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Sex-Specific Parental Effects on Offspring Lipid Levels
Irene M. Predazzi, PhD;* Rafal S. Sobota, PhD;* Serena Sanna, MS;* William S. Bush, PhD; Jacquelaine Bartlett, MS; Jessica S. Lilley, MD;
MacRae F. Linton, MD; David Schlessinger, PhD; Francesco Cucca, MD; Sergio Fazio, MD, PhD; Scott M. Williams, PhD

Background-—Plasma lipid levels are highly heritable traits, but known genetic loci can only explain a small portion of their
heritability.

Methods and Results-—In this study, we analyzed the role of parental levels of total cholesterol (TC), low-density lipoprotein
cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TGs) in explaining the values of the
corresponding traits in adult offspring. We also evaluated the contribution of nongenetic factors that influence lipid traits (age, body
mass index, smoking, medications, and menopause) alone and in combination with variability at the genetic loci known to
associate with TC, LDL-C, HDL-C, and TG levels. We performed comparisons among different sex-specific regression models in 416
families from the Framingham Heart Study and 304 from the SardiNIA cohort. Models including parental lipid levels explain
significantly more of the trait variation than models without these measures, explaining up to �39% of the total trait variation. Of
this variation, the parent-of-origin effect explains as much as �15% and it does so in a sex-specific way. This observation is not
owing to shared environment, given that spouse-pair correlations were negligible (<1.5% explained variation in all cases) and is
distinct from previous genetic and acquired factors that are known to influence serum lipid levels.

Conclusions-—These findings support the concept that unknown genetic and epigenetic contributors are responsible for most of
the heritable component of the plasma lipid phenotype, and that, at present, the clinical utility of knowing age-matched parental
lipid levels in assessing risk of dyslipidemia supersedes individual locus effects. Our results support the clinical utility of knowing
parental lipid levels in assessing future risk of dyslipidemia. ( J Am Heart Assoc. 2015;4:e001951 doi: 10.1161/
JAHA.115.001951)

Key Words: cholesterol • genetics • lipids • risk factors • sex

L ipid levels are highly heritable traits, with estimates of
46% to 77% for total cholesterol (TC), 22% to 48% for

triglycerides (TGs), 34% to 72% for low-density lipoprotein

cholesterol (LDL-C), and 37% to 82% for high-density
lipoprotein cholesterol (HDL-C).1–3 However, despite the
recent improvements in technology and several large-scale
genome-wide association (GWA) studies on this topic, the
majority of the genetic contribution to lipid trait variation is
still unexplained.1,3–11 For example, a meta-analysis of
cohorts including the Framingham Heart Study (FHS) was
only able to explain 10% to 12% of total heritability in lipid
concentrations when combining up to 95 relevant loci.11

Several explanations have been proposed for the missing
heritability of traits, such as lipid levels, including
gene-gene and gene-environment interactions, rare variants
not detected in the large GWA studies, or epigenetic
influences not assessed in traditional genetic studies.10,12,13

Based on previous observations that maternal environment
influences cardiovascular (CV) outcomes in adult off-
spring,14–20 that genetic associations could be sex-specific,3

and that parent-of-origin effects (POE) influence several
traits in animal models,21–26 we hypothesized that (1)
parental lipid traits explain a significant amount of the
offspring lipid variation that is not accounted for by known
genetic variants and (2) the effects of parental lipid traits
are sex-specific.3
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To test our hypotheses, we assessed the parent-offspring
relationship of lipids in trios from 2 large, well-characterized
cohorts: the FHS Offspring cohort and the SardiNIA cohort.
Both studies include subjects of European ancestry and
contain data from multiple generations.

Methods

Study Participants
The FHS is a prospective cohort originally designed to assess
the epidemiology of CV disease (CVD).27,28 Data have been
collected from 3 generations of participants since its incep-
tion in 1948. The original cohort involved 5209 participants,
5124 were enrolled in the second generation starting in 1971,
and 4095 in the third generation starting in 2002.27,28

Our analysis included participants from the second and
third generations of the FHS for whom serum TC, TG, LDL-C
(calculated using the Friedewald equation: LDL-C=TC-HDL�
(TG/5)) and HDL-C were available for both generations.29 To
limit confounding of results by relatedness, we only consid-
ered the oldest offspring for each nuclear family, creating
parent-offspring trios. The final study population consisted of
416 trios, with 228 females and 188 males in the offspring
generation.

The SardiNIA study is a longitudinal study designed to
assess the epidemiology and genetics of aging-associated
conditions.30 The study enrolled 6921 volunteers from a
cluster of 4 towns on the east coast of Sardinia and
represents a collection of large pedigrees, containing data
from up to 5 generations. From each pedigree, we only
considered parents and their oldest offspring from the 2 most
recent generations.

The SardiNIA cohort had 304 families that were included in
the analyses. Because this cohort included several families
with only a single parent enrolled, analyses were performed
on 277 mothers, 151 fathers, 168 daughters, and 136 sons.
This study population included 124 complete parent-offspring
trios.

For both cohorts, families in which any member had a TG
level >400 mg/dL were excluded. Only individuals with at
least 2 of the 4 lipid traits available were included in the
analysis.

The study was approved by the institutional review boards
at Vanderbilt University, Boston University, Dartmouth Col-
lege, the National Institutes of Health, and the local ethical
committee of Lanusei, Sardinia, in Italy. All of the included
FHS and SardiNIA participants provided written informed
consent, including consent to use of their DNA data in genetic
analyses. For both cohorts, false paternity was assessed by
genetics data management groups and the parental informa-

tion was adjusted accordingly before release of data and
therefore not considered in the current study.

Assessment of Risk Factors
Participants of the Framingham cohort are routinely followed
up, permitting access to clinical phenotype data at multiple
time points. We used first patient visit data for the offspring
population, because at the time of the study only 1 visit was
available for this generation.

For the parental population of the FHS, analyses were
performed on values from visit 3 only, given that it had the
largest number of individuals with available lipid data. The
other phenotypes relevant to our study were age, body mass
index (BMI), smoking status, use of lipid-lowering medications
(ever treated vs. never treated), as well as the menopausal
status in females. These phenotypes were used as covariates
for both the offspring and parental populations. For the
offspring population, we used the first adult patient visit,
providing a direct adult to adult comparison.

In SardiNIA, we analyzed the same phenotypes and
covariates from visit 1 in the parental and offspring popula-
tion, given that both provided the largest number of patients
with available lipid data.

Statistical Analysis

POE on offspring lipid traits

We examined the POE on the variation of fasting lipids in the
offspring populations. To identify transmission effects, we
performed a series of nested, sex-stratified linear regression
analyses, modeling lipid traits in offspring. The models were
generated by sequentially changing the variables included;
namely, all offspring covariates and corresponding parental
lipid traits (Figure – Panel A). We report the adjusted R2 values
throughout, which represent the proportion of variation
explained by each model with all variables included in a given
model.

The models assessed, also reported in Figure – Panel A,
were the following:

Model 1: Offspring Lipid Trait
¼ b0 þ b1ðCorresponding Parental Lipid TraitÞ

Model 2: Offspring Lipid Trait
¼ b0 þ b1ðOffspring Covariate1Þ þ . . .

þ bnðOffspring CovariatenÞ

Model 3: Offspring Lipid Trait
¼ b0 þ b1ðOffspring Covariate1Þ þ . . .

þ bnðOffspring CovariatenÞ
þ bnþ1ðCorresponding Parental Lipid TraitÞ
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The summary of all analyses modeling offspring lipid traits,
including the assessment of the effect of parental covariates,
is provided in the Supplemental Materials (Table S1).

To evaluate the performance of each model, we compared
the adjusted R2 values for each lipid trait model using a
likelihood ratio test. Pair-wise model comparisons were
carried out for nested pairs, namely, Model 3 versus Model
1 (effect of offspring covariates) and Model 3 versus Model 2
(effect of parental lipid trait).

Estimating environmental effects

To estimate the effects of shared environment on lipid traits,
we modeled each maternal lipid trait with the corresponding
paternal lipid trait under the assumption that shared environ-
ment would be revealed by large R2 in this regression model
(Model 4).

The following model was used for all parents in the trio
families and then separately stratified by the sex of their
offspring, to mirror the analysis above:

Model 4: Maternal Lipid Trait ¼ b0
þ b1ðCorresponding Paternal Lipid TraitÞ

Additional models for the effects of maternal and paternal
covariates on the adjusted R2 produced by Model 4 are
reported in Table S2.

To assess the role of early environment on lipid profiles, we
compared sibling lipids in families with more than 1 offspring.
Specifically, we determined the variance explained in same
sex versus different sex sibling pairs.

Genetic contribution to POE

To examine whether the effects of parental lipid traits are
explained by genetic variants in offspring, we analyzed the
effects of the 95 previously validated single-nucleotide
variants (SNPs) from Teslovich et al.11 on the corresponding
lipid levels.

To assess the dependence of offspring lipid traits on SNPs
previously associated with each lipid trait, we performed
nested, sex-stratified linear regression models and compared
them to the variance explained only by the corresponding
parental lipid traits (Figure – Panel B).

In the Framingham cohort, genotyping was performed
using the 500K Affymetrix Genechip, and many of the
Teslovich SNPs were not included. We therefore used proxy
variants based on high linkage disequilibrium (LD) in European
populations (CEU and TSI) from phase 3 of the International
HapMap Project.31–33 For each nongenotyped SNP, we chose
a variant on the same chromosome in strong LD (r2>0.75),
having the highest minor allele frequency (list of SNPs used
can be found in Table S3). Only 63 of the 95 SNPs were
available either through direct genotyping or as proxies.

In contrast, in the SardiNIA cohort, genotyping information
was available from 4 different Illumina arrays, one of which,
Cardio-MetaboChip, included the majority of the Teslovich
SNPs (Pistis et al.34). Overall, in the SardiNIA cohort, 92 of
the 95 SNPs reported in Teslovich et al. were available and
analyzed (Table S3). In addition, to make all analyses directly
comparable between the 2 cohorts, we also evaluated the
same subset of 63 SNPs, original and proxies, as in the
Framingham cohort. To further assess the effects of using
proxies, as opposed to the original Teslovich SNPs, in
SardiNIA we also considered models using only the original
63 Teslovich SNPs for which we had either direct genotype
data or proxies available in the Framingham cohort (Table
S3).

We only used the subset of SNPs previously associated
with each lipid trait phenotype (Table S3).

Model 5: Offspring Lipid Trait
¼ b0 þ b1ðTesl. SNP1Þ þ . . .þ bnðTesl. SNPnÞ

Model 1: Offspring Lipid Trait
¼ b0 þ b1ðCorresponding Parental Lipid TraitÞ

Model 6: Offspring Lipid Trait
¼ b0 þ b1ðTesl. SNP1Þ þ . . .þ bnðTesl. SNPnÞ

þ bnþ1ðCorresponding Parental Lipid TraitÞ

Because genotypes were not available for all participants,
the number of observations in Model 1 included in this

A

B

Figure. Flowchart of nested models used to determine parent of
origin effects on offspring lipid traits. Parent of origin effects and
relevant covariates (A) and parent of origin effects combined with
SNPs previously associated with lipid traits (B). SNPs indicate
single-nucleotide polymorphisms.
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comparison differs from the one above (Tables 7 and 8 vs.
Tables 3 and 4, respectively). Analyses adding offspring
covariates and using the other SNP sets for the SardiNIA
cohort were also performed.

Effect sizes and potential redundancy among the influence
of known genes and parental lipid trait measures were
evaluated by comparing the results of likelihood ratio tests of
Model 6 versus Model 1 (effect of offspring SNPs) and Model
6 versus Model 5 (effect of parental lipid trait).

All analyses were conducted using STATA (11.1; StataCorp
LP, College Station, TX) and R software (R Foundation for
Statistical Computing, Vienna, Austria). Two-sided P values
are reported throughout.

Results

Population Characteristics
Summary statistics of lipid traits and covariates for partici-
pants are listed in Tables 1, 2, and S4, S5.

Of note, in the FHS, lipid trait measures from the offspring
generation were ascertained at a younger age (mean 39.0 for
daughters, 39.4 for sons) than those for parents (mean 46.4
for mothers, 48.7 for fathers). Comparisons between gener-
ations show that TC and LDL-C levels were higher in fathers
than sons and higher in mothers than daughters (P<0.001
for all), whereas HDL was higher in sons than fathers
(P<0.001). All comparisons are presented in Tables 1 and
S4. Comparisons within each generation showed that males
have higher TC, TG, and LDL, but lower HDL levels, than
women. The difference between sex was statistically signif-
icant for all traits (P<0.003), except for TC in the parents
(P=0.06).

In the SardiNIA cohort, lipid trait measures from offspring
were ascertained at a younger age (mean 29.3 for daughters,
28.8 for sons) than those for their parents (mean 55.9 for
mothers, 58.4 for fathers) (Table 2). Comparisons between
generations showed that TC, TG, and LDL levels were higher in
fathers than sons and higher in mothers than daughters
(P<0.002 for all). HDL was significantly higher in fathers
compared to sons (P<0.001) (Tables 1 and S5). Similarly,
mothers had higher HDL compared to daughters, although not
significantly. Comparisons within generations in the SardiNIA
cohort showed that TG were higher in fathers than mothers
(P<0.001); HDL was significantly higher in mothers compared
to fathers, as well as daughters compared to sons (P<0.001
for both).

Parent of Origin Effects on Offspring Lipid Traits
In the FHS, models including only parental lipid traits (Model
1) explained between �1% and 5% of offspring variability in 7
trait combinations and more than 5% in 9 others. The highest
proportion of explained variance was �10% for mother-son
HDL (Table 3; Model 1). Maternal lipids explained at least 5%
of the variation in TC, LDL, and HDL of the offspring for both
sex. In general, maternal lipid values provided more informa-
tion regarding offspring values than did paternal values
(Table 3).

For comparison, the variation of offspring lipid traits
explained by all offspring covariates was more than 5% in all
16 models. The highest proportion of variability explained was
�15% for LDL of daughters (Model 2). When both parental
lipid traits and offspring covariates were used in a single
model, the explained variation ranged from �9% (father-son
LDL) to �19% (father-son HDL) (Model 3). Importantly, adding

Table 1. Population Characteristics of the Framingham Heart Study Participants

Lipid Traits and Risk Factors

Generation 2 Generation 3

n Females* n Males* n Females* n Males*

Total cholesterol 416 208.81 (41.06) 416 213.76 (34.47) 228 182.73 (30.46) 188 192.29 (35.46)

Triglycerides 416 91.32 (52.57) 416 124.55 (66.49) 228 89.07 (43.51) 188 121.40 (65.55)

LDL 413 132.43 (38.34) 416 144.23 (66.49) 228 105.19 (29.27) 188 119.43 (32.40)

HDL 413 58.28 (14.15) 416 44.62 (10.39) 228 59.73 (14.38) 188 48.58 (13.02)

Age 416 46.45 (7.48) 416 48.72 (7.67) 228 39.05 (7.45) 188 39.39 (7.56)

BMI 413 24.83 (4.93) 414 27.14 (3.30) 226 25.52 (5.58) 188 27.97 (4.71)

Anticholesterol treatment 416 5 (1.20) 416 7 (1.68) 228 5 (2.19) 188 17 (9.04)

Smoking status 415 96 (23.13) 416 91 (21.88) 228 94 (41.23) 188 61 (32.45)

Menopause 416 159 (38.22) 228 24 (10.53)

BMI indicates body mass index; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
*Mean (SD) for continuous variables, n (% total) for categorical variables.
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parental lipid trait values to a model containing offspring
covariates significantly increased the amount of variation
explained for TC, LDL, and HDL in all parent offspring pairs
(Table 3, P values M3/M2).

The amount of variation explained in TG models for fathers-
daughters was significant, whereas all other TG parent-
offspring pairs were below the significance level. This
indicates that the effects of parental lipid traits and offspring

covariates are significant and independent of one another,
with the exception of TG measures. Parental covariates
explained less of offspring lipid variability than either offspring
covariates or parental lipids as can be seen by comparison of
models 2, 3, S1, and S2 (Table S6).

In SardiNIA, models of offspring lipid traits using only
corresponding parental lipid traits explained between 0.01%
and 5% of in 6 models and more than 5% in 9 others. One

Table 2. Population Characteristics of the SardiNIA Cohort

Lipid Traits and Risk Factors

Generation 2 Generation 3

n Females* n Males* n Females* n Males*

Total cholesterol 277 221.90 (39.40) 151 223.13 (41.56) 168 194.43 (37.83) 136 188.54 (46.68)

Triglycerides 277 85.26 (50.44) 147 105.57 (60.87) 168 71.92 (40.14) 135 82.17 (49.91)

LDL 277 136.51 (34.28) 147 140.76 (34.98) 168 113.41 (29.86) 135 116.55 (37.99)

HDL 277 68.34 (16.05) 151 59.38 (13.23) 168 66.63 (16.29) 136 54.49 (11.83)

Age 277 55.94 (11.41) 151 58.40 (10.71) 168 29.26 (10.41) 136 28.80 (9.67)

BMI 277 27.22 (5.03) 151 27.98 (3.88) 168 22.28 (3.28) 136 24.49 (3.89)

Anticholesterol treatment 277 0 151 1 (0.06) 168 0 136 0

Smoking status 277 29 (10.47) 151 44 (29.14) 168 34 (20.24) 136 51 (37.50)

Menopause 277 175 (63.18) 168 9 (5.36)

BMI indicates body mass index; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
*Mean (SD) for continuous variables, n (% total) for categorical variables.

Table 3. Estimating the Parent of Origin Effects on Lipid Traits in the Framingham Heart Study

Parent-Offspring Pair Modeled Lipid Trait

Adjusted R2 Likelihood Ratio Tests

Model 1 Model 2 Model 3 P Value M3/M1 P Value M3/M2

Mothers daughters TC (n=223) 0.0789 0.1188 0.1469 <0.001 0.004

TG (n=223) 0.022 0.1137 0.1237 <0.001 0.059

LDL (n=222) 0.0808 0.1307 0.1723 <0.001 <0.001

HDL (n=222) 0.0691 0.1183 0.167 <0.001 <0.001

Fathers-daughters TC (n=224) 0.0335 0.1314 0.1472 <0.001 0.024

TG (n=224) 0.0207 0.1163 0.1295 <0.001 0.036

LDL (n=224) 0.0547 0.1469 0.1722 <0.001 0.005

HDL (n=224) 0.0762 0.1147 0.1648 <0.001 <0.001

Mothers-sons TC (n=187) 0.0552 0.0676 0.114 0.004 0.001

TG (n=187) 0.0182 0.1066 0.1175 <0.001 0.068

LDL (n=185) 0.0588 0.0661 0.1247 0.002 <0.001

HDL (n=185) 0.0963 0.1291 0.1808 <0.001 <0.001

Fathers-sons TC (n=188) 0.0172 0.0688 0.0932 <0.001 0.014

TG (n=188) 0.029 0.11 0.1206 <0.001 0.070

LDL (n=188) 0.0098 0.0696 0.0884 <0.001 0.027

HDL (n=188) 0.0784 0.1307 0.1862 <0.001 <0.001

HDL indicates high-density lipoprotein; LDL, low-density lipoprotein; TC, total cholesterol; TG, triglycerides.
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model explained less than 0.01% of the variability (TG for
fathers-daughters). The highest proportion of variability
explained was �15% for mother-son LDL (Table 4; Model 1).
As in the FHS, maternal lipid traits in SardiNIA explained at
least 5% of the corresponding variation for TC, LDL, and HDL
of both sons and daughters and generally performed better
than paternal models.

The variation of offspring lipid traits explained by offspring
covariates alone was between 0.01% and 5% in 4 models and
more than 5% in 12 models (Model 2). The highest proportion
of variability explained was �36% for TC of sons (Model 2).
When both parental lipid traits and offspring covariates were
used in the same model, 1 model explained marginal
variability (<0.01%), 1 model explained between 0.01% and
5%, and 14 models explained more than 5%. The highest
proportion of variability explained was �39% for father-son TC
(Model 3). Adding parental lipid trait values to a model
containing offspring covariates explained TC significantly
better when modeling sons’ levels with fathers’ or mothers’
(Table 4, P values M3/M2), whereas results for daughters
trended in the same direction. With the exception of fathers-
sons, adding parental HDL or LDL values to Model 2
significantly improved all parent-offspring pair models
(Table 4).

Maternal TG levels explained significantly more of daugh-
ters’ TG, but had no effect on the other parent-offspring pairs
(Table 4). As with the Framingham results, parental covariates
generally explained less of the offspring lipid variability than
either offspring covariates or parental lipids, as can be seen
by comparison of models 2, 3, S1, and S2 (Table S7).

Environmental Effects
In the FHS, the variation of maternal lipid traits explained by
the corresponding paternal lipid traits ranged from negligible
(<0.01%) for TG to �1% for TC and LDL (Table 5). In SardiNIA,
the percentage of maternal lipid traits explained by corre-
sponding paternal lipid traits ranged from negligible (<0.01%)
for TG to �1% for TC, LDL, and HDL (Table 6; Supplementary
Results). Both results indicate that shared adult environments
do not significantly impact our findings.

In the SardiNIA cohort, when only parents of daughters
were considered, paternal lipid traits explained up to 2.5% of
variation for HDL. When only parents of sons were consid-
ered, paternal lipid traits explained up to 2.5% of LDL variation
(Table 6). These results indicate that the shared environment
of parents explains very little of lipid trait variation in the
unrelated parent pairs, and suggest that the effects of

Table 4. Estimating the Parent of Origin Effects on Lipid Traits in the SardiNIA Cohort

Parent-Offspring Pair Modeled Lipid Trait

Adjusted R2 Likelihood Ratio Tests

Model 1 Model 2 Model 3 P Value M3/M1 P Value M3/M2

Mothers-daughters TC (n=152) 0.051 0.159 0.171 <0.001 0.071

TG (n=152) 0.045 0.107 0.126 0.002 0.038

LDL (n=152) 0.067 0.129 0.164 <0.001 0.007

HDL (n=152) 0.102 0.053 0.157 0.008 <0.001

Fathers-daughters TC (n=86) 0.020 0.066 0.087 0.035 0.083

TG (n=84) <0.001 0.002 <0.001 0.358 0.866

LDL (n=84) 0.114 0.030 0.193 0.017 <0.001

HDL (n=86) 0.078 0.062 0.121 0.079 0.010

Mothers-sons TC (n=125) 0.145 0.312 0.362 <0.001 0.001

TG (n=125) 0.024 0.188 0.185 <0.001 0.442

LDL (n=125) 0.147 0.308 0.385 <0.001 <0.001

HDL (n=125) 0.056 0.045 0.079 0.107 0.019

Fathers-sons TC (n=65) 0.066 0.361 0.388 <0.001 0.050

TG (n=63) 0.008 0.123 0.130 0.010 0.218

LDL (n=63) 0.007 0.277 0.289 <0.001 0.144

HDL (n=65) 0.037 0.010 0.032 0.414 0.111

The overall numbers of parents used for this analysis are lower than the numbers used in estimating parent of origin effects in Table 2 because, unlike the Framingham Heart Study, the
SardiNIA cohort is comprised of more single-parent families and, consequently, fewer complete trios. HDL indicates high-density lipoprotein; LDL, low-density lipoprotein; TC, total
cholesterol; TG, triglycerides.
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parental lipids on offspring are linked to factors unrelated to
the shared environment.

When only parents of daughters were considered, paternal
lipid traits explained between 0.02% and 3% of maternal TG
and LDL, respectively. When only parents of sons were
considered, paternal lipid traits only explained �0.1% of
maternal HDL variation, with negligible variation explained for
all other lipid traits (Table 5). Using maternal lipid traits to
model corresponding paternal lipid traits, produced similar
results to using paternal lipid traits to model maternal traits
when covariates were included (Tables S8 and S9).

The role of shared early environment was also assessed by
comparing variance explained for each lipid trait values in
siblings of the same to those of the opposite sex. Variance
explained between siblings of the same sex ranged between
5% and 12% for females and between 0.5% and 6% for males,
whereas between offspring of opposite sex the results were
generally smaller (0% to 5%). This supports the conclusion that
the results between parents and offspring are not attributable
to shared environment (Table S10).

Genetic Contribution to the POE
In the FHS, SNPs previously associated with each lipid trait
explained a negligible amount of variability (<0.01%) in 2
models, between 0.01% and 5% in 8 models, and more than
5% in 6 models, the highest being �10% for daughters’ TG
(Table 7; Model 5). In the offspring with available genotype
data (a subset of individuals from Model 1), parental lipid
traits explained between 0.01% and 5% of variability in 8
models and more than 5% in 8 models, the highest being
�10% for sons’ HDL with paternal measures (Table 7; Model
1). Adding parental lipid values to the model containing all
SNPs produced significantly better models in explaining TC,
LDL, and HDL in all parent-offspring pairs, except fathers-
sons, where only the HDL model was significantly improved
(Table 7, P values M6/M5). Conversely, adding all SNPs to
models containing parental lipid values significantly improved
HDL in the mothers-sons model and all models of TGs, with
the exception of the fathers-sons comparison (Table 7, P
values M6/M1).

In SardiNIA, models with the 92 SNPs previously associ-
ated with lipid traits (Table 8) resulted in negligible percent
variance explained (<0.01%) in 8 of the 16 models (Table 8;
Model 5). Four models explained between 0.01% and 5%, and
4 explained more than 5%, with the highest percentage being
�30% for HDL in mother-son pairs (Model 5). In the subset of
offspring with available genotype data, the variation of
offspring measures explained by parental lipid traits only
was negligible for 2 models (sons’ and daughters’ TG with
paternal levels) (Model 1). Parental lipid traits explained
between 0.01% and 5% in 4 models, and greater than 5% in 10
models, the highest being �16% for sons’ TC with maternal
levels (Table 8; Model 1). Adding parental lipid values to the
model containing all SNPs significantly improved the models
for TC, LDL, and HDL in mother-daughter and father-daughter
models, for all lipid traits in mother-son models, and for TC
and HDL in father-son models (Table 8, P values M6/M5).
Adding all SNPs to a model containing parental lipid values
produced significant results for HDL in mother-daughter
models, for TC and HDL in father-daughter models, for HDL in
mother-son models, and for TC, TG, and HDL in father-son
models (Table 8, P values M6/M1). These results were
generally consistent when the alternative SNP sets were used;
namely, the subset of 63 original and proxy SNPs from the
Framingham analysis, and also when all nonproxy 63 SNPs
(Tables S11 through S16).

Discussion
We investigated how parental serum levels of TC, TG, LDL, and
HDL can be used to model lipid traits of the offspring, using
sex-stratified analyses. We also compared the effect of

Table 5. Estimating the Effects of Shared Environment in the
Framingham Heart Study

Modeled
Maternal
Lipid Trait

Adjusted R2 From Modeling With Corresponding Paternal Lipid
Trait

n All n

Parents of
Daughters
Only n

Parents
of Sons
Only

TC 416 0.014 223 0.027 187 <0.001

TG 416 <0.001 223 <0.001 187 <0.001

LDL 413 0.012 222 0.032 185 <0.001

HDL 413 0.005 222 0.004 185 0.001

HDL indicates high-density lipoprotein; LDL, low-density lipoprotein; TC, total cholesterol;
TG, triglycerides.

Table 6. Estimating the Effects of Shared Environment in the
SardiNIA Cohort

Modeled
Maternal Lipid
Trait

Adjusted R2 From Modeling With Corresponding Paternal Lipid
Trait

n All n

Parents of
Daughters
Only n

Parents of
Sons Only

TC 126 0.014 72 0.003 54 0.013

TG 123 <0.001 70 <0.001 53 <0.001

LDL 123 0.010 70 <0.001 53 0.025

HDL 126 0.012 72 0.025 54 <0.001

HDL indicates high-density lipoprotein; LDL, low-density lipoprotein; TC, total cholesterol;
TG, triglycerides.
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Table 7. Comparing Lipid Trait Relevant SNPs to Parent of Origin Effects in the Framingham Heart Study

Parent-Offspring Pair Modeled Lipid Trait

Adjusted R2 Likelihood Ratio Tests

Model 5 Model 1 Model 6 P Value M6/M5 P Value M6/M1

Mothers-daughters TC (n=186) 0.005 0.079 0.089 <0.001 0.237

TG (n=186) 0.102 0.023 0.111 0.091 0.008

LDL (n=185) 0.024 0.091 0.125 <0.001 0.094

HDL (n=184) <0.001 0.095 0.107 <0.001 0.216

Fathers-daughters TC (n=186) 0.005 0.015 0.023 0.033 0.261

TG (n=186) 0.102 0.017 0.105 0.182 0.008

LDL (n=186) 0.025 0.036 0.077 0.001 0.076

HDL (n=185) <0.001 0.101 0.068 <0.001 0.101

Mothers-sons TC (n=153) 0.039 0.064 0.079 0.006 0.199

TG (n=153) 0.079 0.013 0.074 0.607 0.050

LDL (n=152) 0.003 0.068 0.064 0.001 0.404

HDL (n=152) 0.061 0.091 0.166 <0.001 0.025

Fathers-sons TC (n=153) 0.040 0.004 0.040 0.251 0.116

TG (n=153) 0.079 0.020 0.080 0.249 0.052

LDL (n=153) 0.007 0.003 0.019 0.087 0.236

HDL (n=151) 0.064 0.104 0.155 <0.001 0.059

For models 5 and 6, there are 4 original, 25 proxy for TC; 4 original, 17 proxy for TG; 3 original, 15 proxy for LDL; 5 original, 25 proxy for HDL. HDL indicates high-density lipoprotein; LDL,
low-density lipoprotein; SNP, single-nucleotide polymorphism; TC, total cholesterol; TG, triglycerides.

Table 8. Comparing Lipid Trait Relevant SNPs to Parent of Origin Effects in the SardiNIA Cohort

Parent-Offspring Pair Modeled Lipid Trait

Adjusted R2 Likelihood Ratio Tests

Model 5 Model 1 Model 6 P Value M6/M5 P Value M6/M1

Mothers-daughters TC (n=133) 0.037 0.055 0.069 0.015 0.100

TG (n=133) <0.001 0.046 <0.001 0.063 0.740

LDL (n=133) 0.061 0.081 0.102 0.007 0.158

HDL (n=133) 0.041 0.072 0.158 <0.001 0.014

Fathers-daughters TC (n=78) 0.054 0.007 0.153 0.001 0.001

TG (n=76) <0.001 <0.001 <0.001 0.686 0.455

LDL (n=76) <0.001 0.095 0.068 0.008 0.168

HDL (n=78) 0.003 0.077 0.163 <0.001 0.003

Mothers-sons TC (n=109) <0.001 0.169 0.059 <0.001 0.494

TG (n=109) <0.001 0.032 0.022 0.038 0.240

LDL (n=109) <0.001 0.152 0.119 <0.001 0.403

HDL (n=109) 0.304 0.069 0.353 0.002 <0.001

Fathers-sons TC (n=60) <0.001 0.062 <0.001 0.001 0.006

TG (n=59) 0.151 <0.001 0.138 0.253 0.004

LDL (n=59) <0.001 <0.001 <0.001 0.383 0.681

HDL (n=60) 0.009 0.057 0.198 <0.001 <0.001

For models 5 and 6, there are 51 SNPs for TC, 32 SNPs for TG, 37 SNPs for LDL, and 47 SNPs for HDL. HDL indicates high-density lipoprotein; LDL, low-density lipoprotein; SNP, single-
nucleotide polymorphism; TC, total cholesterol; TG, triglycerides.
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parental lipids with that of known and validated genetic
variants in loci previously associated with plasma lipid
levels.11 These analyses were performed in 2 well-character-
ized and large prospective cohorts, the FHS (inclusive of
Offspring and Generation 3 cohorts) and the SardiNIA Study.

The most important finding from our study is that, in
general, parental serum lipid levels explain a higher proportion
of variability in the offspring than do the 95 loci described in
the work by Teslovich et al.11 This effect was not owing to
shared environment and was independent of nongenetic
factors known to modulate lipid levels. These results were
generally consistent between the Framingham and SardiNIA
cohorts (Tables 3 through 8). Given the independence from
other variables and from the currently known genetic loci,
these results suggest the presence of unknown variants or
mechanisms responsible for the missing heritability of lipid
traits12,13 and serve to emphasize the size of the gap in our
knowledge of factors that affect lipid levels. However,
because we do not yet have an understanding of these other
determinants, we argue that parental lipid levels explain those
of adult offspring better than do the validated variants in 95
genes. Thus, knowledge of parental lipid levels provides
information to predict future lipid levels in the offspring and
should be used as a tool to target pediatric lipid testing.

With the exception of Mendelian forms of dyslipidemia,
serum lipids are complex traits influenced by multiple genetic
and nongenetic factors. Therefore, the use of single-gene
variants is of little utility in the prediction of this complex
phenotype. To date, GWA studies have identified risk loci that
have high statistical significance, but low biological effect
sizes, and such markers are not generally practical for
predictive purposes.35–38 As a consequence, genetics-based
predictions using multilocus modeling thus far provide
marginal clinical utility in prevention because they have low
predictive power.35,39 The value of a genetic test depends on
several factors, including the number of genes influencing the
trait, frequency of the associating allele, and strength of
association between genotype and phenotype, making accu-
rate predictions from simple models extremely difficult.35 In
contrast, the results of our study show that family history and
nongenetic covariates better explain lipid levels in adult
offspring than does variation in the loci known to influence
lipids across study populations. Our findings are in agreement
with what has been shown in other complex phenotypes, such
as type II diabetes, where risk scores not including genetic
variant data were virtually identical to those incorporating
validated genes for type II diabetes risk.37,38 Similar results
were also found in a previous study where a gene-based score
did not significantly improve the association between canon-
ical risk factors and CVD.39 Recently, 62 additional lipid-
associated loci were identified, but their effects were small,
explaining <2% of the total phenotype variance and therefore

should not substantially impact our conclusions.40 Further-
more, we demonstrate the existence of parent-of-origin
effects on lipid levels, which are sex-specific and likely owing
to both genetic and epigenetic factors. Such effects have
been shown to modulate some of the risk factors for
dyslipidemia. For example, a recent GWA study has demon-
strated parent-of-origin effects in the degree to which SNPs in
2 genes, SLC2A10 and KCNK9, affect BMI, a major factor
affecting lipids. These SNPs showed “polar overdominance,”
where homozygotes of either SNP had the same average BMI,
whereas heterozygotes differed as a function of parent of
origin.41

We also found that maternal traits generally explain more
of the offspring’s TC, HDL, and LDL. Maternal lipid traits
explained at least 5% of the offspring variability in TC, HDL,
and LDL of both sons and daughters in both cohorts. Paternal
traits were less consistent, given that their effects ranged
from nonsignificant in multiple traits to relatively high in
explaining the daughter’s LDL and HDL (5% to 8% of explained
variability in Framingham and 7% to 11% in SardiNIA). The
finding of stronger maternal influences on offspring lipid traits
is consistent with epidemiological data demonstrating that
maternal lifestyle and environment (such as nutritional status,
stress level, insulin resistance, diabetes, hypertension, hyper-
cholesterolemia, obesity, and smoking), both at time of
conception and during pregnancy, influence the offspring’s
phenotypes, such as adiposity, blood pressure, fatty streak
formation, or diabetes.15,17,42–50 This is consistent with the
Barker hypothesis, that is, that early exposure, both pre- and
postnatal, can affect risk of adult-onset disease.51,52

Interestingly, small or nonexistent parent-of-origin effects
were generally observed for TG (Tables 3 and 4). TGs also
provided the most variable results when using genetic models
(Tables 5 and 6). TG levels have a smaller parent-of-origin
effect than the other lipid traits, and a bigger part of their
heritability may be determined by other factors, such as rare
variants. It has been recently demonstrated that rare APOC3
mutations have a strong influence on plasma TG levels in
aggregate.53,54

Our study has several limitations. Although we were able to
identify models that account for a significant portion of lipid
variation explained, we were not able to provide a mechanism
for this effect. We can only speculate that our observations
may forecast discovery of additional genes, gene-gene inter-
actions, or epigenetic effects that regulate lipid levels.
Furthermore, in our analyses, we did not account for specific
environmental variables, such as diet, alcohol, exercise,
socioeconomic status, and use of specific medications.
However, it is of note that the 2 cohorts we studied would
be expected to have different environmental exposures and
the results were still mostly concordant. This discrepancy is
not likely to have influenced the results, and it would have had
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an attenuating effect even if it did. Both cohorts are
prospective studies analyzing populations of European ances-
try, but Framingham’s residents are from multiple European
origins, whereas the participants in SardiNIA are part of a
genetic isolate. This may be the basis for the minor discrep-
ancies we observed (seen in Tables 3 through 6). Dietary
habits were not directly quantified and, consequently, were not
represented in our models in either cohort, although BMI and
lipid medication covariates can be considered partial proxies
for diet and lifestyle. However, the similarities of results
between cohorts provide additional strength to our main claim.

In conclusion, we have determined that parent-of-origin
effects explain more variability in the adult offspring’s lipid
levels than do common variants in the loci known to modulate
lipid metabolism. Knowledge of the parent’s lipid levels may
provide an inexpensive and practical means to predict future
lipid levels in their children.
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