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Exposure to residual concentrations of elements 
from a remediated coal fly ash spill does not 
adversely influence stress and immune responses 
of nestling tree swallows
Michelle L. Beck1*, William A. Hopkins1, John J. Hallagan1, Brian P. Jackson2 and Dana M. Hawley3
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Anthropogenic activities often produce pollutants that can affect the physiology, growth and reproductive success of wildlife. 
Many metals and trace elements play important roles in physiological processes, and exposure to even moderately elevated 
concentrations of essential and non-essential elements could have subtle effects on physiology, particularly during develop-
ment. We examined the effects of exposure to a number of elements from a coal fly ash spill that occurred in December 2008 
and has since been remediated on the stress and immune responses of nestling tree swallows. We found that nestlings at the 
site of the spill had significantly greater blood concentrations of Cu, Hg, Se and Zn in 2011, but greater concentrations only of 
Se in 2012, in comparison to reference colonies. The concentrations of elements were below levels of significant toxicological 
concern in both years. In 2011, we found no relationship between exposure to elements associated with the spill and basal or 
stress-induced corticosterone concentrations in nestlings. In 2012, we found that Se exposure was not associated with cell-
mediated immunity based on the response to phytohaemagglutinin injection. However, the bactericidal capacity of nestling 
plasma had a positive but weak association with blood Se concentrations, and this association was stronger at the spill site. 
Our results indicate that exposure to these low concentrations of elements had few effects on nestling endocrine and immune 
physiology. The long-term health consequences of low-level exposure to elements and of exposure to greater element con-
centrations in avian species require additional study.
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Introduction
Humans are rapidly altering the environment and while these 
changes may threaten the persistence of species and popula-
tions (Vitousek et al., 1997), they may also have subtle, 

 non-lethal effects on individuals. Exposure to anthropogenic 
pollutants can affect physiology (Acevedo-Whitehouse and 
Duffus, 2009; Martin et al., 2010), compromise reproductive 
performance (Heinz, 1996; Baos et al., 2012) and affect devel-
opment of vertebrates (Markman et al., 2011). Elements, 
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including heavy metals, metalloids and trace elements, are one 
form of pollution that wildlife are exposed to through a num-
ber of anthropogenic processes, such as intensive agriculture 
(Ohlendorf et al., 1986; Orłowski et al., 2010), mining (Weech 
et al., 2012), coal combustion (Rowe et al., 2002) and metal 
smelting (Janssens et al., 2001). Some of these elements are of 
known toxicological importance, such as arsenic (As), lead 
(Pb) and mercury (Hg), as well as elements that are nutrition-
ally important but become toxic at elevated concentrations, 
such as copper (Cu), iron (Fe), selenium (Se) and zinc (Zn). At 
optimal dietary concentrations, the latter elements affect a 
variety of physiological processes, acting as enzyme cofactors 
and antioxidants and enhancing the immune response (Reilly, 
2006; Wintergerst et al., 2007). However, at higher concen-
trations they can cause oxidative stress (Janz et al., 2010; 
Koivula and Eeva, 2010), increase susceptibility to infection 
(Sherman, 1992; Wintergerst et al., 2007) and inhibit repro-
ductive performance (Baos et al., 2012). Given the important 
physiological functions of elements, individuals may be more 
sensitive to element contamination during early development, 
when exposure could permanently alter some physiological 
processes (Nyholm, 1998; Baos et al., 2006a). Thus, exposure 
to even moderately elevated concentrations of some elements 
during development may affect physiological processes, such 
as stress and immune responses, which are directly relevant to 
survival and reproduction.

The stress response is one aspect of physiology that may 
be affected by exposure to elements. This response is regu-
lated by the hypothalamic–pituitary–adrenal axis (HPA axis), 
which controls the release of glucocorticoids in vertebrates 
(Wingfield and Romero, 2001). Basal glucocorticoid concen-
trations are responsible for regulating energy balance, blood 
glucose and fatty acid levels (reviewed by Landys et al., 
2006), while stress-induced glucocorticoids are released in 
response to unexpected challenges and cause changes in 
behaviour and physiology that enhance the probability of 
survival (reviewed by Wingfield et al., 1998; Sapolsky et al., 
2000). Exposure to elements can potentially affect the regula-
tion of glucocorticoids via an array of mechanisms acting on 
different levels of the HPA axis. For example, release of glu-
cocorticoids can be affected by altering the release of, or 
response to, corticotrophin-releasing hormone or adrenocor-
ticotrophic hormone from the hypothalamus and pituitary, 
respectively (Potmis et al., 1993; Handy, 2003; Gagnon et al., 
2006). Elements such as Cu, Fe, Mn and Zn are also impor-
tant components of many enzymes (Marmiroli and Maestri, 
2008), and increases in their concentrations above normal 
dietary levels could potentially affect enzymes associated 
with glucocorticoid metabolism (Hopkins et al., 1997).

Given that elements have the potential to influence the 
production, release and clearance of glucocorticoids, it is not 
surprising that studies examining the effects of elements on 
basal and stress-induced glucocorticoid concentrations have 
produced mixed results. For example, in some avian studies, 
Hg exposure may reduce (Franceschini et al., 2009; Herring 
et al., 2012) or elevate basal glucocorticoid concentrations 

(Wada et al., 2009). Basal glucocorticoid concentrations have 
not been significantly associated with mixtures of elements, 
including cadmium (Cd), Hg and Se [common eiders 
(Somateria mollissima), Wayland et al., 2003], As, Cd, Cu, 
Pb and Zn [white storks (Ciconia ciconia), Baos et al., 
2006a], or As, Cu, nickel (Ni), Pb and Zn [pied flycatchers 
(Ficedula hypoleuca), Eeva et al., 2005], but Cd, Se and Hg 
may influence basal glucocorticoids in interactions with other 
elements or body condition [lesser scaup (Aythya affinis), 
Pollock and Machin, 2009]. Effects on induced glucocorti-
coid concentrations produced using standardized handling 
restraint are also variable. Exposure to elements including Pb 
and Cd can enhance the stress-induced release of glucocorti-
coids (Wayland et al., 2002; Baos et al., 2006a), while expo-
sure to Hg and Se can inhibit it (Wayland et al., 2002; Wada 
et al., 2009). In these same or very similar studies, other ele-
ments, including As, Cd, Hg, Se and Zn, appeared to have no 
effect on stress-induced glucocorticoids (Wayland et al., 
2002, 2003; Baos et al., 2006a). Given that animals may 
be exposed to a variety of elements that may interact in com-
plex ways (Marmiroli and Maestri, 2008; Zwolak and 
Zaporowska, 2012), it is important to understand how ele-
ments commonly found in the environment influence the 
HPA axis as well as other physiological processes.

Exposure to elements can also affect immune responses 
and disease resistance. Many immune responses are affected 
by nutritional condition (Alonso-Alvarez and Tella, 2001; 
Lifjeld et al., 2002; Ponton et al., 2013), and exposure to high 
concentrations of elements may reduce an individual’s nutri-
tional condition and hence their immune response (Ritchie 
et al., 1994; Massányi et al., 1999). Element exposure may 
directly affect the immune system by impairing immune cell 
function, altering protein synthesis, or through cytotoxic 
effects on immune organs (Koller, 1973; Blakley et al., 1980; 
Dan et al., 2000). Exposure to elements such as Pb increases 
disease prevalence in house sparrows (Passer domesticus, 
Bichet et al., 2013), providing indirect evidence that element 
exposure impairs immunity. Exposure to elevated concentra-
tions of Pb or a mixture of elements including As, Cd, Cu, Pb, 
Hg, Se and Zn was associated with reduced humoral immu-
nity [zebra finch (Taeniopygia guttata) and great tit (Parus 
major), Snoeijs et al., 2004, 2005], while cell-mediated immu-
nity can be impaired by exposure to Hg in tree swallows 
(Tachycineta bicolor, Hawley et al., 2009). However, other 
studies have detected no effect of these same elements on 
humoral (Wayland et al., 2003; Biser et al., 2004; Hawley 
et al., 2009) or cell-mediated immunity (Snoeijs et al., 2005; 
Baos et al., 2006b), and a few studies have even detected stim-
ulatory effects of Se exposure on these immune responses 
(Wayland et al., 2002; Surai, 2006; Brady et al., 2013). Robust 
innate and cell-mediated immune responses require adequate 
dietary concentrations of Cu, Fe, Se and Zn (reviewed by 
Maggini et al., 2007; Wintergerst et al., 2007), and it is pos-
sible that moderate increases in these elements, below levels 
associated with toxic effects, are responsible for the enhanced 
immune responses detected in some studies.
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We examined the effects of environmental exposure to a 
mixture of elements from a recently remediated coal fly ash 
spill on the stress and immune responses of nestling tree swal-
lows. Coal fly ash is one of the largest solid waste streams 
produced globally and represents a significant source of an 
array of elements to aquatic systems (Rowe et al., 2002; 
NRC, 2006). Fly ash spills, such as the one that took place at 
our study site, represent extreme circumstances, but aquatic 
disposal of fly ash continually introduces elements into 
streams and rivers around the world. Fly ash contains ele-
vated concentrations of several elements including As, Hg, 
Se, V and others that pose health risks to humans and wildlife 
(Rowe et al., 2002; NRC, 2006). At the time of our study, 
remediation efforts at our site were largely completed and the 
concentrations of elements in this system were below levels 
associated with negative effects on reproduction or survival 
in many avian species (Ohlendorf, 2003; Dauwe et al., 2005; 
Brasso and Cristol, 2008). However, we hypothesized that 
exposure during development to low concentrations of ele-
ments associated with coal fly ash would affect avian physiol-
ogy. In light of the discrepancies amongst study systems 
highlighted above, we focused on the relationship between 
element exposure and the HPA axis and immune responses in 
an effort to contribute to this growing body of literature.

Methods
Study species
Tree swallows are one of the primary model species used to 
address the movement of contaminants from aquatic to terres-
trial ecosystems (Custer, 2011) and are used extensively in field 
studies of physiology, life history and behaviour (Robertson 
et al., 2011). Tree swallows are aerial insectivores and, when 
breeding in riparian areas, feed primarily on emerging aquatic 
insects (Custer et al., 2010; Custer, 2011; Beck et al., 2013). A 
few studies have examined the effects of one element, Hg, on 
the stress and immune responses of tree swallows. Some of 
these studies have detected reduced basal corticosterone con-
centrations with greater Hg exposure (Franceschini et al., 2009) 
and others increased basal but reduced stress-induced corticos-
terone concentrations with greater Hg exposure (Wada et al., 
2009). The cell-mediated immune response was negatively 
affected by exposure to Hg, but Hg exposure did not affect the 
humoral immune response (Hawley et al., 2009). Although 
these studies demonstrated that Hg exposure related to aspects 
of tree swallow physiology, no studies have examined the 
effects of many of the elements found in fly ash on the immune 
or stress responses of tree swallows.

Study site
In December 2008, a coal fly ash impoundment at the 
Tennessee Valley Authority fossil plant in Kingston, TN, USA 
(35.8722°N, 84.5250°W) ruptured, releasing 4.1 million m3 
of coal fly ash slurry into the Emory River, which then flowed 
into the Clinch and Tennessee Rivers (TVA, 2009). In the 
2.5 years following the spill, most of the coal fly ash was 

removed from the river system but ~400 000 m3 remained at 
the time of our study (TVA, 2011a).

We studied tree swallows along an element contamination 
gradient and at several reference colonies in Roane and 
Loudon Counties, TN, USA, from May to July 2011 
and 2012 (Fig. 1). We placed nest boxes at the spill site (SS) 

3

Figure 1:  Tree swallow colonies located near Kingston, TN, USA. The 
study area consisted of two highly impacted colonies located on the 
Emory River. One was located at the site of the spill (spill site, SS, 
n = 94) and the second at the confluence of the Clinch and Emory 
River (downstream 1, D1, n = 31) 4 km downstream from the spill. Two 
moderately impacted colonies were located on the Clinch River at 
downstream 2 (D2, n = 31) and downstream 3 (D3, n = 43) and were 
3.0 and 7.0 km, respectively, downstream from the confluence with the 
Clinch River. A low-impacted colony was located downstream on the 
Tennessee River (D4, n = 51) 2.5 km from the confluence with the 
Clinch and Tennessee Rivers. We used three reference colonies; two 
were located near Lenoir City, TN, USA 30.5 km east of Kingston. 
Reference 1 (R1, n = 46) was located at Ft Loudoun Dam on the 
Tennessee River and reference 2 (R2, n = 53) at Tellico Dam on the Little 
Tennessee River. Reference 3 was located on Long Island (R3, n = 53) on 
the Tennessee River 5.5 km upstream from the confluence with the 
Clinch River. We also placed boxes at Melton Hill Dam (MD, n = 68) on 
the Clinch River, which served a role analogous to a positive control. The 
sites MD, R1 and R2 are not pictured here. n refers to the number of nest 
boxes located at each colony. River kilometres are given in each river.
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and at four colonies located downstream from the spill site 
(hereafter ‘downstream’, D1–D4). Colony D1 was located 
~3.5 km by river from the spill site, while D4 was located 
~14 km by river from the spill site. We had three reference 
colonies; two located ~30.5 km east of Kingston at Ft 
Loudoun Dam (Reference 1) and at Tellico Dam (Reference 2), 
while Reference 3 (R3) was located on the Tennessee River 
~6 km by river upstream from the confluence with the Clinch 
River, at Long Island. We also placed boxes at Melton Hill 
Dam (MD) on the Clinch River, which served a role analo-
gous to a positive control because preliminary data gathered 
prior to this study indicated that tree swallows are exposed to 
ash-related contaminants such as Se at this colony (ARCADIS, 
2011). The source(s) of this contamination is unclear, but 
could include the Bull Run Fossil Plant (Stantec, 2009; TVA, 
2011b), a former coal ash storage pond associated with the 
Y-12 Security Complex (Cook et al., 1999), or other non-
point source pollution (USDA, 2009). We grouped these col-
onies into four types, the spill site, all downstream colonies 
(D1–D4), all reference colonies (R1–R3) and Melton Hill 
(MD), based on how they were impacted by the fly ash spill. 
By sampling nestlings from these colonies, we were able to 
examine the physiological responses of nestlings across a 
range of low to moderately elevated element concentrations.

We placed clean nest boxes in each area when tree swal-
lows were arriving at the breeding grounds and prospecting 
for nest sites. All of the colonies were established at least 
1 year prior to this study except for D1, which we established 
in 2011. Nest boxes were 25 cm × 20 cm × 41 cm with a 
2.5 cm entrance hole and were mounted 1.5 m above the 
ground on metal conduit. All entrances were oriented toward 
the water, and boxes were located within 70 m of the shore to 
facilitate foraging on emerging aquatic insects. We spaced 
nest boxes 15 m apart when in a single row, or 20 m apart 
with a staggered alignment of two or more rows. We checked 
nest boxes every 4 days, beginning in late March, for signs of 
nesting activity and to obtain basic reproductive data. When 
nestlings were 13 days old, we banded them and obtained 
blood samples for the corticosterone assay, immune challenge 
or element analysis (see below). For each nestling, we mea-
sured the length of the left and right tarsus (each tarsus was 
measured twice) and body mass.

Response to handling stress
In 2011, we examined the effect of element exposure on the 
stress response of 13-day-old nestlings by subjecting them to 
a standardized handling stress protocol (after Wingfield and 
Romero, 2001). We obtained a blood sample (~60 µl) from 
up to half of the nestlings in a brood within 3 min of disturb-
ing the box. These nestlings were then held alone in a cloth 
bag for 30 min, after which a second blood sample was 
obtained. Samples were stored in a cooler containing ice 
blocks before being centrifuged for 5 min at 9783 g, and the 
plasma fraction was removed and stored at −20°C in the 
field-house and stored long-term at −80°C.

In the autumn of 2011, we randomly selected plasma from 
one nestling from each nest that we subjected to the handling 
stress protocol and quantified basal and induced corticoste-
rone concentrations in 125 nestlings across all colonies. By 
using a single sample per nest, we avoided issues with 
 pseudoreplication. We used Enzo Life Sciences enzyme immu-
noassay kits (catalogue no. 901-097) using a procedure pre-
viously validated for tree swallows by Wada et al. (2009). We 
haphazardly distributed samples from different colonies 
equally across 10 96-well plates. We diluted 12 µl of plasma 
with an equal volume of 3% steroid displacement buffer and 
then diluted samples 1:20 with assay buffer. On each plate, a 
standard curve that ranged from 15.6 to 2000 pg/ml was run 
in triplicate. A 500 pg/ml corticosterone standard was also 
run in triplicate on each plate, and each plasma sample was 
run in duplicate. The assay had a detection limit of 1.1 ng/ml, 
and any samples (n = 49) that fell below this were assigned 
half of the detection limit for their corticosterone concentra-
tion. Samples that fell below the detection limit were equally 
distributed among Melton Hill, the spill site, downstream 
and reference colonies (χ2 = 3.04, d.f. = 3, P = 0.385) and 
assays (χ2 = 8.55, d.f. = 7, P = 0.287). Three nestlings had 
induced corticosterone concentrations that were below the 
detection limit, and we ran statistical tests including and 
excluding these samples. We calculated intra-assay variation 
as the average coefficient of variation between duplicate sam-
ples on each plate and inter-assay variation as the coefficient 
of variation among the standards on every plate. Intra-assay 
variation was 11.2% and inter-assay variation 13.3%.

Immune response
We examined the effects of elements on aspects of the immune 
response in nestling tree swallows in June and July 2012. We 
randomly selected a single nestling from each nest to avoid 
issues with pseudoreplication. We quantified the response of 
37 13- to 14-day-old tree swallow nestlings to phytohaemag-
glutinin (PHA; Sigma Aldrich, St Louis, MO, USA) by inject-
ing the patagium (wing web) of nestlings with 0.15 mg of 
PHA dissolved in 30 µl of phosphate-buffered saline (PBS; 
after Smits et al., 1999). The injection of PHA leads to a 
localized swelling due to the influx and proliferation of 
T cells and leukocytes at the injection site (Martin et al., 
2006) and a build-up of free radicals that are produced dur-
ing phagocytosis by components of the innate immune sys-
tem (Peretz, 1989). Feathers were first cleared from the wing 
web, and the area was sterilized using 70% ethanol. One 
individual held the nestling with its right wing extended in a 
standardized position, while a second individual (J.J.H.) 
made all measurements and performed the injections. Prior 
to and 24 h following injection, the thickness of the wing 
web was quantified to the nearest 0.01 mm using a microm-
eter. To avoid bias, the micrometer dial was not visible to the 
measurer while making the measurement. We made five  pre- 
and five post-injection measurements at the injection point, 
discarded the lowest and highest values in each set and used 
the remaining three values to produce average pre- and 
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 post-injection thicknesses. We divided the difference between 
the post- and pre-injection measurements by the pre-injection 
measurement and multiplied this value by 100 to calculate 
the percentage increase in swelling caused by the injection 
and used this as our measure of the cell-mediated immune 
response.

We examined innate immunity in nestlings by evaluating 
the bactericidal capacity of plasma (Liebl and Martin, 2009). 
Blood samples were obtained from 96 nestlings, one from 
each nest, 13 days post-hatch. The area around the puncture 
site was cleansed with 70% ethanol prior to blood collection 
from the brachial vein. We collected 120 µl of blood in hepa-
rinized capillary tubes; 60 µl was reserved for element analy-
sis and the other 60 µl used to assess bactericidal capacity. 
Samples were stored in coolers with ice packs in the field 
(≤4 h) and were refrigerated prior to being centrifuged (≤2 h) 
at 9783 g for 5 min for the bactericidal assay. The plasma 
fraction was placed in a sterile 0.5 ml tube and refrigerated 
until all samples gathered that day were centrifuged. All sam-
ples were run on the day of collection in order to minimize 
degradation. The majority of samples were run in triplicate 
and occasionally duplicate (n = 2) by diluting 3.5 µl of plasma 
with 31.5 µl of sterile PBS (1:10 dilution). We added 12.5 µl 
of 105 bacteria/ml Escherichia coli solution (ATCC 8739, 
Epower microorganisms; Microbiologics®, St Cloud, MN, 
USA) to each tube and vortexed each sample. Samples were 
incubated at 37°C for 30 min, then 250 µl of tryptic soy 
broth (TSB; Sigma Aldrich ) was added to each tube, and 
samples were incubated for an additional 12 h at 37°C. 
Positive controls were prepared in triplicate by adding 12.5 µl 
of 105 bacteria/ml E. coli solution to 250 µl of TSB, and we 
prepared duplicate blanks by combining 50 µl of PBS with 
250 µl of TSB. We prepared an additional control in dupli-
cate that contained 3.5 µl of plasma, 250 µl of TSB and 50 µl 
of PBS to check that bacteria were not introduced during 
bleeding or sample processing.

Following the 12 h incubation, samples were vortexed, 
and a Nanodrop Spectrophotometer (ND-2000; Thermo 
Scientific, Pittsburgh, PA, USA) was used to measure the 
absorbance of each sample at an optical density of 300 nm 
(Liebl and Martin, 2009). The absorbance of each sample 
and the positive controls were each averaged and used to cal-
culate the proportion of bacteria killed as one minus (average 
sample absorbance/average positive control absorbance). 
The Nanodrop arm was cleansed between each sample with 
70% ethanol, and the entire work area was cleansed with 
ethanol before and after each work day.

Analyses of elements
Blood samples from nestlings were shipped overnight on dry 
ice to the Trace Element Analysis Core at Dartmouth College 
(Hanover, NH, USA). Concentrations of As, Ba, Cd, Cr, Cu, 
Fe, Mn, Hg, Se, Sr, Tl, V and Zn present in blood were quan-
tified for each sample using inductively coupled mass spec-
trometry following EPA method 6020A (EPA, 2008). Samples 
were digested using an open vessel acid digestion with 0.5 ml 

of 9:1 HNO3:HCl (Optima, Fisher Scientific, St Louis, MO, 
USA) using microwave heating at 105°C for 45 min. After 
cooling, 0.1 ml H2O2 was added to the samples and they 
were taken through a second heating step (adpated from 
EPA, 1996). The samples were then diluted to 10 ml with 
deionized water. Digested samples were analysed for element 
concentrations by collision cell inductively coupled mass 
spectrometry (7700x; Agilent, Santa Clara, CA, USA). 
Concentrations of As, Ba, Cd, Cr, Cu, Fe, Mn, Sr, Tl, V and 
Zn (He collision mode), Se (reaction mode) and Hg (normal 
mode) were quantified in each sample. Digestion quality con-
trol measures included digestion blanks, fortified blanks and 
reference materials at a frequency of one each per 20 sam-
ples. There was insufficient blood to allow for digestion of 
duplicates or spikes. Analytical sample duplicates and spikes 
were performed at a frequency of one each per 20 samples. 
Additional quality control consisted of reporting limit checks, 
interference checks and initial and continuing calibration 
checks and blanks.

Arsenic, Cd, Cr, Tl and V concentrations were below 
detection limits (BDL) in over half of the nestling blood sam-
ples from all colonies in both years and were not considered 
further (Table 1). In 2011, Mn concentrations were BDL and 
in 2012, Hg concentrations were BDL in over half of the 
samples from each colony and were excluded from analyses 
in those years. The average relative percentage difference for 
eight elements over five analysis duplicates was 12 ± 2%. The 
average percentage recovery for 13 elements over five analy-
sis spiked samples was 97 ± 21%. The average percentage 
recovery for As, Cd, Cu, Fe, Mn, Hg, Se, Sr and Zn was 
100 ± 13% for five separate digestions of the standard refer-
ence material NIST 2976. Digestion blanks were less than 
reporting limits and fortified spike recoveries were generally 
90–110% throughout the digestion batches. Other elements 
were not certified in the NIST standard.

Statistical analysis
We used Kolmogorov–Smirnov tests and normality plots to 
determine whether variables met the assumptions of paramet-
ric tests. Element concentrations and basal and induced corti-
costerone concentrations were not normally distributed and 
were log transformed prior to analysis, which successfully 
normalized the data. We first compared element concentra-
tions among colony types (reference, spill site, downstream 
and Melton Hill) using a MANOVA followed by univariate 
ANOVAs and Tukey’s tests to determine which elements were 
significantly elevated in the system due to the fly ash spill. 
Only elements that were found at the spill site at significantly 
higher concentrations than all reference colonies were 
included in the analysis that examined the effects of element 
exposure on the stress and immune responses of nestlings. 
Given that Hg concentrations were BDL in 2012 and Mn con-
centrations were BDL in 2011, we made these comparisons 
separately for each year. We calculated body condition for 
nestlings as the residuals of a regression of mass on tarsus 
length (r2 = 0.243, d.f. = 124, P < 0.001). While the use of 
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residuals as a measure of body condition is controversial 
(Green, 2001), studies have shown that residuals do correlate 
well with lipid reserves (Ardia, 2005; Schulte-Hostedde et al., 
2005) and other studies have shown that residual body mass 
is related to the immune and the stress responses in avian spe-
cies (Pollock and Machin, 2009; Palacios et al., 2012).

We used linear regressions and backward elimination of 
non-significant terms to examine the effects of clutch initia-
tion date, element concentrations, body condition and 
two-way interactions between condition and element con-
centrations on the immune and stress responses of nestlings. 
We eliminated non-significant interaction terms first, fol-
lowed by main effects that were not significantly related to 
physiology. We allowed terms to remain in the model as long 
as P ≤ 0.10, but considered their contribution to be statisti-
cally significant only when P ≤ 0.05. For the stress response, 
we performed separate regressions with basal and induced 
corticosterone as the dependent variables because these two 
parameters represent distinct physiological responses that 
engage different receptor types (Kloet, 1991). To examine the 
immune responses, we used the percentage of bacteria killed 
and wing web swelling as dependent variables. Given that 
much of the variance in element concentrations, particularly 
for Se, was attributable to variation at the spill site, we ran an 

additional iteration of any statistically significant model that 
focused only on samples collected at this colony. Given that 
element concentrations and colony type were confounded in 
the analysis, we did not include colony type in the regression 
models. Rather, we also compared corticosterone concentra-
tions and immune responses among colony types using an 
ANCOVA, with clutch initiation date included as a covariate. 
All statistical tests were two-tailed, with α = 0.05. All statisti-
cal analyses were performed using PASW 18 (SPSS, 2009).

Results
Concentrations of elements among colonies
We first compared concentrations of elements among the 
four colony types, i.e. reference, the spill site, downstream 
and Melton Hill. In 2011, we found that concentrations of 
Ba and Sr did not differ significantly among colony types 
(Table 1; all P ≥ 0.10). However, we found that Cu, Fe, Hg, 
Se and Zn concentrations differed significantly among colo-
nies, and post hoc tests indicated that the spill site had greater 
concentrations than the reference colonies for all of these ele-
ments (P ≤ 0.001) except for Fe (P = 0.47). Given that only 
Cu, Hg, Se and Zn were significantly elevated at the spill site 
in comparison to reference colonies, we focused on the effect 
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Table 1:  Mean values and standard errors for blood element concentrations (in micrograms per gram wet mass) in nestling tree swallows among 
colonies in 2011 and 2012

Element Reference Melton Hill Spill site Downstream F P value Average 
detection limit

Ba 2011 0.74 ± 0.07 0.94 ± 0.09 0.94 ± 0.08 0.79 ± 0.05 2.15 0.10 0.049

     2012 0.90 ± 0.08 0.61 ± 0.09 0.65 ± 0.08 0.69 ± 0.07 0.98 0.41 0.015

Cu 2011 0.28 ± 0.01 0.31 ± 0.02 0.35 ± 0.01 0.29 ± 0.01 6.20 0.001 0.080

     2012 0.42 ± 0.07 0.32 ± 0.07 0.29 ± 0.07 0.39 ± 0.05 2.10 0.11 0.044

Fe 2011 367.7 ± 11.9 380.2 ± 14.6 393.5 ± 13.3 349.0 ± 9.1 2.99 0.03 8.22

     2012 481.3 ± 34.7 405.2 ± 38.3 353.4 ± 33.9 379.7 ± 28.3 2.69 0.05 1.47

Mn 2011 BDL BDL BDL BDL NA NA 0.068

     2012 0.065 ± 0.007 0.056 ± 0.008 0.040 ± 0.007 0.046 ± 0.006 3.00 0.04 0.015

Hg 2011 0.013 ± 0.003 0.008 ± 0.004 0.014 ± 0.003 0.010 ± 0.002 5.69 0.001 0.029

     2012 BDL BDL BDL BDL NA NA 0.029

Se 2011 0.85 ± 0.11 2.65 ± 0.14 1.79 ± 0.13 0.99 ± 0.09 29.45 <0.001 0.312

     2012 0.98 ± 0.11 0.88 ± 0.12 1.74 ± 0.11 1.05 ± 0.09 14.11 <0.001 0.012

Sr 2011 0.094 ± 0.020 0.071 ± 0.024 0.096 ± 0.022 0.116 ± 0.015 2.06 0.11 0.020

     2012 0.069 ± 0.007 0.049 ± 0.007 0.068 ± 0.007 0.051 ± 0.005 2.75 0.05 0.037

Zn 2011 6.21 ± 0.20 5.68 ± 0.24 6.64 ± 0.22 5.54 ± 0.15 6.26 0.001 2.17

     2012 8.34 ± 0.61 6.11 ± 0.68 5.73 ± 0.60 6.63 ± 0.50 5.73 0.001 1.47

Concentrations of several elements were below the detection limit (2011 detection limit/2012 detection limit) in both years and were not considered further, as 
follows: As (0.009/0.006), Cd (0.009/0.007), Cr (0.098/0.088), Tl (0.009/0.001) and V (0.016/0.015). Number of nests sampled at each colony, 2011: reference = 30, 
Melton Hill Dam = 20, spill site = 24 and downstream = 51; and 2012: reference = 22, Melton Hill Dam = 18, spill site = 23, and downstream = 33 (2011 d.f. = 3, 121; 
2012 d.f. = 3, 92). Abbreviations: BDL, below detection limit; and NA, not assessed.
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of these elements on the basal and induced plasma corticoste-
rone concentrations of nestlings. Copper, Se and Zn concen-
trations were not significantly correlated with each other (all 
r ≤ 0.11, all P ≥ 0.23), but Hg concentrations correlated pos-
itively with Cu (r = 0.27, P = 0.002) and were almost signifi-
cantly correlated with Se concentrations (r = 0.16, P = 0.07). 
In order to reduce the number of tests performed while 
avoiding issues with collinearity, we performed two separate 
backward elimination regressions with different combina-
tions of the elements, one that included Cu, Se and Zn and a 
second that used only Hg.

In 2012, we found that concentrations of Ba and Cu did 
not differ significantly among colony types (Table 1; all 
P ≥ 0.06). Concentrations of Fe, Mn, Sr and Zn differed sig-
nificantly among colony types, but not in ways that indicated 
an association with the fly ash spill. Post hoc tests indicated 
that concentrations of Fe, Mn, Sr and Zn were significantly 
greater at reference colonies than those at the spill site (all 
P ≤ 0.05). Only concentrations of Se remained significantly 
elevated at the spill site in comparison to reference colonies 
(P < 0.001). Thus, all of the immune challenge analyses 
focused on nestling blood Se concentrations.

Stress response
In 2011, we examined the effect of element exposure on the 
stress response of nestling tree swallows. Basal corticosterone 
concentrations averaged 2.7 ± 0.24 ng/ml (range 0.57–17.4 ng/
ml) and induced corticosterone concentrations averaged 
11.8 ± 0.87 ng/ml (range 0.57–62.1 ng/ml) in all of the colo-
nies combined. Basal corticosterone concentrations differed 
significantly among colony types (Table 2; F3,120 = 3.6, 
P = 0.02), and Tukey’s post hoc tests indicated that basal 
corticosterone concentrations were significantly greater at 
downstream colonies than at reference colonies. Induced cor-
ticosterone concentrations also differed significantly among 
colony types (Table 2; F3,117 = 3.7, P = 0.01), and this result 
did not change when the three individuals with induced cor-
ticosterone concentrations below the assay detection limit 
were included in the analysis (F3,120 = 4.7, P = 0.004). Induced 

corticosterone concentrations were significantly lower at 
downstream colonies than at reference colonies or at the spill 
site (both P ≤ 0.04). Element concentrations and their inter-
action with condition were unrelated to basal corticosterone 
concentrations (Table 3; full model with Cu, Se and Zn, 
r2 = −0.07, d.f. = 116, P = 0.37; full model with Hg, 
r2 = −0.06, d.f. = 120, P = 0.13). The only term that remained 
in the final version of these models was nestling condition, 
which had a very weak but statistically significant negative 
relationship with basal corticosterone concentrations (final 
models, r2 = −0.03, d.f. = 123, P = 0.05). Likewise, induced 
corticosterone concentrations were unrelated to element 
exposure and the interactions between condition and element 
exposure (Table 3; full model with Cu, Se and Zn, r2 = 0.09, 
d.f. = 113, P = 0.19; full model with Hg, r2 = −0.07, 
d.f. = 117, P = 0.06), and this did not change if the three nest-
lings with induced corticosterone concentrations below the 
assay detection limit were included in the analysis for the 
model including Cu, Se and Zn (r2 = 0.10, d.f. = 116, 
P = 0.14). While the full model including Hg was statistically 
significant when these three individuals were included 
(r2 = −0.09, d.f. = 120, P = 0.03), this was caused by an asso-
ciation between induced corticosterone concentrations and 
measurement date rather than Hg exposure (Table 3). For 
both groups of elements, clutch initiation date remained in 
the final models and had a weak, negative relationship with 
induced corticosterone concentrations (Table 3; final models, 
r2 = −0.05, d.f. = 123, P = 0.01), and including or excluding 
the individuals with induced corticosterone below the assay 
detection limit did not influence this relationship.

Immune response
In 2012, we evaluated the effects of Se exposure on the cell-
mediated and innate immune responses of nestling tree swal-
lows. Among all of the colonies, the average response 
(percentage increase in swelling) to PHA injection was 
73 ± 6% (range 17–160%), and we found no significant dif-
ferences among colony types in the PHA-induced swelling 
(Table 2). The cell-mediated immune response of nestlings 
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Table 2:  Mean values and standard errors for stress and immune responses in nestling tree swallows among colonies

Response Reference Melton Hill Spill site Downstream F P value

Basal corticosterone (ng/ml) 1.80 ± 0.47 2.25 ± 0.58 1.99 ± 0.52 3.69 ± 0.36 3.6 0.02

Induced corticosterone (ng/ml) 16.12 ±1.7 9.64 ± 2.1 13.98 ± 1.9 9.10 ± 1.3 4.7 0.004

Corticosterone samples (n) 30 20 24 51

PHA (%) 58.3 ± 15.5 78.9 ± 12.2 75.8 ± 9.6 72.5 ± 10.4 0.41 0.75

PHA samples (n) 5 8 13 11

BKA (%) 17.2 ± 2.5 18.4 ± 2.7 17.3 ± 2.4 20.6 ± 2.0 0.55 0.65

BKA samples (n) 22 18 23 33

The stress response was quantified in 2011, while the immune responses were quantified in 2012. Least-squares means are given for basal and induced corticosterone 
concentrations because Julian clutch initiation date had a significant influence on both the basal and induced corticosterone concentrations. Basal and induced 
corticosterone, d.f. = 3, 120; phytohaemagglutinin (PHA), d.f. = 3, 33; and bactericidal killing assay (BKA), d.f. = 3, 92. n refers to the number of nests sampled at each colony.
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was not related to clutch initiation date, body condition, Se 
concentrations or any of the interaction terms (Table 4; full 
model r2 = −0.06, d.f. = 32, P = 0.75; final model r2 = −0.02, 
d.f. = 35, P = 0.45). The mean bactericidal capacity of nest-
ling plasma was 18.7 ± 1.17% (range 10–49%), and we 
found no differences among colonies in bactericidal capacity 
(Table 2; P = 0.65). The bactericidal capacity of nestling 
plasma was not influenced by clutch initiation date, residual 
body mass or the interaction between Se exposure and condi-
tion, but was positively related to Se exposure (Table 4; full 
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Table 3:  Full and reduced model results from multiple regressions 
examining the effects of element exposure on the stress responses 
of nestling tree swallows

Term β P value

Basal corticosterone full model

    Intercept 0.864 0.12

    Cu −0.263 0.58

    Se −0.034 0.83

    Zn −0.345 0.40

    Condition −0.026 0.11

    Clutch initiation date −0.003 0.14

    Cu × condition 0.085 0.53

    Se × condition −0.003 0.95

    Zn × condition 0.077 0.62

Basal corticosterone full model Hg

    Intercept 0.533 0.28

    Hg −0.095 0.56

    Condition −0.029 0.07

    Clutch initiation date −0.003 0.14

    Hg × condition −0.024 0.74

Basal corticosterone final model both

    Intercept 0.191 <0.001

    Condition −0.032 0.04

Induced corticosterone full model

    Intercept 1.788 <0.001

    Cu −0.184 0.63

    Se 0.121 0.33

    Zn −0.327 0.33

    Condition −0.003 0.85

    Clutch initiation date −0.004 0.03

    Cu × condition 0.171 0.12

    Se × condition −0.021 0.58

    Zn × condition −0.075 0.56

Induced corticosterone full model Hg

    Intercept 1.630 <0.001

    Hg −0.041 0.75

    Condition −0.001 0.94

    Clutch initiation date −0.005 0.01

    Hg × condition 0.098 0.10

Induced corticosterone final model both

    Intercept 1.700 <0.001

    Clutch initiation date −0.005 0.01

From the full model, we used backward elimination, beginning with interaction 
terms, to remove terms that did not contribute significantly to the model fit until 
only statistically significant terms remained. Basal and induced corticosterone 
models converged on the same final models (indicated by ‘both’ in the table) 
that included only nestling condition or clutch initiation date, respectively. 
For the analysis, induced corticosterone models exclude the three individuals 
with induced corticosterone concentrations below the assay detection limit; 
however, including these individuals produced nearly identical results.

Table 4:  Full and reduced model results from multiple regressions 
examining the effects of selenium exposure on the immune 
responses of nestling tree swallows

Term β P value

PHA full model

    Intercept −1.267 0.84

    Se −0.067 0.84

    Condition −0.017 0.56

    Clutch initiation date 0.011 0.75

    Se × condition 0.149 0.28

PHA final model

    Intercept 0.750 <0.001

    Se −0.220 0.45

BKA full model

    Intercept 0.038 0.84

    Se 0.050 0.01

    Condition 0.006 0.18

    Clutch initiation date 0.001 0.62

    Se × condition −0.005 0.53

BKA final model

    Intercept 0.128 <0.001

    Se 0.050 0.01

SS BKA full model

    Intercept 0.739 0.25

    Se 0.430 0.02

    Condition −0.020 0.19

    Clutch initiation date −0.004 0.28

    Se × condition −0.092 0.35

SS BKA final model

    Intercept 0.062 0.12

    Se 0.529 0.001

From the full model, we used backward elimination, beginning with 
interaction terms, to remove terms that did not contribute significantly 
to model fit. Abbreviations: BKA, bactericidal killing assay; PHA, 
phytohaemagglutinin; SS, spill site.
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model r2 = 0.10, d.f. = 91, P = 0.05). Selenium concentrations 
remained in the final model and indicated a weak, but statis-
tically significant positive relationship between blood Se con-
centrations and the bactericidal capacity of plasma (Table 4; 
final model, r2 = 0.07, d.f. = 95, P = 0.01). We ran this model 
again using data from the spill site alone and found a strong 
positive relationship between bactericidal capacity and Se 
concentrations (Fig. 2; final model, r2 = 0.40, d.f. = 21, 
P = 0.001). Our assay of cell-mediated immune response was 
unrelated to bactericidal capacity (P = 0.24).

Discussion
We examined the effects of exposure to elements from a 
recently remediated coal fly ash spill on the stress and immune 
responses of nestling tree swallows. We found that nestlings 
were exposed to elevated concentrations of some elements, 
particularly Se, at the spill site. However, we found no evi-
dence of adverse effects on nestling physiology associated 
with the remediated fly ash spill. Element exposure was not 
related to the stress response of nestling tree swallows and 
was unrelated to a measure of the cell-mediated immune 
response. Only bactericidal capacity was affected by element 
exposure; greater exposure to Se was weakly associated with 
enhanced bactericidal capacity among all of the colonies, but 
strongly associated with Se exposure at the spill site. Overall, 
we suggest that remediation efforts and natural processes 
(e.g. offsite transport and dilution) in the years following the 
spill have left only modest concentrations of elements in the 
system and these low concentrations do not adversely affect 
the immune and stress physiology of swallows.

In 2011, we found that nestlings at the spill site were 
exposed to elevated concentrations of Cu, Hg, Se and Zn in 
comparison to nestlings in reference colonies, while in 2012, 
nestlings at the spill site were exposed to elevated Se only. 
Selenium is the primary driver of ecological risk in systems 
polluted by fly ash, and we found that even 4 years after the 
spill and massive remediation efforts, nestlings at the spill site 
were exposed to concentrations of Se elevated above those of 
reference colonies. However, most blood Se concentrations at 
the spill site were below concentrations typically associated 
with reduced survival or condition in avian species (Ohlendorf 
and Heinz, 2011). Blood Se concentration at the spill site 
ranged between 1.08 and 2.83 µg/g wet mass in 2011 and 
between 0.78 and 3.36 µg/g wet mass in 2012. Blood Se con-
centrations above 1.0 µg/g wet mass are considered a thresh-
old level for concern (reviewed by Ohlendorf and Heinz, 
2011), but many studies detect effects on adult survival or 
body mass only at blood Se concentrations above 5.0 µg/g 
wet mass (Heinz and Fitzgerald, 1993). However, blood Se 
concentrations within a range similar to those found in our 
study have been associated with reduced body mass in cap-
tive American kestrels (Falco sparverius) fed high-Se diets 
(Yamamoto and Santolo, 2000) and with signs of oxidative 
stress in emperor geese (Chen canagica, Franson et al., 2002). 
All of these studies were conducted in laboratory animals 
that were exposed to Se in their diet for a minimum of 
11 weeks (Heinz and Fitzgerald, 1993; Yamamoto and 
Santolo, 2000; Franson et al., 2002). In our study, nestlings 
were exposed to elevated Se levels for only 13 days prior to 
sampling, and this may be why we found no negative physi-
ological effects of these concentrations of Se when other 
researchers have.

Mercury, copper and zinc are other important elements 
found in some sources of fly ash, depending on the parent 
coal composition and combustion procedures used at power 
plants (Rowe et al., 2002; NRC, 2006). In 2011 at the spill 
site, Hg concentrations in swallow blood ranged from 0.004 
to 0.025 µg/g wet mass. These concentrations are one-14th 
of the concentrations that caused physiological effects in a 
study by Wada et al. (2009) at a highly Hg-contaminated site 
in Virginia. Indeed, our highest Hg concentration is compa-
rable to those found in blood samples at the reference colo-
nies, 0.017 µg/g wet mass, in the study by Wada et al. (2009). 
Concentrations of Cu and Zn at the spill site are largely sim-
ilar to concentrations of these elements found in white storks, 
in studies that detected few effects of these elements on phys-
iology (Baos et al., 2006a, b).

Consistent with the low observed exposure to elements 
experienced by swallows in our remediated study system, we 
found no evidence of adverse physiological effects on the 
HPA axis. Basal and stress-induced corticosterone concentra-
tions of swallows in this system were not related to element 
exposure. Indeed, corticosterone concentrations of swallows 
from impacted colonies were similar to the corticosterone 
concentrations found at reference sites in other studies 
(Franceschini et al., 2008, 2009; Wada et al., 2009). We did 
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Figure 2:  The relationship between Se exposure and bactericidal 
capacity in nestling tree swallows at the spill site. Higher Se 
concentrations were strongly associated with greater bactericidal 
capacity at this colony (r2 = 0.40, d.f. = 21, P = 0.001). Analyses were 
performed with log-transformed Se concentration, but we show 
untransformed data for clarity.
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find subtle differences in basal and induced corticosterone 
concentrations among colony types, but not between the spill 
site and reference colonies, indicating these differences are 
not related to the fly ash spill. Downstream colonies had sig-
nificantly higher basal corticosterone concentrations than 
reference colonies, and induced corticosterone concentra-
tions were significantly higher at downstream colonies than 
those at the spill site and reference colonies. It is likely that 
the slight differences in corticosterone concentrations at 
downstream colonies are related to subtle ecological differ-
ences among colonies, such as resource availability, rather 
than contaminant exposure.

Likewise, we found few effects of elements from the fly ash 
spill on the immune response of nestling tree swallows. We 
found no differences among colonies in either the response to 
PHA injection or bactericidal capacity. We expected that 
blood Se concentration would affect the immune response, 
because adequate dietary concentrations of Se are necessary 
for robust innate and acquired immune responses (Maggini 
et al., 2007; Wintergerst et al., 2007). However, we found no 
relationship between the blood Se concentrations and the 
nestling response to PHA injection. Adult common eiders fed 
a high-Se diet had blood Se concentrations >8 µg/g wet mass 
and produced smaller swellings in response to PHA injection 
than control birds (Franson et al., 2007). Thus, higher Se 
concentrations and more prolonged exposure than found in 
our study may influence this aspect of immunity. In contrast, 
we found that the bactericidal capacity of nestling plasma, an 
assay of innate immunity, showed a strong, positive relation-
ship to their blood Se concentration at the spill site, and there 
was a weak association when all colonies were included in 
the analysis. The bacteria-killing capacity of plasma reflects 
several aspects of the innate immune response, including the 
ability of complement enzymes and lysozyme to destroy cell 
walls and lyse cell membranes of bacteria (reviewed by 
Matson et al., 2006). The selenoenzyme thioredoxin reduc-
tase influences the regulation and expression of genes 
involved in the innate and adaptive immune responses 
(reviewed by Maggini et al., 2007). It is possible that expo-
sure to slightly elevated concentrations of Se enhanced the 
expression of genes associated with innate immunity and 
enhanced bactericidal capacity. In fish fed supplemental Se, 
lysozyme activity is enhanced (Lin and Shiau, 2007), and this 
may have contributed to the enhancement of bactericidal 
capacity that we detected.

Overall, our results indicated that nestling tree swallows 
near the spill site were exposed to modest increases in element 
concentrations from a recently remediated fly ash spill. 
Exposure to low element concentrations was largely unrelated 
to several aspects of physiology in nestling tree swallows. It is 
currently unknown whether exposure to elements during 
development has long-term effects on physiology in adult-
hood or how chronic exposure to low element concentration 
may be related to physiology. Future studies should address 
the long-term effects of element exposure on physiology, par-
ticularly aspects of physiology that could ultimately affect 

recruitment and survival of young or future reproductive suc-
cess. Additionally, concentrations of similar combinations of 
elements would be much higher in active fly ash settling basins 
(Bryan et al., 2012), potentially putting swallows and other 
taxa attracted to these sites at greater risk of exposure and 
physiological effects. In the near future, concentrations of Hg 
and other heavy metals in fly ash are expected to increase as 
new clean air regulations reduce air emissions by coal-burning 
power plants and increase the concentration of these elements 
in the solid waste stream (USEPA, 2012). Thus, the hazards 
posed by fly ash are projected to increase in the future, war-
ranting disposal procedures that minimize its potential to con-
taminate ground and surface water in order to prevent 
exposure and adverse effects in wildlife.
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