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A NOTION OF RECTIFIABILITY MODELED ON CARNOT GROUPS

SCOTT D. PAULS

Abstract. We introduce a notion of rectifiability modeled on Carnot groups. Precisely,
we say that a subset E of a Carnot group G and N is a subgroup of a Carnot group
N ′, we say E is N-rectifiable if it is the Lipschitz image of a positive measure subset
of N . We prove two main theorems. First, the property that E ⊂ G is M -rectifiable,
where M is a Carnot group (not merely a subgroup of a Carnot group), is equivalent
to M -approximability and the existence of approximate tangent cones isometric to M

almost everywhere in E. Second, we investigate the rectifiability properties of level sets of
Lipschitz functions, f : G → R, where G is the Heisenberg group of dimension 2n+1. We
show that for almost every t ∈ R and almost every x ∈ f−1(t), there exists a subgroup H

of G and r > 0 so that f−1(t)∩BG(x, r) is H-approximable and has approximate tangent
cones isomorphic to H almost everywhere.

1. Introduction

The notion of rectifiability is central to the study of standard geometric measure theory,
allowing for the proof of classical geometric properties in a much more general setting. In
recent years, there has been significant interest and progress in the study of rectifiable sets
not only in Euclidean space but in more general metric spaces as well (see, for example,
[Amb], [AK99b], [AK99a], [Che99], [DS97], [FSSC99], [GN96], [Kir94], [Mag00], [Pan89],
[Whi98]. Also, see the extensive bibliographies in [GN96] and [AK99b]). In attempting
to use the techniques of geometric measure theory to investigate the properties of general
metric spaces, one quickly encounters a major difficulty: there may not be any rectifiable
subsets or the set of rectifiable subsets may be too small to reveal any significant geometry.
Here, we consider a subset of a metric space to be rectifiable if it can be realized as the
Lipschitz image of a piece of Euclidean space. Thus, to have any hope of transporting
the techniques of Euclidean geometric measure theory to metric spaces, we need a more
general notion of rectifiable sets which are modeled on a wider class of metric spaces than
simply Euclidean ones. In this paper, we investigate a special situation where much of the
standard rectifiable theory carries over, but reveals some of the complications inherent in
this endeavor.

We will restrict ourselves to the investigation of the so-called Carnot groups - connected,
simply connected, graded nilpotent Lie groups equipped with a left-invariant Carnot-
Carathéodory metric (see below for precise definitions). Carnot groups arise in a variety
of situations: in the asymptotic geometry of manifolds of negative curvature, in optimal
control theory, in the local geometry of equiregular Carnot-Carathéodory manifolds, in
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2 SCOTT D. PAULS

CR geometry, in the study of hypoelliptic partial differential equations, and in many other
areas. In addition, Carnot groups are analytically very similar to Euclidean spaces (which
are themselves particular examples of Carnot groups) in that they possess translations and
dilations that respect the metric. Because of these similarities to Euclidean spaces, Carnot
groups form a good test class for the generalization of the notion of rectifiability.

Further motivation for considering rectifiability modeled on Carnot groups arises in the
study of the local geometry of Carnot-Carathéodory manifolds. A Carnot-Carathéodory
manifold is a quadruple (M,S, < ·, · >, dM ) where M is a smooth manifold, S is a subbundle
of the tangent bundle, < ·, · > is a smoothly varying inner product on the fibers of S and
dM is the path metric formed by taking the infimum of lengths of paths (calculated with
respect to < ·, · >) among paths tangent a.e. to S. Further, letting di(x) be the dimension
of the subspace of TxM spanned by all the commutators of order less than or equal to i, we
say that (M,S, < ·, · >, dM ) is equiregular if the vector (d0(x), d1(x), ...) is locally constant.
Carnot groups are very special examples of equiregular Carnot-Carathéodory spaces given
by the quadruple (G,V, < ·, · >, dG) where V is the bottom level of the grading, thought
of as a left invariant subbundle of TG, and < ·, · > is a left invariant inner product on V.
For general equiregular Carnot-Carathéodory spaces, it is known that the tangent cone to
(M,S, < ·, · >, dM ) is isometric to a Carnot group. However, the tangent group may vary
from point to point (quite badly!) - see, for example, [Bel96] and [Var81]. Naturally, this
makes an investigation of the local geometry of Carnot-Carathéodory manifolds much more
difficult than, for example, that of Riemannian manifolds. As we shall see, the framework
of rectifiability modeled on Carnot groups identifies a subclass of CC manifolds which
possess uniform local behavior.

Let (G, d) be a Carnot group and let N be a subgroup of a Carnot group, (N ′, d′). We
define the following generalization of rectifiability: a subset S ⊂ G is N -rectifiable if it is
the Lipschitz (with respect to d and d′) image of a positive measure subset of N . This
clearly generalizes the standard notion of rectifiability where G and N are replaced by
Euclidean spaces of the appropriate dimension. Using this terminology, we will refer to the
standard theory of rectifiability as R

k-rectifiability. The main results of this paper concern
the properties of N -rectifiable sets, recovering many of the basic facts about R

k-rectifiable
sets in R

n such as unique approximate tangent cones, approximative qualities of tangent
cones, and the rectifiability of level sets of Lipschitz functions. Precisely, we show the
following theorems.

Theorem A. Let N and G be Carnot groups and suppose E ⊂ G is a subset with nonzero
Hausdorff measure. Then, the following are equivalent

• E is N -rectifiable
• E is N -approximable
• For almost every x ∈ E, there exists a unique approximate tangent cone at x which

is isomorphic to N .

Roughly, a subset is N -approximable at a.e. point if there is a copy of N sitting in
G which approximates E locally in a measure theoretic sense. See section 4 for a precise
definition. Such a notion is used in [Mat95] in the case of R

k-rectifiability. The reader
should note that this theorem is restricted to N which are full Carnot groups, not proper
subgroups. As mentioned above, this theorem, among other applications, provides a class of
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Carnot-Carathéodory spaces which are quite well behaved (with respect to local geometry).
The class of N -rectifiable submanifolds in a given Carnot group G has the property that
each member is a Carnot-Carathéodory manifold in its own right (by restriction of the
distribution) and that the tangent cone at almost every point is isomorphic to N .

Theorem B. Let G be the Heisenberg group of dimension 2n + 1 and let f : G → R

be a Lipschitz map. Then, for a.e. t ∈ R and a.e. x ∈ f−1(t), there exists a subgroup
Tx ⊂ G and rx > 0 such that BN (x, rx) ∩ f−1(t) is Tx-approximable and f−1(t) has a
unique approximate tangent cone isomorphic to Tx at a.e x ∈ BN (x, rx) ∩ f−1(t).

Note that in this theorem, we must allow N to be a proper subgroup of G and that
N , equipped with the metric from G restricted to N , may not be a Carnot group. This
theorem is a step towards generalizing the techniques of geometric measure theory to the
Carnot setting (in the special case of the Heisenberg groups). In particular, this theorem
gives information concerning generalizing the notion of slicing manifolds by Lipschitz maps.
Unfortunately, as shown by the limitations in this theorem (and illustrated by an example
in section 5) we cannot conclude that the level sets are N ′-rectifiable for some N ′ - we
lack a Lipschitz map. However, as evidenced by the theorem, many of the approximative
qualities of rectifiable sets are inherited by the level sets. This suggests a modification of
the notion of rectifiable currents in the Carnot setting based on these types of properties.
This idea will be explored in a later paper.

The proofs of these theorems rest on extensions of Euclidean analytic tools to the Carnot
case. The most useful one of these is the (suitably defined) differentiability of Lipschitz
maps on Carnot groups which is originally due to Pansu ([Pan89]). The form of the theorem
used in this paper is an extension due to Vodopyanov and Ukhlov ([VU96]) and recently
proved using a different method by Magnani ([Mag00]). In addition, in sections 2 and 3, we
prove various lemmas concerning the properties of the Hausdorff measure including a metric
area formula. Most of the proofs of these lemmas are adaptations of arguments in Federer
([Fed69]) and the proof of the area formula follows Kirchheim’s argument in [Kir94]. To
prove theorem A, we follow arguments based on arguments in [Mat95] extended using the
lemmas and techniques described above. However, to prove theorem B, we diverge from
the classical arguments, instead using smooth approximations of the Lipschitz map (as in
[FSSC95], [FSSC99] and [GN96]) and apply metric arguments akin to those in [Pau98].

The structure of the paper is as follows: section 2 reviews some of the known measure
theory and differentiability results for Carnot groups and proves many of the useful mea-
sure theoretic lemmas needed in the proofs, such as properties of Jacobians of maps and
a weak Sard-like property. Section 3 is devoted to an area formula for Lipschitz maps
between Carnot groups. Sections 4-6 introduce N -rectifiability, N -approximability and
proves theorem A. Section 7 is devoted to proving theorem B.

2. Background results for Carnot groups

2.1. Distances and measures. Assume that N is a connected, simply connected graded
nilpotent Lie group. Recall that N is graded if the Lie algebra decomposes as n = V⊕V2⊕
...⊕Vn where [Vi,Vj ] ⊂ Vi + j. We denote by V not only the bottom level of the grading,
but the left invariant vector bundle generated by left translating V around N . We also



4 SCOTT D. PAULS

assume that V is equipped with an inner product < ·, · >, which we also think of as a left
invariant inner product on the subbundle V.

Definition 2.1. A Carnot group is a quadruple (N,V, < ·, · >, dN ) where N ,V and < ·, · >

are as above. To define dN we let H be the paths which are tangent almost everywhere to
V. Then, the Carnot-Carathéodory distance is defined as

dN (n1, n2) = inf

{
∫

< γ′, γ′ >
1
2

∣

∣

∣

∣

γ ∈ H and γ connects n1 to n2

}

It follows from the construction that dN is a left invariant metric on N which admits a
homothety, denoted ht. The homothety is defined by its action on the Lie algebra where
it acts on vectors in Vi by multiplication by ti.

While the definition of dN is geometrically compelling, it is very difficult to compute
with. Luckily, one can use any of a family of quasi-norms on N to aid in computation. We
describe one here.

Definition 2.2. Suppose N is a Carnot group with grading n = V⊕V2⊕...⊕Vn. For n ∈ N ,
decompose n according to the Euclidean vector space basis for n, n = ev1+v2+v3+...+vm.
Then, we define a quasi-norm on N as follows:

|n|qn =

(

m
∑

i=1

||vi||
2

d(vi)

)
1
2

where d(vi) is the level of the grading of which vi is a member and || · || is the Euclidean
norm. We also define a function on N × N by dqn(n1, n2) = |n−1

1 n2|qn.

Note that dqn is, by construction, left invariant and admits ht as a homothety. Thus,
dN and dqn are biLipschitz equivalent. A good reference on quasi-norms on Lie groups is
[Goo76].

Because Carnot-Carathéodory metrics and quasi-norms on Carnot groups are left in-
variant, the Hausdorff measures associated to them are in fact all constant multiples of
the Haar measure on such a group. Thus, many of the same measure theoretic results
concerning densities, etc. are true for H k

N that are true for Lebesgue measure in R
m. For

proofs and discussions of these facts, in a more general setting, see [DS97]. We will use the
biLipschitz equivalence of dN and dqn and the relation between the Hausdorff measures
freely in the computations below.

Lemma 2.3. Let k be the Hausdorff dimension of N . If U ⊂ N is H k
N measurable then

almost every point of U is a Lebesgue density point. In other words, for almost every
a ∈ U ,

lim
r→0

H k
N (U ∩ BN (a, r))

H k
N (BN (a, r))

= 1

Next, we define the usual densities.

Definition 2.4. If N is a Carnot group and U ⊂ N , x ∈ N , we define

Θ∗,k
N (U, x) = limr→0+

H k
N (U ∩ BN (x, r))

rk
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and

Θk
∗,N (U, x) = limr→0+

H k
N (U ∩ BN (x, r))

rk

If both of these coincide, then the common value is denoted Θk
N (U, x).

Note that, due to the lack of normalization of the Carnot metrics and the related Haus-
dorff measures, our estimates will be much less precise than in the Euclidean case.

Lemma 2.5. If U ⊂ N and H k
N (U) < ∞ then there exists a constant C > 0, depending

only on the structure of the group N and the Carnot-Carathéodory metric on N so that

1. C2−k ≤ Θ∗,k
N (U, x) ≤ C for almost all x ∈ U .

2. If U is H k
N measurable then Θ∗,k

N = 0 for almost all x ∈ N \ U .

The proof of this theorem follows from the standard arguments in R
n (see e.g. [Fed69],

2.10.18 or [Sim83], theorem 3.6) combined with the observation that the Hausdorff measure
derived from any Carnot-Carathéodory metric on a Carnot group is left invariant and scales
with the homothety.

Next we quote two useful formulae. Both can be found in [Hei95] as equation 4.8 and
proposition 4.9 respectively.

To state them, we assume N is a Carnot group and pick a Riemannian completion of
the inner product defining the Carnot-Carathéodory metric on N . Let ∇f denote the
Riemannian gradient of a function f and denote by ∇0f the horizontal component of ∇f .
Below | · | is the usual norm on R.

Proposition 2.6 (Coarea formula). Suppose f : N → R is a smooth map from a Carnot
group of Hausdorff dimension k to the reals and u is any nonnegative measurable function.
Then,

∫

N
u(x)|∇0f(x)|dH

k
N (x) =

∫

∞

0

∫

f−1(t)
u(y)dH

k−1
N (y)dt

Proposition 2.7. Suppose S is a level surface of a smooth real valued function f on N ,
a Carnot group of Hausdorff dimension k. Then, for H

k−1
N almost everywhere on S,

dH
k−1

N =
|∇0f |
|∇f | dA

where dA is the Riemannian area element on S.

2.2. Differentiability of Lipschitz maps. We first quote a definition and a result of P.
Pansu (see [Pan89]) crucial to our constructions:

Definition 2.8. A map f : N → M between Carnot group is said to be differentiable in
the sense of Pansu at n ∈ N with differential dfn if the limit

dfn(y) = lim
s→0

h′
1
s

f(n)−1f(nhsy)

exists and convergence is uniform for all y ∈ N .
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The following theorem is a generalization of a theorem of Pansu ([Pan89]) due to Vodopy-
anov and Ukhlov ([VU96]). Recently, Magnani ([Mag00]) has also proved this theorem
using a different technique.

Theorem 1. If N and M are Carnot groups and f is a Lipschitz map from a measurable
set U ⊂ N to M , then f is differentiable almost everywhere (in the sense of Pansu) and
the differential dfx is a graded group homomorphism at almost every point.

In [Pau98], the author proves a limited metric differentiability for Lipschitz maps of
Carnot groups into complete metric spaces. In the special case when the target space is
another Carnot group, either an extension of the author’s arguments or an appeal to the
result above gives complete metric differentiability. In some of the later results, it is more
convenient to work with the metric version of differentiability hence we state it here.

Theorem 2. Let f : U ⊂ N → M be a Lipschitz map between Carnot groups. Then f is
metrically differentiable almost everywhere. In other words, for almost every n ∈ N ,

∆n(y1, y2) = lim
t→0

{

dM (f(n′hty1), f(n′hty2))

t

∣

∣

∣

∣

∣

n′ ∈ BN (n, t)

}

exists, the limit converges uniformly and ∆n admits a homothety and is left invariant under
the action of N .

The following lemma dictates exactly how the image of the differential approximates the
function at a point.

Lemma 2.9. Let f : U ⊂ N → M be a Lipschitz mapping between Carnot groups, where
U is a positive measure subset of N and let dfx denote the Pansu differential at a point of
differentiability, x. Then,

dM (f(xev), f(x)dfx(ev)) = o(dN (e0, ev))

Proof: This is a straightforward computation. Let v0 be the Lie algebra vector in the
direction of v such that dN (e0, ev0) = 1 and let t = dN (e0, ev).

dM (f(xev), f(x)dfx(ev)) = dM (f(x)−1f(xhte
v), dfx(hte

v0))

= dM (htdfx(ev0), dfx(hte
v0)) + o(t)

= o(t)

The last equality stems from the fact that Pansu’s differential intertwines the homotheties
of N and M . �

Remark: One should note that the resulting metric ∆x is very close to being a Carnot-
Carathéodory metric on N (the only possible degeneracy is that the inner product on each
fiber may be only semi-definite). To see this, one combines the fact that the differential is a
graded group homomorphism and the definition of the metric ∆x with the previous lemma,
concluding that one may recognize ∆x(n1, n2) by the quantity dM (dfx(n1), dfx(n2)). As
we shall see in the next section, at points of differentiability when the map is suitably
nondegenerate, ∆x is a well defined Carnot-Carathéodory metric.
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2.3. Jacobians and a weak Sard-like theorem. Let f : U ⊂ N → M be a Lipschitz
map between a positive measure subset of a Carnot group and another Carnot group and
let k be the Hausdorff dimension of N .

Definition 2.10. For each x ∈ U ⊂ N we define the Jacobian of the map f at x by

J(x) = lim
t→0

{

H k
M (f(BN (y, t)))

H k
N (BN (y, t))

∣

∣

∣

∣

∣

y ∈ BN (x, t)

}

By arguments analogous to those in [Pau98] concerning the existence of the metric
differential, J(x) exists almost everywhere, scales appropriately and is infinitesimally left
invariant. Moreover, we now prove that the image of the set where J(x) = 0 has H k

M -
measure zero.

Lemma 2.11. Let Z = {x ∈ U ⊂ N |J(x) = 0}. Then, H k
M (f(Z)) = 0.

Proof: Fix ε > 0, n0 ∈ N and 0 < R < ∞. Let ZR = Z ∩ BN (n0, R). We will show
that f(ZR) has measure zero. We may cover ZR by balls BN (n, r) with the property that

n ∈ ZR and
H k

M
(f(BN (n,r)))

H k

N
(BN (n,r))

< ε. By the assumption that J(n) = 0, this covering is fine, so

using the Vitali covering lemma, we refine the cover to a countable disjoint collection of
balls {Bi = BN (ni, ri)} with ri < R which cover almost all of ZR. Since f is Lipschitz, we
know that ∪if(Bi) covers H k

M almost all of f(ZR) as well. Thus

H
k

M (f(ZR)) ≤
∑

i

H
k

M (f(BN (ni, ri)))

< ε
∑

i

H
k

N (BN (ni, ri))

= εH k
N (ZR)

≤ εH k
N (BN (n0, R))

Thus, since ε is arbitrary, H k
M (f(ZR)) = 0. The result now follows easily. �

Next we prove a lemma analogous to Sard’s theorem concerning the measure of the
image of the “degenerate” set. Suppose f : U ⊂ N → M is a Lipschitz map and Let
Nx = f(x)dfx(N).

Lemma 2.12. Suppose dimH (N) ≤ dimH (M). Then, H k
M ({f(x)|H k

M (Nx) = 0}) = 0.

Proof: To begin with, we may assume that at all points Pansu’s derivative exists and J(x)
exists for all f(x) we are considering since the set of the complementary points has measure
zero. First we observe that using the definition of Pansu’s differential, the uniformity of
its convergence, the left invariance and homothety of the Carnot-Carathéodory metric dM ,
we have that dM (f(xhte

v), f(x)htdfx(ev)) = o(t). In particular, this says that f(BN (x, t))
lies in a o(t) neighborhood of f(x)dfx(BN (e0, t)). Since f(B) has Hausdorff dimension less
than or equal to k, we know that H k

M (f(BN (x, t))) ≤ H k
M (dfx(BN (x, t)) + o(tk). Now

consider an image point f(x) such that H k
M (Nx) = 0. We discuss separately two cases:

ker(dfx) = {e0} and ker(dfx) 6= {e0}. In the first case, this together with the fact that
dfx is a graded group homomorphism implies that the image of dfx is isomorphic to N .
Thus, ∆x is positive definite on N and, since ∆x is left invariant and admits a homothety,
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dfx : (N,∆x) → (M,dM ) is biLipschitz onto its image and hence cannot have H k
M -measure

zero. So, we may assume that the kernel is nontrivial. Hence, Nx is isomorphic to a
quotient of N (by the kernel), call it N ′. In particular, realizing N ′ as a subgroup of N ,
we see that H k

N (N ′) = 0 and so, since dfx is Lipschitz, H k
M (Nx) ≤ LkH k

N (N ′) = 0. Thus,

we have that H k
N (f(Bn(x, t))) = o(tk), yielding the desired result. �

3. An area formula

In this section, we provide a proof of an area formula for Lipschitz maps. A change of
variables formula is proved by Vodopyanov and Uhklev ([VU96]) using methods based on
Pansu’s techniques in [Pan89]. One should be able to extend their arguments to prove the
statement below. Also, recently, Magnani ([Mag00]) independently proved the same area
formula using a different (but equivalent) definition of Jacobian. Again, let f : U ⊂ N → M

be a Lipschitz map of a Carnot group N to a Carnot group M . Let k be the Hausdorff
dimension of N .

Lemma 3.1. Fix λ > 1 and let E be a measurable set in N such that for every x ∈ E,
∆x exists and is nondegenerate. Then there exists a countable Borel cover of E, {Bi} and
left invariant CC metrics, di, on N such that

λ−1di(x, y) ≤ dM (f(x), f(y)) ≤ λdi(x, y)

for all x, y ∈ Bi. Moreover,

λ−k H k
i (BN (x, 1))

H k
N (BN (x, 1))

≤ J(x) ≤ λk H k
i (BN (x, 1))

H k
N (BN (x, 1))

for all x ∈ Bi which are density points of Bi.

Proof: This theorem follows exactly as lemma 4 in [Kir94] which, in turn, follows much
of the argument of lemma 3.2.2 in [Fed69]. The metrics di are given by di(n1, n2) =
dM (dfx(n1), dfx(n2)).

While we explore the concept of N -rectifiability in detail in the next section, we define
a set E ⊂ M to be N -rectifiable if it is the Lipschitz image of a positive measure subset of
N .

Corollary 3.2. If E ⊂ M is N -rectifiable, then for almost every x ∈ E, Θk(H k
M ⌊E, x) =

H k
N (BN (e0, 1)).

Proof: Using lemma 3.1 above, this follows at density points of the Bi. More precisely, fix
λ > 1 and let Bi and di be as in the lemma. Now, for each point of density of Bi which is
also a point of Pansu differentiability, let Ki be the preimage of Bi. We have,

λ−2k H k
N (Bi ∩ BN (x, δ

λ ))
(

δ
λ

)k
≤ H k

M (f(Ki) ∩ BM (f(x), δ))

δk

≤ λ2k H k
N (Bi ∩ BN (x, δλ))

(δλ)k

Thus, taking advantage of the assumption that x is a density point and letting δ go
to zero and λ go to one, we have the density is constant almost everywhere. The result
follows. �
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Theorem 3. Suppose f : N → M is a Lipschitz map. Then, for any H k
N -measurable set

E,
∫

E
J(n)dH

k
N (n) =

∫

M
N(f |E,m)dH

k
M (m)

Proof: Assume for a moment that at every point in E, the Pansu differential is well defined
and has trivial kernel. In other words, E ⊂ {x|∆x is a nondegenerate CC metric}. Then,
fixing λ > 1 and using lemma 3.1, we find a countable cover {Bi} with the approximative

properties described in the lemma. Let Ji =
H k

i
(BN (x,1))

H k

N
(BN (x,1))

. Note that, under the assumption

of nondegeneracy, H k
N and H k

i both constant multiples of one another and H k
i = JiH

k
N .

Using these facts, we have that

λ−kJi ≤ J(x) ≤ λkJi for all x ∈ Bi

and hence,

λ−2k

∫

Bi∩E
J(n)dH

k
N (n) ≤ λ−k

∫

Bi∩E
JidH

k
N (n) = λ−k

∫

Bi∩E
dH

k
i

≤
∫

M
N(f |Bi∩E ,m)dH

k
M (m) ≤ λk

∫

Bi∩E
dH

k
i

= λk

∫

Bi∩E
JidH

k
N (n) ≤ λ2k

∫

Bi∩E
J(n)dH

k
N (n)

Thus, summing over i and letting λ → 1 we have the desired result.
By lemma 2.12 and the arguments used to prove it, we see that at points x of E where

∆x is not defined or is degenerate, J(x) = 0 and the set of all such x maps to a H k
M

measure zero set, making both sides of the desired equation zero. �.
In light of the discussion above, we note that we could have defined the Jacobian

via the Pansu differential as follows: at a point x of Pansu differentiability, J(x) =
H k

M
(dfx(BN (e0,1)))

H k

N
(BN (e0,1))

.

4. CC-rectifiability

Next, we introduce the definitions and basic properties of a theory of rectifiability for
subsets of Carnot groups. One should view this analogously to the Euclidean case: Eu-
clidean rectifiable sets are viewed as sets which have, in some sense, a manifold structure
while CC-rectifiable sets will have a “manifold” structure where the local geometry modeled
by general Carnot groups rather than simply by Rn.

We begin with the relevant definitions. Assume that N and M are Carnot groups and
that the Hausdorff dimension of N is k.

Definition 4.1. Let N be a Carnot group. A subset E of another Carnot Group (M,dM )
is said to be N-rectifiable if there exists U an positive measure subset of N and a Lipschitz
map f : U → M such that H k

M (E \f(U)) = 0. E is said to be countably N-rectifiable if

there exist a countable number of Ui and fi : Ui → Y Lipschitz with H k
M (E \∪ifi(Ui)) = 0.
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As with the case of R
n-rectifiability, we will be developing the notion of approximate

tangent cones and their relation to rectifiability. Next, we wish to consider when a subset
of M is well approximated by N . If i : N → M is a graded group homomorphism, let
N(t) = {x|dM (x, i(N)) ≤ t}.
Definition 4.2. A subset E of M is N-approximable if for H k

M a.e. a ∈ E we have
the following property: if α > 0, then there exist an injective homomorphism i : N → M

with i(e0) = e0 and constants r0 > 0, θ > 0 such that for any 0 < r < r0,

H
k

M (E ∩ BM (b, αr)) ≥ θrkfor b ∈ a · i(N) ∩ BM (a, r)(1)

and

H
k

M (E ∩ BM (a, r) \ a · N(αr)) < αrk(2)

Next, we have the first theorem, which follows from the differentiability of Lipschitz
maps described in theorem 2.2. The proof of the theorem follows the argument of theorem
15.11 in [Mat95] but with the appropriate changes for the Carnot case. The reader should
also note that another key component of the proof relies on the fact that a Carnot group
and its tangent cone at a point may be identified due to the existence of a homothety of
the Carnot-Carathéodory metric thus allowing the homomorphism of tangent cones to be
translated as a statement concerning sets in the group.

Theorem 4. Every countably N -rectifiable E ⊂ M with nonzero k-dimensional Hausdorff
measure is N -approximable.

Proof: In this proof, the main information to keep in mind is that the differentiability
theory of Lipschitz maps between Carnot groups is close enough to that of Lipschitz maps
between Euclidean spaces, allowing many of the Euclidean arguments to be used.

Fix ε > 0. First, we reduce to an easier case. Let 0 < α < 1. Since E is countably
N -rectifiable, we consider an L-Lipschitz map between E′ ⊂ N such that f(E′) ⊂ E. To
make the reduction to nicer sets, where the lower density is bounded away from zero, we
use lemma 3.2.

Using this, we can cover E′ up to a set of measure zero by a countable union of subsets,
S, with the following properties. For each S, there exists constants θ > 0, r0 > 0 such that
for x ∈ S and 0 < r < r0,

H
k

M (f(E′) ∩ BM (x, r)) ≥ θrk(3)

On these sets, we shall verify the properties of N -approximability.
To create a approximating isometric embedded copy of N , we use Pansu’s differential

mapping. Given a point x at which f is differentiable, Let ix(y) = f(x)dfx(x
−1y) and

Nx = ix(N). Note that the multiplication is multiplication in the Carnot group M . Since
dfx is a group homomorphism, we know that Nx is a subgroup of M and from lemma
2.12 we know that for almost every such x, Nx has large k-dimensional Hausdorff measure.
In other words, the mapping dfx has, in some sense, full rank. Interpreting this result,
we now show that at almost every image point of f , Nx is a isomorphic copy of N . If
it were not isomorphic, it would be isomorphic to a subgroup N ′ of N (since dfx is a
graded homomorphism). As a graded subgroup of M , Nx inherits a Carnot-Carathéodory
metric which is biLipschitz to the restricted Carnot-Carathéodory metric on N ′ because
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all Carnot-Carathéodory metrics given by varying the norm on the distribution of a single
nilpotent Lie group are biLipschitz to one another. Thus, N ′ and Nx have strictly lower
Hausdorff dimension than N and so lemma 2.12 shows this may only happen at almost
every f(x). Once again, we replace the set E′ with a full measure subset of points x

such that Nx has “full rank” in the sense described above. Thus, for each x, (Nx, dM |Nx
)

is biLipschitz to (N, dN ). Denote by l(x) the lower Lipschitz constant for each x. By
construction, l(x) > 0 for all x ∈ E′.

Recalling that the Lebesgue density theorem holds in N for the measure H k
N and using

the approximations developed above, we will now find numbers r0 > 0 and δ > 0 and a
compact set E0 ⊂ E′ with H k

N (E′\E0) < ε consisting only of density points of E′ with nice

approximative properties. We begin by picking a δ < min{α
4 , 1

L}. First, pick a compact
subset of the density points of E′, E0, so that for x ∈ E0, l(x) ≥ 2δ (Property 1). Second,
because Nx approximates f(E′) well at f(x) by lemma 2.9, I can pick r0 small enough so
that for x ∈ E0,

dM (f(y), ix(y)) < δ2dN (x, y) for y ∈ BN (x, r0) (Property 2)

So far, the choice of r0 and E0 depends on δ only. Last, we pick δ and, possibly readjusting
r0 to be smaller still, we may guarantee that for x ∈ E0, 0 < r < r0 and y ∈ BN (x, r

δ ),

dN (y,E0) < δ2r (Property 3). Property 3 follows from the fact that all points in E0 are
density points of E′.

Now, writing E0 as the union of finitely many subsets Ei with diamN (Ci) < r0, we exam-
ine each Ci individually. Consider a point f(x) with x ∈ Ci and Θk

M (f(E′)\f(Ci), f(x)) =
0. Since almost every point in f(Ci) has this property, we will consider only these points.

Let 0 < r < δr0
2 and pick ix(y) ∈ Nx ∩ BM (f(x), r). Note that y ∈ BN (x, r

δ ) by the

property 1. By property 3 above, there exists z ∈ E′ such that dN (y, z) < 2r
δ . Using the

triangle inequality, the fact that ix is L-Lipschitz (recall that L < 1
δ ) and property 2, we

get

dM (f(z), ix(y)) ≤ δ2dN (x, z) + LdN (y, z) ≤ 3rδ

Since 4δ < θ, we have from equation 3 that

H
k

M (f(E′) ∩ BM (ix(y), αr)) ≥ H
k

M (f(E′) ∩ BM (f(z), δr)) ≥ θδkrk

Taking λ = θδk we have verified equation 1.
To verify equation 2, we observe the following:
First, by property 2,

f(Ci ∩ BN (x,
r

δ
)) ⊂ Nx(δr) ⊂ Nx(αr)

Second, using the lower Lipschitz bound on Ci and property 2 again,

f(Ci \ BN (x,
r

δ
)) ⊂ M \ BM (f(x), r)

and so, f(Ci)∩BM (f(x), r) lies inside Nx(αr). Given the density assumption on f(x), that
Θk

M (f(E′) \ f(Ci), f(x)) = 0, this implies that, again possibly shrinking r0, that equation
2 holds. �
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5. Measures in cones

As in the R
k-rectifiability theory, we will show that rectifiability can be characterized

by approximability (and later by the existence of appropriate tangent spaces). Thus, we
will need a method of producing Lipschitz maps. To do so, we follow the idea used in
[Mat95] of considering measures of the intersections of cones and the set E to conclude
N -rectifiability from N -approximability.

To do this, we need to use a type of projection mapping analogous to the projections
onto planes used in the usual theory.

Definition 5.1. Let V be a vector subspace of n and let < ·, · > be a Riemannian com-
pletion of the CC-inner product on n which makes the grading orthogonal. Denote by v⊥

the orthogonal complement of V (with respect to this inner product). Let prV : n → V by
the projection of n onto V and let PV : N → eV be the map exp ◦ prV ◦ exp−1 where exp

is the usual exponential map. Also, let QV be the map PV ⊥. In each of the applications of
the projection mappings below, there is an understood base point for the exponential map.

It is a direct consequence of the equivalence of the Carnot-Carathéodory metric and dqn

that the projection defined above is a Lipschitz map if V is a graded Lie subalgebra with
compatible grading. Although the Lipschitz constant may not be 1, the map defined above
is a projection in the sense that PV ◦ PV is the identity map. One can easily construct
examples of projections which are not Lipschitz.

Example: Consider the 3-dimensional Heisenberg group, H3, with a left invariant Carnot-
Carathéodory metric, dcc. Let V be the vector subspace spanned by the “Z” (non-
distributional) direction. Then, the exponential image of V in H3 is a 1-parameter sub-
group but V is not a Lie subalgebra with compatible grading. We will now directly show
that this projection is not Lipschitz. Not surprisingly, this stems from the nontrivial bracket
structure. Giving H3 coordinates {X,Y,Z}, we describe an element eaX+bY +cZ by the
triple (a, b, c). Then dcc((a, b, c), (α, β, γ)) = dcc((0, 0, 0), (α−a, β − b, γ − c+ 1

2(αb−aβ))).

Fixing ε > 0 and taking α = a + ε, β = b + ε and a =
(γ−c)− bε

2
ε , this simplifies to

dcc((0, 0, 0), (ε, ε, 0)) = εdcc((0, 0, 0), (1, 1, 0)). Computing the distance under the image of
Pv, we have

dcc(PV ((a, b, c)), PV ((α, β, γ))) = dcc((0, 0, c), (0, 0, γ)) =
√

|γ − c|dcc((0, 0, 0), (0, 0, 1))

Thus, since ε, γ and c are arbitrary, we see that the map cannot be Lipschitz. �

Definition 5.2. Let n be a Lie subalgebra of m suppose G is the orthogonal complement
of n. If m0 ∈ M , 0 < s < 1, and 0 < R < ∞, we define

X(n0, G, s) = {m1 ∈ M |dM (QG(m1), QG(m0)) < sdM(m1,m0)}
Moreover, let

X(m,R,G, s) = X(m,G, s) ∩ BM (m0, R)

The reader should look closely at this definitions of “cones”. While they are the same
in form as the Euclidean versions used by Mattila in [Mat95], the actual objects look
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somewhat different in practice (it is useful and relatively easy to investigate the shape of
these objects in the Heisenberg group). While they still have the same general form of an
“X” emminating from the base point, the spreading of the limbs of the “X” is no longer
quite linear. In practice, we will see that this will make no difference for our applications.

We begin with a simple lemma to aid in producing Lipschitz maps to rectifiable sets.

Lemma 5.3. Suppose Y ⊂ M and G is the orthogonal complement of a graded Lie subal-
gebra n of m, 0 < s < 1 and 0 < R < ∞ then if Y ∩ X(y,R,G, s) = ∅ for all y ∈ Y , then
Y is N -rectifiable.

Proof: Geometrically, this says roughly that the Lie algebra preimage of the set Y at each
point locally lies in n. Thus it makes sense that one can approximate the set by Lipschitz
images of pieces of N . To prove this, we first may assume that diamM (Y ) < R, otherwise
we may simply cut up Y into a countable number of such pieces. Next, we observe that
if y1, y2 ∈ Y , the hypothesis of empty intersection implies that dM (QG(y1), QG(y2)) >

sdM (y1, y2). Thus, the map (QG|Y )−1 is Lipschitz with constant less than 1
s . Since QG|Y

and (QG|Y )−1 are both Lipschitz , we see that there exists Y ⊂ N , a positive measure
subset such that (QG|Y )−1 : Y → Y . Hence, Y is N -rectifiable. �

The reader should note that one implication of the lemma is that a purely N -unrectifiable
set must have a nonempty intersection for almost all points in the set.

Next, we refine the lemma above, replacing the requirement of empty intersection with
a bound on the measure of the intersection.

Lemma 5.4. Let G, n and s be as above. Let 0 < δ < ∞ and 0 < λ < ∞. Let k be the
Hausdorff dimension of N . If Y ⊂ M is purely N -unrectifiable and H k

M (Y ∩X(y, r,G, s)) ≤
λrksk for y ∈ Y and 0 < r < δ, then H k

M (Y ∩BM (m, δ
6 )) ≤ Cλδk for all m ∈ M where C

is a constant depending only on k.

Proof: This proof is exactly the same as the proof of lemma 15.14 in [Mat95]. The constant
C is given by 2 · 20k · H k

N (BN (e0, 1)).

Corollary 5.5. Let G, n and s be as in the last lemma. Suppose Y ⊂ M is purely N -
unrectifiable with H k

M (Y ) < ∞, then there exists a constant C depending only on k and

H k
N (BN (e0, 1)) such that

Θ∗k(Y ∩ X(y,G, s), y) ≥ Csk

for Hk
M a.e. y ∈ Y .

Proof: Again, this is the same as the proof of corollary 15.16 in [Mat95]. The only detail
which must be checked is the lower bound on the density of sets of positive measure at
almost ever point. This is covered in lemma 2.5.

6. Characterization of Rectifiability

As in the previous section, we assume that N and M are Carnot groups of Hausdorff
dimensions k and l respectively.

Definition 6.1. Suppose Y ⊂ M , m ∈ M and V is a subspace of m with exp(V ) iso-
morphic to N . We say that expm(V ) is an approximate tangent cone for Y at m if
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Θ∗k(Y,m) > 0 and for all 0 < s < 1,

lim
r→0+

H k
M (Y ∩ BM (m, r) \ X(m,V, s))

rk
= 0

Following the Euclidean notation, we denote the set of all approximate tangent cones as
apTanN(Y,m). Note that this set depends on a choice of Carnot group N .

Next, we come to the first main theorem; we characterize N -rectifiability in terms of
N -approximability and the existence of approximate tangent cones almost everywhere.

Theorem 5. Let N and M be Carnot groups of Hausdorff dimensions k and l respectively.
Let Y be a H k

M -measurable subset of M with H k
M (Y ) < ∞. Then, the following are

equivalent:

1. Y is N -rectifiable.
2. Y is N -approximable.
3. For H k

M almost all y ∈ Y , there is a unique approximate tangent cone at y isometric
to N .

4. For H k
M almost all y ∈ Y , there exists some approximate tangent cone at y isometric

to N .

Proof: As with the previous results, this proof follows the development of [Mat95] with
changes for the Carnot case.
(1) ⇒ (2) is theorem 4 and (3) ⇒ (4) is trivial, so it remains to prove the other two
implications.
(2) ⇒ (3)
Notice that, for ε > 0 sufficiently small, BM (y, r) \ X(y,N, s) ⊂ (BM (y, r) \ N(εsr)) ∪
BM (y, εr). From this, and the assumption that Y is N -approximable (use the second
property in the definition), we see that a copy of N is an approximate tangent cone for Y

at almost every point. To see that the approximate tangent cone is unique, we use property
(1) in definition 4.2 and the definition of approximate tangent cone.
(4) ⇒ (1)
We will use lemma 5.4 to show this implication via contradiction. Thus, we assume Y

is purely N -unrectifiable and we will show that it can possess an approximate tangent
cone isomorphic to N almost nowhere. Consider M as R

n with the standard Euclidean
metric and let EV denote projection onto V , a linear subspace. Let k0 be the topological
dimension of N . Let m ∈ N (we will adjust the choice of m later in the proof). We can
use the compactness of G(n, k0) (using the standard operator norm) to cover G(n, k0) by
finitely many balls of radius 1

2m . Call this family of balls B. Consider now the subset
G = {B1, ..., Bl} of B of balls containing k0-planes that, under the induced grading from
N , are isomorphic to N . Let Ggr(n, k0) ⊂ G(n, k0) be the subset of k0-planes isomorphic
to N under the induced grading. Now, for each Bi, pick Wi ∈ Bi ∩ Ggr(n, k0). Then, by
construction, for v ∈ Bi ∩Ggr(n, k0), we know that ||EV −EWi

|| < 1
m . In terms of the CC

projection, using the equivalence of dM and dqn, if α is any vector, we have

dM (PV (eα), PWi
(eα)) ≤ C(m)dM (e0, eα)κ
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where C(m) = const · ( 1
m)κ and κ is an appropriate power determined by the grading and

CC metric on M . Here, we abuse notation and assume V and Wi are exponentiated at the
same base point.

Fixing Wi, let B =

{

y ∈ Y

∣

∣

∣

∣

∃V ∈ Bi) s.t. V ∈ apTanN (Y, y)

}

. We want to show that

B has H k
M -measure zero. Suppose, on the contrary, that B has positive measure. Since,

by assumption, we know that every point in B has an approximate tangent plane in Bi,
given λ > 0, ∃r0 > 0 so that

C = {b ∈ B| sup
0<r<r0

H k
M (B ∩ BM (b, r) \ X(b, V,C(m)))

rk
< λC(m)k}

has positive H k
M -measure.

Next, we claim that, for sufficiently large m ∈ N,

X(b, r,W⊥

i , C(m)) ⊂ BM (b, r) \ X(b, V,C(m))

Geometrically, this is almost clear, but we shall prove it anyway. Suppose the claim
does not hold; for every m, there exists y ∈ X(b, r,W⊥

i , C(m)) ∩X(b, V,C(m)) and y 6= b.
From the definitions of the “X” sets, we have

dM (PW (y), b) ≤ C(m)dM (y, b)(i)

dM (PV ⊥(y), b) ≤ C(m)dM (y, b)(ii)

From above, we know dM (Pw(y), PV (y)) ≤ C(m)dM (b, y)κ. Using the triangle inequality
and (i), we have

dM (PV (y), b) ≤ C(m)dM (y, b) + C(m)dM (y, b)κ(iii)

Now, as m → ∞, C(m) → 0 so, considering (ii) and (iii) and using the equivalence of
dm and dqn, no such y can exist thus proving the claim.

Picking m so that the claim is true, we can now finish the proof of this implication using
the following computation:

H
k

M (C ∩ X(b, r,W⊥

i , C(m))) ≤ H
k

M (C ∩ (BM (b, r) \ X(b, V,C(m))))

≤ λC(m)krk

Picking λ sufficiently small, we violate lemma 5.5. Thus, C has measure zero as does B

proving the implication (4) ⇒ (1). �

Remarks:

• We reiterate that the class of N -rectifiable manifolds, for a Carnot group N , has
good local properties. In particular, the tangent cone at each point (in this setting,
it is easy to see using the N -approximability at a point that the unique approximate
tangent cone will coincide with the tangent cone in the sense of Gromov) is isometric
to N in contrast to the examples cited earlier. This should allow for a stronger
analysis of the local geometry of N -rectifiable smooth submanifolds.
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• How large is the set of N -rectifiable smooth manifolds? In particular, which Carnot-
Carathéodory manifolds are realized as N -rectifiable sets? One can see that every
compact contact Carnot-Carathéodory manifold, C, (using the contact structure to
define the subbundle) is N -rectifiable for a suitable N . One sees this by first using
D’Ambra’s isometric embedding theorem for contact CC manifolds ([D’A95]) to re-
alize C as a submanifolds of the Heisenberg group of large enough dimension. Then,
calculating the tangent cone at each point (using the contact form and the method of
Bellaiche ([Bel96]) or Mitchell ([Mit85])), one can show that C has an approximate
tangent cone at each point isometric to a suitable N . Appealing to the theorem above
yields N -rectifiability.

7. Level Sets of Lipschitz Functions

Although the last section proved the equivalence of N -rectifiability, N -approximability
and existence/uniqueness of approximate tangent cones along the same lines as the Eu-
clidean theory, we note that projections onto subgroups of a Carnot groups are not neces-
sarily Lipschitz. For example, as shown in section 5, the projection of H3 onto the “yz”
subgroup is not Lipschitz. The failure of the projections to be Lipschitz is related to the
compatibility of the induced grading on the subgroup. In this section, we investigate the
properties of level sets of Lipschitz functions on Heisenberg groups and, we will see, that in
modeling the local behavior of such sets, we will need to use subgroups of the Heisenberg
group onto which the projection mapping is not Lipschitz. In fact, as in the Euclidean
case, the subgroup which locally models f−1(t) at a point x is ker(dfx) which, by Pansu’s
differentiability theory, exists almost everywhere and is a subgroup for a.e. x.

For this section, we assume N is the Heisenberg group of dimension 2n+1 and k = 2n+2
is the Hausdorff dimension of N . We begin with an example.

Example: Consider the mapping f : H3 → R given by eaX+bY +cZ →
√

a2 + b2 + |c|.
This is a Lipschitz map (any quasi-norm on H3 is biLipschitz equivalent to the Carnot-
Carathéodory metric) and the inverse image of t ∈ R is the boundary of Bqn(n0, t). We
will now calculate the kernels of the differential mappings at each point. First, we calculate
dfx(eaX+bY +cZ). Fix x = eαX+βY +γZ . Since,

xhre
aX+bY +cZ = e(α+ra)X+(β+rb)Y +(γ+r2c+ r

2
(αb−aβ))Z

we have

lim
r→0+

√

(α + ra)2 + (β + rb)2 + |γ + r2c + r
2(αb − aβ)| −

√

α2 + β2 + |γ|
r

= lim
r→0+

± rα + r2a + rβ + r2b + rc + 1
4 (αb − aβ)

√

(α + ra)2 + (β + rb)2 + |γ + r2c + r
2(αb − aβ)|

= ± αb − aβ

4
√

α2 + β2 + |γ|
So, for this fixed x, we see that, so long as α 6= 0,

ker(dfx) = {eaX+bY +cZ |b =
β

α
a}
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Note that these subgroups are all mutually isomorphic. For α = 0, one can easily calculate
the remaining cases. One should note that the case when α = β = 0 is particularly
interesting, for at those points, the kernel is {eaX+bY +cZ}. These are points where Pansu’s
differentiability theory fails.

In this section, we are concerned with rectifiability properties of level sets of Lipschitz
functions. The most natural candidate for a Lipschitz map between U ⊂ N and f−1(t)
would be, as in the Euclidean case, the inverse of the projection of f−1(t) to ker(dfx).
Unfortunately, this map is not Lipschitz. We show this in a special case. Consider x = eX in
f−1(1). Then, by the above calculation, ker(dfx) = {ebY +cZ}. Let Px : f−1(1) → ker(dfx)

be the map Px(eaX+bY +cZ) = ebY +cZ where |a2 + b2 + |c|| = 1. Taking n1 = eaX+(1−a2)Z

and n2 = eaX+εY +(1−a2−ε2)Z for ε > 0 small and a close to 1, we have

dH3(n1, n2) = dH3(e0, eεY +(aε−ε2)Z)

≥ C1aε
1
2

But, computing the distance between the projections, we have

dH3(Px(n1), Px(n2)) = dH3(e0, eεY −ε2Z)

≤ C2ε
√

2

Taking the quotient and applying the above estimates yields that Lip(Px) ≥ C3ε
−

1
2 . Let-

ting ε go to zero shows that the inverse map cannot be Lipschitz. �

In the theory of R
n-rectifiability, one has a nice decomposition of Lipschitz maps between

Euclidean spaces controlled by the area and co-area formulae. In particular, one can
conclude that the inverse image of a point under a Lipschitz map is R

k-rectifiable. We
prove, in this section, that level sets of Lipschitz maps from the Heisenberg group to R are
locally N ′-approximable and have approximate tangent cones isomorphic to N ′ (locally)
a.e. for N ′ some subgroup of N . The proof of such a fact is significantly harder than in the
Euclidean case because many of the tools (even the ones used in the previous sections) are
not available in the cases where the local model for the level sets are subgroups of Carnot
groups with incompatible gradings. To circumvent the standard arguments, we employ an
approximation of the Lipschitz function by a smooth function using the usual mollification
procedure. This gives us two tools - the smooth approximation and the Pansu differential
of the function. Combining these two different perspectives allows us the desired control.

Lemma 7.1. If f : N → R is a Lipschitz map, there exist smooth functions fi : N → R

which converge uniformly to f on compact sets. In addition, if X is a horizontal vector
field on N , then Xfi → Xf uniformly on compact sets where Xf is defined as well.

Remarks on proof: This is a simple consequence of the convergence properties of convolu-
tion operators on graded nilpotent Lie groups and the usual mollification and approxima-
tion procedures. As in the Euclidean case, one has an approximation continuous functions
by smooth functions which converge uniformly on compact sets. These facts are well known
and can be found in, for example, [FS82]. The reader should also see [GN96], [FSSC95]
and [FSSC99] (in particular proposition 5.8 and theorem 6.4) for an explicit discussion of
mollifiers acting on functions on Carnot-Carathéodory spaces.

Lemma 7.2. For almost every t ∈ R, f−1
i (t) are all smooth submanifolds of N .
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Proof: Standard.

Lemma 7.3. For a.e. t ∈ R, almost every point of f−1
i (t) is a point of Pansu differentia-

bility for f . For almost every t ∈ R, f−1(t) is H
k−1

N measurable and, for such a t, almost
every x ∈ f−1(t) is a point of Pansu differentiability for f .

Proof: The first statement is a consequence of the coarea formula for smooth real valued
maps on Carnot groups. See proposition 2.6 and [Hei95] section 4.7. The second statement
follows directly from lemma 2.10.15 in [Fed69].�

Lemma 7.4. Let Ω be a compact set in N and let Ωt = Ω∩f−1(t). Then, for almost every
t and for almost every x ∈ Ωt, there exists rx > 0 such that for a.e. y ∈ BN (x, rx) ∩ Ωt,
ker(dfy) and ker(dfx) are isomorphic as subgroups of N .

Proof: Let m be the topological dimension of N . Pick t so that f−1
i (t) are smooth, a.e.

point of each f−1
i (t) is a point of Pansu differentiability for f and almost every point of

f−1(t) is a point of Pansu differentiability for f . The exponential preimage of ker(dfx)
in the Lie algebra based at x is a vector subspace of n. Denote this subspace by Vx. By
the induced grading data on Vx, we mean the extra data that the grading imposes on Vx

by restriction (the terminology is, at best, misleading since the induced grading data is
rarely a grading on Vx). Now, the subgroups ker(dfx) and ker(dfy) are isomorphic and
biLipschitz with respect to the quasi-norm of N restricted to the respective subgroups if
Vx and Vy have compatible induced grading data, i.e. if there is a algebraic homomorphism
between Vx and Vy which respects the induced grading data. This is an open condition
on m − 1 planes in R

m and so, since dfx is continuous on the full measure subset of Ωt

where it is defined, the set {y ∈ Ωt|ker(dfy) ≡ ker(dfx)} is relatively open. Moreover, by
iterating this procedure (if the complement of this set in Ωt has interior), we quickly see
that for a.e. point x ∈ Ωt, ∃rx > 0 s.t for y ∈ BN (x, r) ∩ Ωt, ker(dfy) = ker(dfx). �

Theorem 6. Let G be the Heisenberg group of dimension 2n + 1 and let f : G → R be
a Lipschitz map. Then, for a.e. t ∈ R and a.e. x ∈ f−1(t), there exists a subgroup
Tx ⊂ G and rx > 0 such that BN (x, rx) ∩ f−1(t) is Tx-approximable and f−1(t) has a
unique approximate tangent cone isomorphic to Tx for a.e. x ∈ BN (x, rx) ∩ f−1(t).

The proof of this theorem follows from the next two lemmas and lemma 7.4.

Lemma 7.5. Suppose x ∈ f−1(t) is a point of Pansu differentiability for f . If x′ ∈
f−1(t) ∩ BN (x, s) then dN (x′, Tx) = O(s2).

Proof: Consider a one parameter family of points xhse
w1(s)+w2(s) ∈ f−1(t) where w1(s) ∈

ker(dfx), w2(s) is perpendicular to the kernel and dN (e0, ew1(s)+w2(s)) = 1 for all s. Now,

by the choice of these points |f(xhse
w1(s)+w2(s)) − f(x)| = 0. Moreover, using the Pansu

differentiability at the point x, |f(xhse
w1(s)+w2(s)) − (f(x) + sdfx(e

w2(s))| = o(s) and so,
using the left invariance and homothety in the target, we have:

dM (dfx(ew2(s)), e0) = O(1)

Moreover, we notice that dfx|N/ker(dfx) is biLipschitz since dN |N/ker(dfx) and dR|Im(dfx) are
simply nondegenerate metrics on R and dfx is a Lipschitz group homomorphism respecting
dilations. Using this, we have that

dN (ew2(s), e0) = O(1)
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So, using the Campbell-Baker-Hausdorff formula and the fact that w2(s) lies in a Lie

subalgebra, dN (xhse
w1(s)+w2(s), ker(dfx)) = dN (hse

w2(s), e0) = o(s). �

Lemma 7.6. Fix a compact set Ω ⊂ N . Let C = f−1(t) ∩ Ω and Ci = f−1
i (t) ∩ Ω. Then,

there exists a constant κ > 0 such that for x ∈ N and r > 0,

κH
k−1

N (C ∩ BN (x, r)) ≥ limi→∞H
k−1

N (Ci ∩ BN (x, r))

Proof: This is not a hard fact to prove, but we cite it as a special case of lemma 8.35 in
[DS97]. First we check whether each Ci∩BN (x, r) is Ahlfors subregular of dimension k−1,

i.e. if there exists a constant Ki such that K−1
i sk−1 ≤ H

k−1
N ((Ci∩BN(x, r))∩BN (y, s)) ≤

Kis
k−1 for y ∈ Ci ∩ BN (x, r) and s > 0. However, since the fi are smooth, lemma 2.7

provides a method for computing the Hausdorff measure. We notice that Xfi and Xfj are
close to one another (up to a set of negligible measure) for i, j sufficiently large and for
any smooth vector field X. Note that, if Z is the vector field pointing in the nonsubbundle
direction in N , it is entirely possible the Zf does not exists, which would cause |Zfi| → ∞
as i → ∞. Now, via a direct and straightforward computation using the implicit function
theorem and multivariate calculus and proposition 2.6, we find for x ∈ N and r > 0,

H
k−1

N (Ci ∩ Bn(x, r)) =

∫

Ci∩Bn(x,r)

|∇0fi|
|∇fi|

dA ≤ Kir
k−1

One should notice that, due to the previous remark, |∇fi| may become arbitrarily large
as i → ∞. However, in computing the Jacobian factor for the area integral, exactly the
same potentially unbounded factor appears, leading to a finite integral. Note also that Ki

depends only on the structure of the Heisenberg group and the function f . Moreover, since
fi and fj are C1 close for sufficiently large i, j, we see that the Ki are uniformly bounded.
Thus, the hypotheses of lemma 8.35 in [DS97] are satisfied. �

Lemma 7.7. Fix α > 0. Then there exists s0 > 0, θ > 0 such that for 0 < s < s0 and
x′ ∈ Tx ∩ BN (x, s) then, H

k−1
N (f−1(t) ∩ BN (x′, αs)) ≥ θsk−1.

Proof: To determine s0, we use lemma 7.5. The estimate in this lemma and the trian-
gle inequality tell us that if x′ ∈ Tx ∩ BN (x, s) then dN (x′, f−1(t)) = o(s). Picking s0

small enough (this will depend on α), we can guarantee that BN (x′, αs
2 ) ∩ f−1(t) 6= ∅ for

0 < s < s0 and x′ ∈ Tx ∩ BN (x, s). Let Bi
s = BN (x′, αs) ∩ f−1

i (t). We know from the
construction of the fi that the Bi

s converge to Bs = BN (x′, αs) ∩ f−1(t). Therefore, by

lemma 7.6, limi→∞H
k−1

N (Bi
s) ≤ κH

k−1
N (Bs). Also, in the proof of lemma 7.6, we noted

that f−1(t)∩Ω is Ahlfors regular. By our choice of s0, we know that, for sufficiently large i,
there are points xi ∈ f−1

i (t)∩Ω such that BN (xi,
αs
4 )∩f−1

i (t) ⊂ Bi
s. By Ahlfors regularity,

we have H
k−1

N (Bi
s) ≥ Kαk−1s−k−1

4k−1 , yielding the desired estimate. �

Proof of theorem 6: First, lemma 7.4 gives the constant rx in the theorem and the local
structure for a.e. point in the ball. Next, for this candidate local structure, we must verify
conditions (1) and (2) in definition 4.2. Condition (1) is verified by lemma 7.7. Moreover,
a consequence of lemma 7.5, there exists r0 > 0 such that (f−1(t)∩BN (x, r)) \Tx(αr) = ∅
for 0 < r < r0. The proof of the existence of a unique approximate tangent cone isometric
to N follows just as in one implication of theorem 5. �
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Remark: The techniques and computations in this section are very similar in spirit to those
used to prove the implicit function theorem (on the Heisenberg group) in [FSSC99]. It is
a natural question as to whether the results above and the results ion [FSSC99] can be
extended to Carnot groups other than the Heisenberg group. The main technical difficulty
in extending the above arguments (which is also evident in [FSSC99]) is generalizing lemma
7.6 in which a precise cancellation occurs allowing the proof to go through. In more general
Carnot groups, this cancellation would almost certainly not hold for such approximations
to generic Lipschitz maps.
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