion.
This is important because experience can alter face-
processing ability (see, e.g., Gobbini & Haxby, 2007;
Rossion, 2002). Accordingly, when we compare dy-
namic and invariant facial processing, task familiarity
is of great concern, as we would not want differences in
experience to confound potential interpretations of the
results. By contrast, gender, like emotion, is ubiquitous;
yet it is also invariant, like identity. Gender covaries
with identity and is proposed to share the same
processing pathway as identity, that is, the processing
pathway for invariant features (Goshen-Gottstein &
Ganel, 2000; Ng, Ciaramitaro, Anstis, Boyton, & Fine,
2006). As with identity, gender recognition is impaired
by contrast negation (Bruce & Langton, 1994; Santos &
Young, 2008). Thus, we argue that gender is a more
appropriate invariant facial feature for testing the
Bruce and Young (1986) model.

Experiment 1

Methods

Participants

Twenty-two undergraduates from Dartmouth Col-
lege participated in exchange for course credit. All
participants had normal or corrected-to-normal visual
acuity. This research was approved by the Committee
for the Protection of Human Subjects at Dartmouth
College and conducted in accordance with the 1964
Declaration of Helsinki.

Stimuli

The stimuli were generated from grayscale photo-
graphs of one Caucasian male making three different
expressions—happy, angry, and neutral—and a Cau-
casian female with a neutral expression. These faces
were selected from the NimStim database (Tottenham
et al., 2009) and were identities 06, 24, 27, and 34,
respectively. In order to remove the influence of
external facial features such as hair, the upper half of
each face was partially framed by the top half of a
black oval frame. This partial oval frame occluded the
hair and the ears but preserved the external contour for
the lower half of the face (Figure 1). Then, using
Matlab, we set the mean luminance and root-mean-
square contrast of the face portion of the images to be
the same. We also ensured that stimuli contained no
significant differences in spatial-frequency content and
size (9.358 · 14.18). Thus, any effects observed would
be unlikely to have resulted from differences in low-
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level visual characteristics. From these normalized
faces, we created three sets of stimuli, each containing a
series of 100 faces, by morphing from neutral to happy,
neutral to angry, and male to female. Since there were
100 morph faces in each set, the amount of change from
one morph face to the next was very small. As a result,
we can obtain very finely tuned discrimination thresh-
olds. Faces were additionally contrast negated or
inverted to create a total of nine different categories:
upright happy, upright angry, upright gender, contrast-
negated happy, contrast-negated angry, contrast-ne-
gated gender, inverted happy, inverted angry, and
inverted gender. All images were presented against a
gray background. Stimuli were presented on a 21-in.
(53.3-cm) Dell P1130 CRT monitor (1280 · 1024
pixels, 85 Hz) using Matlab r2008a and the Psycho-
physics Toolbox (Brainard, 1997; Pelli, 1997).

Design

Participants viewed a test face and a comparison face
centered in the left and right halves of the display. The
locations of the test face and comparison face were
counterbalanced across trials. Centered in the upper
half of the display was a label indicating the category
for that trial, for example, ‘‘Happy.’’ Test faces were
any of the 100 morph faces for a given category (e.g.,
happy). For happy and angry, the comparison face was
always the neutral face (0% morph face). For the
gender trials, the comparison face was always the 50%
morph face (i.e., 50% male and 50% female). As a

result, and because participants may differ in their
perceptions of gender neutral, we separated the gender
trials into two categories: male and female. This
allowed us to acquire separate male and female
thresholds, which we could then average to obtain an
unbiased estimate of gender-discrimination sensitivity.
Male faces varied from 1 to 50, and female faces varied
from 50 to 100.

The first test face for each category was the 80%
morph face: for example, 80% happy. After this, test
faces were determined by an adaptive staircase
procedure (modified PEST; see Taylor & Creelman,
1967). Because there were nine different face categories
(see Stimuli previously), we needed nine different
staircases. To reduce the perception of a gradual
narrowing onto a threshold, the nine different stair-
cases were randomly interleaved between trials.

In each staircase, a correct response made the test
face more similar to the comparison face by one ‘‘step,’’
making it harder to discriminate, and an incorrect
response increased the difference between the test face
and comparison face by three steps, making it easier to
discriminate. The size of a step varied with the
participant’s responses, with a maximum step size of 20
morph units. Step size was further controlled by an
acceleration factor, such that two consecutive correct
or incorrect responses increased the size of the step by a
factor of 1.5 and a shift from correct to incorrect (or
vice versa) decreased the step size by a factor of 1/1.5 ’

0.67. These parameters are identical to the staircases

Figure 1. Example trials for Experiment 1. Participants indicated which face better fit the category label, that is, which face appeared

happier (left) or which face appeared more masculine (right). The top left shows a trial with 70% happy (left) and neutral (right), and

the upper right shows 70% male and 50% male/50% female (i.e., gender neutral). The example trials for contrast-negated faces

(bottom) use the same morphs but are shown on opposite sides of the display (left shows neutral, right shows 70% happy, etc.).
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employed in previous studies (Pallett, Cohen, &
Dobkins, 2013; Pallett & Dobkins, 2013).

There were 50 trials per face category except for
gender, which had 100 trials (50 male trials and 50
female trials). Since pilot results suggested that the task
was very difficult, every 10 trials contained an easy trial
in which the test face represented the category
maximum (e.g., 100% happy). As a result, we obtained
measures of both discrimination ability and simple
accuracy. Each participant completed 660 total trials
(600 test trials and 60 easy trials).

Procedure

Each trial began with a beep and 500-ms fixation.
Then participants simultaneously viewed the test face,
comparison face, and category label. The stimuli
remained on display until the participant selected the
face more representative of the trial category (by key
press). At this point, the trial ended and a new one
began.

Data analysis

We examined three different performance measures:
discrimination ability (thresholds), easy-trial accuracy,
and response times (RTs). Because the male and female
judgments involved the same morph continuum, we
collapsed the data across these two categories and
obtained a general measure of gender performance.
Overall gender performance was analyzed alongside
happy and angry performance for each of the physical
categories (upright, inverted, and contrast negated).

When originally designing this experiment, we did
not plan to analyze the easy-trial data, since we
expected them to plateau at ceiling. However, when
asked to label the gender of a contrast-negated face in
the discrimination task, participants could not suc-
cessfully do so. In other words, our participants were
completely incapable of discriminating differences in
contrast-negated gender (described later in Results). As
a result, it was impossible to obtain dependable
threshold fits (method described later) for contrast-
negated gender discrimination. Although this, in and of
itself, demonstrates a uniquely strong effect of contrast
negation on gender discrimination, statistical compar-
ison of the thresholds was therefore not possible. To
overcome this, we analyzed participant accuracy on the
easy trials, which allowed us to compare performance
across all conditions including contrast-negated gender.
It should be noted that there are limitations to consider
when assessing accuracy data from conditions with
near 100% performance accuracy (i.e., ceiling). Perfor-
mance at ceiling may limit our ability to measure the
true effect of semantic category and physical category
on easy-trial accuracy, and thus our measurements may
inaccurately reflect the effect of these different condi-

tions (for discussion, see Crookes & McKone, 2009;
McKone, Crookes, Jeffery, & Dilks, 2012; McKone,
Crookes, & Kanwisher, 2009). In the current data,
participants performed at ceiling for all conditions
except upright gender, contrast-negated gender, in-
verted gender, inverted happy, and inverted angry
(although there were only marginally significant
differences in the upright condition for happy, angry,
and gender accuracy; Wilcoxon signed-rank test, ps .
0.06). Easy-trial accuracies were analyzed in a 3 · 3
repeated-measures ANOVA on semantic category
(happy, angry, gender) and physical category (upright,
inverted, contrast negated).

As with the easy trials, RT performances were
available for each condition, including contrast-negat-
ed gender. Thus we also compared RTs for each face
category. First, each participant’s RTs were filtered for
outliers. Any RT beyond two standard deviations away
from the mean of that participant’s data was excluded.
The remaining RTs were averaged within each face
category. To improve conformity to the normal
distribution, we tested log RTs rather than regular
RTs. Log RTs were analyzed in a 3 · 3 repeated-
measures ANOVA on semantic category (happy,
angry, gender) and physical category (upright, inverted,
contrast-negated).

As mentioned in the description of the easy-trial data
analysis (previously), we could not obtain threshold fits
for contrast-negated gender discrimination. However,
we could measure thresholds for the discrimination of
upright, inverted, and contrast-negated happy and
angry faces, as well as of upright and inverted gender.
Thresholds were determined by fitting the proportion
of happier, angrier, more masculine, or more feminine
responses to independent logistic functions, for each
participant and each combination of semantic and
physical category. This was accomplished using
psignifit version 2.5.6 (see http://bootstrap-software.
org/psignifit/), a software package which implements
the maximum-likelihood method described by Wich-
mann and Hill (2001) and runs in Matlab r2008a. The
morph unit associated with 80% correct in each
function represented the stimulus threshold. Previous
studies involving a similar paradigm have successfully
used this method to determine thresholds for face and
object discrimination ability (Pallett, Cohen, & Dob-
kins, 2013; Pallett & Dobkins, 2013).

Once thresholds were obtained, we examined
whether there was a differential effect of inversion or
contrast negation on happy and angry discrimination
using a 2 · 3 repeated-measures ANOVA with
semantic category and physical category as the
repeated-measures variables. To examine the effect of
inversion on gender discrimination, we also performed
a paired-samples t test on upright and inverted gender-
discrimination thresholds.
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Results

Discrimination thresholds

As expected, participants performed poorly with
contrast-negated faces. Remarkably, they were com-
pletely incapable of discriminating differences in
contrast-negated gender. As mentioned previously, this
resulted in unreliable threshold fits for contrast-negated
gender discrimination. Figure 2 clearly shows that
gender discrimination was greatly impaired by contrast
negation.

The results of our 2 · 3 repeated-measures ANOVA
on semantic category (happy, angry)1 and physical
category (upright, inverted, contrast-negated) revealed
a main effect of semantic category, F(1, 19)¼ 59.1, p ,

0.001), with participants displaying lower discrimina-
tion thresholds (i.e., better sensitivity) for changes in
happiness than in anger. There was also a main effect of
physical category, F(2, 38)¼ 5.85, p¼ 0.006. Post hoc t
tests with Bonferroni correction suggested that this was
driven primarily by lower thresholds for detecting
differences in upright faces relative to inverted faces (p
¼ 0.020), while contrast-negated face discrimination did
not differ significantly from upright face discrimination
(p¼ 0.24). There was no significant semantic category
· physical category interaction, F(2, 38) ¼ 0.22, p ¼
0.81.

Again, since we were unable to obtain thresholds
for contrast-negated gender discrimination, we could
only compare thresholds for the upright and inverted
gender conditions. The results of a paired-samples t
test on upright and inverted gender discrimination
showed a significant inversion effect (IE) with lower
thresholds for upright than inverted gender discrim-
ination, t(16) ¼ 4.74, p , 0.001.

Easy-trial accuracy

Results from our 3 · 3 repeated-measures ANOVA
on semantic category (happy, angry, gender) and
physical category (upright, inverted, contrast-negated)
revealed a significant interaction between semantic
category and physical category, F(6, 108) ¼ 18.0, p ,
0.001. Table 1 displays the mean accuracies and
standard errors. To better understand this interaction,
we computed the size of the inversion effect (IE) and
contrast-negation effect (CNE) for each condition.

IE ¼ Upright� Inverted

Uprightþ Inverted
ð1Þ

CNE ¼ Upright�Negated

UprightþNegated
ð2Þ

This gave us six new measures: IEs for happy, angry,
and gender accuracy and CNEs for happy, angry, and
gender accuracy. Since CNEs and IEs were not
normally distributed, we conducted one-sample Wil-
coxon signed-rank tests comparing the median of each
measure to 0. Only gender accuracy was significantly
affected by contrast negation and inversion (CNE:
median¼ 0.19, p , 0.001; IE: median¼ 0.048, p ¼
0.002).

Figure 2. Gender discrimination across all participants (N¼ 22)

in Experiment 1. The top panel displays accuracy with contrast

negation, the middle panel shows original normal-face perfor-

mance, and the bottom panel displays inverted-face perfor-

mance.

Original Inverted Contrast negated

Happy 98.1% (6 1.1%) 96.7% (6 1.4%) 98.2% (6 1.2%)

Angry 99.0% (6 1.0%) 97.1% (6 1.4%) 98.8% (6 1.1%)

Gender 95.9% (6 1.2%) 80.4% (6 2.4%) 63.2% (6 2.3%)

Table 1. Experiment 1 easy-trial accuracy.

Journal of Vision (2013) 13(14):13, 1–18 Pallett & Meng 6
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Response times

The 3 · 3 ANOVA on semantic category and
physical category revealed no significant main effects
(Fs , 1, ps . 0.39) and no interaction, F(4, 76)¼1.18, p
¼ 0.33. These results demonstrate that (a) participants’
inability to discriminate (i.e., we could not obtain
thresholds) differences in contrast-negated gender was
not due to a trade-off between speed and accuracy
(with participants responding too quickly to provide
reliable results) and (b) the differential effect of
contrast negation on easy-trial accuracy for gender (vs.
happy and angry accuracy) cannot be explained by a
condition-dependent trade-off between speed and
accuracy.

In sum, contrast negation markedly impaired gender
discrimination. Discrimination for all semantic cate-
gories was impaired by inversion, although gender was
the only semantic category affected by inversion in the
easy-trial analysis. Gender easy-trial accuracy was also
uniquely impaired by contrast negation. These results
cannot be explained by trade-offs between speed and
accuracy.

Discussion

Our results revealed a clear separation between
processing of expression and of gender. Specifically, we
observed a profound deficit for labeling gender in a
contrast-negated face but little difficulty naming the
expression in that face. Although the ability to interpret
the statistical significance of these differences is limited
by ceiling effects, when combined with Figure 2, our
results provide a compelling case for a dissociation in
processing of gender versus expression. This finding
complements previous research suggesting that lumi-
nance relations between facial regions are also impor-
tant for the perception of facial beauty, with larger
contrast between the mouth and its surrounding skin
and between the eyes and their surrounding skin
corresponding with greater perceived beauty in the
female face and reduced contrast resulting in a more
masculine appearance (Russell, 2003). Taken together,
these findings provide consistent evidence that lumi-
nance contrast is important for gender processing. The
results of the current study further show that the
direction of contrast (i.e., contrast polarity) plays a
crucial role.

Experiment 2A

Although the results of Experiment 1 are consistent
with a separation between gender and expression
processing at some point along the dynamic and

invariant processing pathways, it remains unclear when
and where this divergence may occur. One possibility is
that the processing pathways separate before or during
perceptual (local and holistic) encoding. Alternatively,
a split may occur after perceptual encoding, for
example during decision making for discrimination and
recognition. Along these lines, previous research on the
composite-face effect suggests that the formation of a
holistic face percept is resistant to the deleterious effects
of contrast negation (Calder & Jansen, 2005; Hole,
George, & Dunsmore, 1999). If this is true, then any
separation in processing pathways signaled by different
effects of contrast negation must occur after perceptual
encoding. To further test the possibility of a split in the
dynamic and invariant processing pathways, and
perhaps also to clarify when such a split may occur, we
took advantage of known face aftereffects for the
perception of expression and gender (Webster et al.,
2004). First, participants adapted to either a 100%
angry male face or an expression- and gender-neutral
face with normal or negated contrast. Then we
measured participants’ accuracies for gender and
expression discrimination using normal test faces only.
Test faces varied from 100% angry male to 100% happy
female, and the discrimination task was the same as
Experiment 1.

We hypothesized that if the split in processing
pathways occurs after perceptual encoding, then we
should observe significant aftereffects for discrimina-
tion of both gender and expression following contrast-
negated face adaptation, despite the severe deficit in
contrast-negated gender discrimination observed in
Experiment 1. Alternatively, if there were no aftereffect
for gender discrimination following contrast-negated
face adaptation, then we would have to conclude that
the split in dynamic and invariant processing pathways
likely occurs before or during perceptual encoding.

Methods

Participants

Thirteen undergraduates from Dartmouth College
participated in exchange for course credit. All partic-
ipants had normal or corrected-to-normal visual acuity.
This research was approved by the Committee for the
Protection of Human Subjects at Dartmouth College
and conducted in accordance with the 1964 Declaration
of Helsinki.

Stimuli

Stimuli were similar to those described in Experi-
ment 1. First we chose two new faces, one of an angry
Caucasian male and one of a happy Caucasian female.
Then we created a series of 101 morphs ranging from
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0% angry male (100% happy female) to 100% angry
male (0% happy female). We selected the 100% angry
male face and the 50% male/50% female face as
adapting faces. We will refer to the 50% male/50%
female face as the expression- and gender-neutral face,
since it lies in the center of our morph continuum. We
then applied contrast negation to these faces to create
two additional adapting faces, contrast-negated 100%
angry male and contrast-negated expression and gender
neutral. Test faces were selected from the original,
normal contrast continuum and ranged from 0% angry
male (100% happy female) to 100% angry male (0%
happy female). Stimuli were 9.098 · 12.98. All else was
the same as in Experiment 1.

Adaptation design

During adaptation, the location of the adapting face
oscillated between two points, 5 pixels (0.168) above
and to the left of center and 5 pixels (0.168) below and
to the right of center. Participants were instructed to
maintain center fixation, and a chin rest was used to
help maintain this position. Since the size of the
location shift (0.238 diagonally) was substantially less
than 18 of visual angle from center, there was no need
for participants to shift gaze to complete the task. As a
result, this task helped ensure that any observed
aftereffects reflected high-level adaptation to the face
and not low-level aspects of the retinotopic map (e.g.,
local changes in contrast or brightness). The adapting
face spent 1 s in each location; however, the face would
occasionally pause in its movement and remain in one
location for 1.5 s. When this happened, participants
were instructed to press the down-arrow key. This
happened semirandomly six times during the initial 3-
min adaptation period and once during the 5-s ‘‘top-
up’’ adaptation period (described later in Procedure).
This encouraged participants to pay attention to the
face throughout the entire 3 min of adaptation and 5 s
of top-up, although we did not analyze these responses.

Test design

The test design was nearly identical to that of
Experiment 1, with the following differences. Because
we were interested in measuring aftereffects for
adaptation to an angry male face, we chose to measure
changes in the perception of anger and masculinity
only. Thus, we acquired 80% correct thresholds for
angry and male judgments but not happy or female
judgments.

Procedure

Participants experienced each adapting condition as
four separate blocks of trials: angry male, contrast-

negated angry male, expression and gender neutral, and
contrast-negated expression and gender neutral. Block
order was randomized. Each block was separated by at
least 30 s, during which participants were encouraged
to take a break. Blocks began with 3 min of adaptation,
followed by a label (‘‘Male’’ or ‘‘Angry’’) centered in
the display for 1 s. This label alerted participants to the
type of judgment they needed to make. Participants
then viewed a 250-ms mask, followed by the test face
presented in the center of the display for 1 s. After this,
the test face was removed and participants were
prompted to indicate whether the test face fit the
category label, signaling yes or no via key press (left-
arrow key or right-arrow key, respectively). The
participant’s response ended the trial, and the next trial
began. All remaining trials within the block began with
5 s of top-up adaptation. This made sure that
participants remained adapted throughout the entire
block and increased the reliability of our aftereffect
measurements. Each block contained 50 expression
trials that were randomly interleaved with 50 gender
trials. Future test faces were determined by a modified
PEST adaptive-staircase procedure similar to that
described in Experiment 1 (see also Data analysis,
later). In addition, every 10 trials contained an easy
trial in which the test face was 100% angry male. Thus,
there were 400 test trials and 40 easy trials. Figure 3
shows an example of the trial progression.

Data analysis

Thresholds were obtained using the procedure
described in Experiment 1. However, in addition to
determining the test face that yielded 80% correct, we
were also interested in isolating the test face that
yielded 50% correct. This is because there are two
properties that can change with adaptation. One is the
point of subject equality (PSE), which in the current
study is the face that appears expression and gender
neutral. With adaptation, this perceived neutral point
changes, and so we refer to this effect as a shift in PSE.
In the context of a psychometric function, this is
represented as a shift in the location of the curve along
the x-axis (see, e.g., Webster et al., 2004). The second
property that may change with adaptation is threshold
size. In the current study, this is measured as the
percentage of angry male needed to correctly discrim-
inate expression or gender on 80% of the trials, that is,
the 80% correct thresholds. In the context of a
psychometric function, this is represented as a change
in the slope (i.e., scale or steepness).

Specifically, to determine the size of the aftereffects,
we subtracted the log of the PSE for expression
judgments during expression-and-gender-neutral ad-
aptation from the log of the PSE for expression
judgments during 100% angry-male adaptation; we
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then repeated this procedure for the gender judgments.
To determine whether adaptation produced a change in
slope, we measured the difference between the log of
the 80% threshold morph and the log of the PSE (i.e.,
log 80% � log 50%) for each adapting condition and
each judgment type and then compared these values
across adapting conditions. Each of these computations
used log values, because log, but not linear, data
conformed to a normal distribution. Both aftereffect
sizes and thresholds were analyzed in two separate 2 ·
2 repeated-measures ANOVAs with adapting contrast
(normal, contrast-negated) and semantic category
(expression, gender) as the repeated-measures vari-
ables.

Since we analyzed easy-trial accuracy in Experiment
1, we also assessed accuracy for the easy trials in this
experiment.2 To do this, we computed CNEs (Equation
2) for expression and gender accuracy for each
adapting contrast and adapting face type (i.e., angry
male vs. expression and gender neutral). We then tested
whether each CNE was significant. Since the data were
not normally distributed, we applied a nonparametric
analysis, that is, a one-sample Wilcoxon signed-rank
test.

Results

Size of the aftereffects

Results of our two-factor ANOVA on adapting
contrast and semantic category for shift in log PSE
revealed no significant interaction, F(1, 12)¼ 0.65, p¼
0.44, and no main effect of semantic category, F(1, 12)
¼ 0.42, p ¼ 0.53. There was a main effect of adapting
contrast, F(1, 12)¼ 23.9, p , 0.001, that was driven by
larger aftereffects following adaptation to normal faces
(M ¼ 0.13, SE¼ 0.022) than contrast-negated faces.

However, contrast-negated faces also produced signif-
icant aftereffects, as demonstrated by a one-sample t
test, M ¼ 0.032, SE ¼ 0.015, t(12) ¼ 2.22, p ¼ 0.047
(Figure 4, top).

Changes in slope

Results of our two-factor ANOVA revealed no
significant interaction of contrast · semantic category,
F(1, 12)¼ 1.38, p¼ 0.26, and no main effect of contrast,
F(1, 12) ¼ 0.88, p ¼ 0.37. Mean thresholds for
discrimination of gender and expression after normal
and contrast-negated face adaptation are displayed in
Figure 4 (bottom). Surprisingly, there was a main effect
of semantic category, F(1, 12) ¼ 5.70, p ¼ 0.034,
suggesting that adaptation to an angry male face,
regardless of contrast, alters discrimination ability
differentially for expression and gender. To determine
what drove this effect, we conducted follow-up
comparisons using paired-sample t tests. Results
revealed a significant increase in thresholds for
differences in gender, t(12) ¼ 2.20, p¼ 0.049, but not
expression, t(12)¼ 0.19, p¼ 0.86. In other words,
participants were less capable of discriminating differ-
ences in gender, but not expression, following adapta-
tion to an angry male face.

Easy-trial accuracy

There were no significant CNEs for expression
accuracy, regardless of adaptor (Neutral: p ¼ 1.0;
Angry Male: p ¼ 0.41), and no significant CNE for
gender accuracy when adapted to the expression-and-
gender-neutral face (p¼ 0.27). However, there was a
marginally significant CNE for gender accuracy when

Figure 3. Example trial for Experiments 2A, 2B, and 3. In each trial, participants were asked to make a yes or no judgment based on

facial expression of emotion (‘‘Angry’’) or gender (‘‘Male’’). The physical distance between the adaptation faces in this figure is

exaggerated for the purpose of demonstrating movement. The actual shift in location was 0.168 (5 pixels) up and to the left of center

and 0.168 (5 pixels) down and to the right of center (i.e., 0.238 diagonally).

Journal of Vision (2013) 13(14):13, 1–18 Pallett & Meng 9

Downloaded from jov.arvojournals.org on 07/19/2019



adapted to the angry male face (p ¼ 0.074). Mean
accuracies and standard errors are displayed in Table 2.

Discussion

There are two main points to take away from this
experiment. First, there is little or no differential effect
of contrast negation on expression and gender encod-
ing. This is supported by the absence of any interac-
tions between adapting contrast and semantic category.
Second, gender processing appears overall less robust
than expression processing. This is suggested by the

gender-specific discrimination deficit observed after
angry-male adaptation.

In the introduction to this experiment, we defined a
set of possible outcomes. First, if the results showed no
aftereffect for gender discrimination following con-
trast-negated face adaptation but a significant afteref-
fect for expression discrimination, then this would
suggest a separation in processing pathways that occurs
before or during perceptual encoding. Second, if we
observed significant aftereffects for both gender and
expression following contrast-negated face adaptation,
then this would suggest that the dissociative effect of
contrast negation on expression and gender discrimi-
nation observed in Experiment 1 likely originates after
perceptual encoding, that is, either before or during the
recognition and lexical-decision stage.

The current experiment revealed significant after-
effects (i.e., shifts in log PSE) for both gender and
expression discrimination following adaptation to
contrast-negated faces, with no significant difference
in the size of the aftereffects for gender and
expression. These results suggest that the dispropor-
tionate impairment observed with gender discrimina-
tion in Experiment 1 occurs after perceptual (local
and holistic) encoding. To further confirm this, we
conducted Experiment 2B in the same manner as
Experiment 2A, but with contrast-negated test faces
instead of normal test faces. If our hypothesis is
correct—that is, that the dissociative impairment
from contrast negation occurs after perceptual en-
coding—then we would expect to replicate the results
of Experiment 1 and find that participants are
completely incapable of discriminating differences in
contrast-negated gender, regardless of adapting con-
trast.

Experiment 2B

Methods

Participants

Ten undergraduates from Dartmouth College par-
ticipated in exchange for course credit. All participants
had normal or corrected-to-normal visual acuity. This
research was approved by the Committee for the
Protection of Human Subjects at Dartmouth College
and conducted in accordance with the 1964 Declaration
of Helsinki.

Stimuli, design, and procedure

These were the same as in Experiment 2A, except
that here the test faces were contrast-negated.

Figure 4. The top panel displays the size of the aftereffects

following adaptation to a normal or contrast-negated face for

judgments of facial expression of emotion and gender (i.e., shift

in the point of subjective equality) in Experiment 2A. The

bottom panel displays the effect of normal and contrast-

negated face adaptation on thresholds for discrimination of

facial expression of emotion and gender (i.e., change in the

slope of the psychometric function). N ¼ 13, error bars¼
positive and negative standard error.
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Data analysis

Although we planned to analyze the data in the
manner described for Experiment 2A, our participants
found contrast-negated gender discrimination so diffi-
cult that we could not obtain reliable fits for eight of
our 10 participants (replicating Experiment 1). As a
result, we assessed the effect of contrast negation on all
conditions (including gender) by examining easy-trial
accuracy (described in Experiment 2A). We also
analyzed the effect of adapting contrast on aftereffect
size and change in slope for expression trials only. Since
aftereffect size was normally distributed, we used a one-
sample t test. Change in slope, however, was not
normally distributed; therefore we used a Wilcoxon
signed-rank test.

Results

Size of the aftereffects

Our results revealed significant aftereffects for
expression discrimination following both normal and
contrast-negated face adaptation [normal: t(9)¼ 2.35, p
¼ 0.043; contrast-negated: t(9)¼ 2.75, p¼ 0.023], with
no significant difference in aftereffect size, t(9)¼ 0.02, p
¼ 0.56.

Changes in slope

Consistent with the results from Experiment 2A,
adaptation did not alter expression-discrimination
ability (i.e., log thresholds), regardless of adaptor type
(normal: M ¼�0.028, SE¼ 0.053, p ¼ 0.96; contrast-
negated: M ¼ 0.072, SE ¼ 0.047, p¼ 0.14).

Easy-trial accuracy

Although there were no significant CNEs for
expression accuracy, regardless of adaptor type (Neu-

tral: p ¼ 1.0; Angry Male: p ¼ 1.0), and no significant
CNE for gender accuracy with adaptation to the angry
male face (p¼ 0.67), there was a marginally significant
CNE for gender accuracy with adaptation to the
expression-and-gender-neutral face (p¼ 0.068). Mean
accuracies and standard errors are displayed in Table 3.

Discussion

Results from the current experiment replicated the
findings from Experiment 1. That is, contrast nega-
tion severely impaired the ability to discriminate
differences in gender, such that we could not even
obtain reliable fits to a psychometric function. The
same was not true for facial expressions of emotion.
Current results also replicated the findings from
Experiment 2A. That is, aftereffect sizes for expres-
sion judgments did not depend upon the adapting-
contrast polarity. Taken together, these results show
that normal contrast polarity is not crucial for the
encoding of facial expressions of emotion (or at least
for happiness and anger). Moreover, these results
again suggest that contrast negation uniquely impairs
gender processing after perceptual encoding, that is, at
some point before or during the recognition and
lexical-decision stage.

Experiment 3

In Experiment 1, we observed significant IEs for
expression and gender discrimination, with a larger
effect for gender than expression. For comparison, in
Experiment 3, we examine the effect of adaptation to
an upright or inverted face on expression and gender
discrimination.

Gender and expression neutral Angry male

Normal Contrast negated Normal Contrast negated

100% (6 0%) 100% (6 0%) 98.0% (6 2.0%) 98.0% (6 2.0%)

98.0% (6 2.0%) 84.3% (6 6.6%) 86.8% (6 8.2%) 82.0% (6 7.7%)

Table 3. Experiment 2B easy-trial accuracy.

Gender and expression neutral Angry male

Normal Contrast negated Normal Contrast negated

Expression 100% (6 0%) 100% (6 0%) 95.3% (6 3.5%) 98.6% (6 1.4%)

Gender 98.8% (6 1.2%) 93.4% (6 4.3%) 65.8% (6 9.2%) 85.8% (6 5.0%)

Table 2. Experiment 2A easy-trial accuracy.
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Methods

Participants

Eight undergraduates from Dartmouth College
participated in exchange for course credit. All partic-
ipants had normal or corrected-to-normal visual acuity.
This research was approved by the Committee for the
Protection of Human Subjects at Dartmouth College
and conducted in accordance with the 1964 Declaration
of Helsinki.

Stimuli

Stimuli were the same as in Experiment 2A, except
that adapting faces were either upright or inverted.

Design, procedure, and data analysis

These were similar to the methods described in
Experiment 2A, except there were fewer trials (200
trials) in the current experiment. Pilot data indicated
that this was enough to obtain reliable threshold fits.
As a result, we only obtained 25 easy trials per
participant, and not all participants had easy trials in
every condition. Consequently, we did not have enough
data to compare IEs for gender and expression easy-
trial accuracy and do not present easy-trial results.
Both aftereffect size and change in slope were analyzed
in two separate 2 · 2 ANOVAs with adapting
orientation (upright, inverted) and semantic category
(expression, gender) as repeated-measures variables.

Results

Size of the aftereffects

Our two-factor ANOVA revealed no main effect of
semantic category, F(1, 7) ¼ 0.039, p ¼ 0.85. However,
there was a significant main effect of inversion, F(1, 7)¼
22.6, p ¼ 0.002, with larger aftereffects for upright
adaptation. There was also a significant interaction of
inversion · semantic category, F(1, 7)¼17.8, p¼ 0.004,
with larger IEs for expression than gender discrimina-
tion (Figure 5). The effect of inversion on gender
aftereffect size was marginally significant, t(7)¼ 2.20, p
¼ 0.064.

Changes in slope

Results of our two-factor ANOVA showed no
significant main effect of semantic category, F(1,7) ¼
0.069, p ¼ 0.80, no main effect of inversion, F(1, 7) ¼
0.23, p ¼ 0.65, and no significant interaction of
orientation · semantic category, F(1, 7) ¼ 0.47, p ¼
0.52.

Discussion

In Experiment 1, inversion significantly impaired the
ability to discriminate differences in expression and
gender. Yet here we observed a larger effect of
inversion for expression aftereffect size than for gender
aftereffect size. While this would seem contradictory,
participants in the current experiment were tested with
upright faces only, with the purpose of measuring
perceptual-encoding ability. By contrast, in Experiment
1 participants discriminated both upright and inverted
faces—the purpose was measuring recognition and
decision-making ability. As demonstrated in Experi-
ments 2A and 2B, there is a strong difference between
adapting to a normal or contrast-negated face and
discriminating between normal or contrast-negated
faces. The same may also be true for inversion. That is,
the effect of inversion on adaptation could be
qualitatively different from IEs for discrimination.
Specifically, unlike with contrast-negated faces, results
of the current experiment showed that for inverted
faces, expression encoding is more affected than gender
encoding. These results further suggest that the overlap
of neural substrates encoding gender and facial
expression of emotion may only be partial.

General discussion

At a glance, our results are quite surprising: On one
hand, contrast negation markedly impairs gender
discrimination but not so much expression discrimina-
tion; on the other hand, adapting to a contrast-negated
face leads to equivalent aftereffects for gender and
expression discrimination (as demonstrated by nonsig-

Figure 5. The difference in aftereffect size (i.e., shift in point of

subjective equality) following upright-face versus inverted-face

adaptation in Experiment 3. N ¼ 8, error bars¼ positive and

negative standard error.
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nificant interactions). By contrast, although inversion
impairs both gender and emotion discrimination, we
observed a larger effect of inversion for expression
aftereffect size than for gender aftereffect size. In the
context of the Bruce and Young (1986) framework, it is
tempting to take this as evidence of shared perceptual-
encoding mechanisms followed by a separation in the
dynamic and invariant processing pathways. Indeed,
our results support a recent model (Calder & Young,
2005), suggesting that perception of gender (identity)
and facial expression may share some neural substrates
that underlie encoding of faces. Particularly, the results
of our Experiment 2A suggest shared perceptual
processing mechanisms, not just at the level of basic
first-order relation encoding but also later stage holistic
encoding. It is important to note that there may be
multiple stages of visual processing that occur during
perceptual encoding (Kay, Winawer, Rokem, Mezer, &
Wandell, 2013). Moreover, the formation of a holistic
face percept may be modulated by top-down influences
(Li et al., 2010; Mechelli, Price, Friston, & Ishai, 2004).
Indeed, the results of our Experiment 3 suggest that the
overlap of neural substrates encoding gender and facial
expression of emotion may only be partial. Nonethe-
less, if there is no differential effect of contrast negation
during encoding, then why does contrast negation
uniquely impair gender recognition?

It has been proposed that the directional relationship
of luminance (i.e., direction of contrast) between
subregions of a face, and especially around the eyes, are
important for identity recognition (Gilad et al., 2009;
Ohayon, Freiwald, & Tsao, 2012; Sinha, 2002). These
directional luminance relationships are highly robust
and are the precursors to many higher level semantic
representations of invariant facial characteristics, such as
gender (Dupuis-Roy, Fortin, Fiset, & Gosselin, 2009;
Frieze, Olson, & Russell, 1991; Nestor & Tarr, 2008;
Santos & Young, 2008) and attractiveness (Russell,
2003). Consequently, we suggest that directional lumi-
nance relationships should be considered foundational
invariant facial features. If these luminance relationships
are reversed, such as with contrast negation, we expect
that this basic luminance information would no longer
assist in face recognition and the processing of other
invariant facial characteristics, such as gender. Indeed,
this is exactly what the current study found: Gender
discrimination was impaired by contrast negation. By
contrast, dynamic features, such as pupil size and the
curvature of the lips, are relatively unaffected by
contrast negation. Previous research has proposed that
this contrast invariance may result from a greater
reliance on the edge-based information in a face (White
& Li, 2006). This is exactly what our results in
Experiment 1 showed for expression discrimination—
very little impairment with contrast negation. Note that
analyzing the luminance relations involves comparing

averaged luminance levels across different facial regions.
This would need to occur after the perceptual encoding
of, for example, local luminance. Adaptation to
luminance would not normally affect the directional
relationship between facial regions. Therefore, afteref-
fects from adaption to contrast-negated faces may not
differ for gender categorization and expression identifi-
cation. Indeed, this is what we found in Experiment 2A.
In comparison, inversion impairs configural representa-
tions and therefore can affect both the dynamic (i.e.,
expression) and invariant (i.e., gender) properties of the
face. This was also observed in our experiments.

Our study poses some important questions for future
neuroimaging or neurophysiological research investi-
gating the neural circuitry underlying face perception.
The neural model for distributed face processing
proposed by Haxby et al. (2000) is often considered the
neural analogue to the Bruce and Young (1986) model.
It was proposed that there is a core and an extended
face-processing network (Haxby et al., 2000). The core
face network consists of three regions that respond
preferentially to faces: (a) a region of the fusiform gyrus
called the fusiform face area (FFA), (b) a region of
inferior occipital gyrus called the occipital face area
(OFA), and (c) the superior temporal sulcus (STS). The
precise function of each area is unclear, but the FFA
and OFA appear to encode facial structure and identity
(i.e., the invariant information), while the STS responds
to movement-based changes in the face, that is, the
dynamic information (Andrews & Ewbank, 2004; Grill-
Spector, Knouf, & Kanwisher, 2004; Harris & Aguirre,
2010; Haxby et al., 2000; Liu, Harris, & Kanwisher,
2010; Rossion, 2008; Rotshtein, Henson, Treves,
Driver, & Dolan, 2005; Schiltz, Dricot, Goebel, &
Rossion, 2010; Winston, Henson, Fine-Goulden, &
Dolan, 2004), and the extended face network is
reserved for processing the remaining information, for
example, emotional expression or biological relevance
in the amygdala (Adolphs, 2008; Johnson, 2005; Pessoa
& Adolphs, 2010). While the results of our psycho-
physical testing cannot be taken as evidence of region-
specific effects, they do have implications for both the
perceptual-encoding stage of face processing (i.e., OFA
and/or FFA) and the later stages of face processing
(i.e., FFA, STS, and/or extended regions, such as the
amygdala). First, our finding of a mild impairment
common to both gender and expression during
perceptual encoding suggests the use of overlapping
neural mechanisms in the OFA and/or FFA. Second,
our observation of a more substantive impairment for
gender at a later processing stage, presumably after the
variant and invariant pathways separate, may corre-
spond with a dissociation in FFA and STS activation
(as described for identity in the Introduction). Why one
domain should be affected while the other is not
remains unknown, but it is possible that additional
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neural regions associated with the extended face
network (Haxby et al., 2000), such as the amygdala, are
recruited to further support the processing of dynamic
facial information (e.g., expressions of emotion).

The current results also fill an important gap in our
understanding of gender processing, since most of the
face-processing literature focuses on identity and/or
race processing, with only a few exceptions (reviewed in
Dupuis-Roy et al., 2009). Our findings support the
notion that gender and identity are processed by similar
mechanisms (Calder, Burton, Miller, Young, & Aka-
matsu, 2001; Goshen-Gottstein & Ganel, 2000), pre-
sumably through the invariant-feature processing
pathway. Most of the previous research investigating
the dynamic versus invariant processing pathways
involves facial expressions of emotion and identity. As
we described in the Introduction, such a limited scope
makes it difficult to determine whether any observed
differences in expression and identity processing are
necessarily representative of the split between dynamic-
and invariant-feature processing pathways. However,
using gender instead of identity is not without
limitations. Previous research suggests that male faces
may be more prone to the perception of anger, which in
the current experiment could give the appearance of
greater sensitivity to anger in the male face. To be sure
that these results do not reflect unintended signs of
anger in the neutral male faces, we had an experienced
FACS (Facial Action Coding System; Ekman, Friesen,
& Hager, 2002) coder measure the action units (AUs)
present in the neutral male and female faces to ensure
that they were physically consistent with neutral.
Results showed that the male neutral face displayed a
low-intensity activation of AU 7, an AU typically
associated with anger. In contrast, the female neutral
face may have contained a slightly raised eyebrow, an
action typically viewed in expressions of fear or
surprise. Yet neither of these subtle activations were
enough to qualify them as displaying an emotion other
than neutral. Thus, while the slight expression of an
AU associated with anger may have increased sensi-
tivity to anger in the male face, we believe it is unlikely
to entirely account for our adaptation results. Howev-
er, it is possible that for social and/or evolutionary
reasons, we are more sensitive to anger in a male face
than a female face (discussed in Aguado, Garcı́a-
Gutierrez, & Serrano-Pedraza, 2009; Becker, Kenrick,
Neuberg, Blackwell, & Smith, 2007; Hess, Adams,
Grammer, & Kleck, 2009), which would be consistent
with the joint encoding of expression (‘‘Angry’’) and
gender (‘‘Male’’). In either case, the fact that our
current findings replicate those of previous identity-
based research supports the notion that our results
reflect the invariant processing pathway.

In sum, our results suggest a partial overlap in the
processing mechanisms supporting facial expression of

emotion and gender processing. We found evidence of a
mild impairment due to contrast negation during the
perceptual encoding of both dynamic (i.e., expression)
and invariant (i.e., gender) facial information. More-
over, we observed a unilateral effect of contrast
negation on the mechanisms underlying gender recog-
nition and decision making but not facial expression of
emotion. Taken together, these results suggest that the
dynamic and invariant pathways are largely joined
during perceptual encoding and then likely separate
into two distinct processing streams for semantic
processing and decision making.

Keywords: contrast negation, face perception, visual
adaptation, gender discrimination, facial expression
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Footnotes

1Since participants were incapable of discriminating
differences between contrast-negated male and female
faces, gender was not included in this analysis (see Data
analysis, previously, for details).

2This was done for all but one participant, whose
easy-trial data were mistakenly not saved.
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