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Impact of treatment response metrics on photodynamic
therapy planning and outcomes in a three-dimensional
model of ovarian cancer
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Abstract. Common methods to characterize treatment efficacy based on morphological imaging may misrepresent
outcomes and exclude effective therapies. Using a three-dimensional model of ovarian cancer, two functional
treatment response metrics are used to evaluate photodynamic therapy (PDT) efficacy: total volume, calculated from
viable and nonviable cells, and live volume, calculated from viable cells. The utility of these volume-based metrics
is corroborated using independent reporters of photodynamic activity: viability, a common fluorescence-based
ratiometric analysis, and photosensitizer photobleaching, which is characterized by a loss of fluorescence due
in part to the production of reactive species during PDT. Live volume correlated with both photobleaching
and viability, suggesting that it was a better reporter of PDT efficacy than total volume, which did not correlate
with either metric. Based on these findings, live volume and viability are used to probe the susceptibilities of tumor
populations to a range of PDT dose parameters administered using 0.25, 1, and 10 μM benzoporphyrin derivative
(BPD). PDT with 0.25 μM BPD produces the most significant reduction in live volume and viability and mediates a
substantial shift toward small nodules. Increasingly sophisticated bioengineered models may complement current
treatment planning approaches and provide unique opportunities to critically evaluate key parameters including
metrics of therapeutic response. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.18.9.098004]
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response heterogeneity; treatment durability.
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1 Introduction
Establishing reliable treatment response metrics remains a sig-
nificant challenge in the preclinical and clinical evaluation of
cancer therapeutics.1–3 Traditional approaches to evaluating
treatment efficacy include measurement of tumor regression,
stabilization of disease, number of disease nodules, and the
functional characteristics of disease.1,4 Despite efforts to stand-
ardize these criteria, variability in the evaluation of these metrics
may lead to misinterpretation and inconsistency in reporting
treatment outcomes.2 Conventional methods used to quantify
disease burden measure the gross physical properties of tumors
but may fail to account for the functional status of disease.1,2,5–9

Various attempts have been made to address these limitations,
including the development of more sophisticated in-vivo imag-
ing tools that functionally assess treatment response.10,11 Many
of these technologies are still in their infancy and have yet to be
widely adopted.5,6,12 Additionally, xenograft animal models that
are commonly used to evaluate cancer therapeutics are time and
resource intensive and exhibit treatment response profiles that
are partially host specific.13–15 Three-dimensional (3-D) tumor
models can rapidly and functionally assess the evolution of
treatment response and drug–cell interactions and may inform
broader treatment evaluation strategies.16–21 This study utilizes

a 3-D model for ovarian cancer (OvCa) to demonstrate that the
interpretation of therapeutic outcomes is significantly impacted
by the metrics used to define efficacy. These concepts were
explored within the context of treatment planning for photody-
namic therapy (PDT), an emerging light-based modality.22

OvCa is a particularly deadly disease that accounts for 6%
of all cancer deaths among women in the United States.23

Approximately 75% of all OvCa cases are diagnosed at a
late stage, which is characterized by intra- and extraperitoneal
metastases ranging in size from microscopic to several centi-
meters in diameter.24 An important prognostic indicator for
late stage OvCa is the size of residual disease.7,24–26 Winter
et al. reported that optimal cytoreduction of OvCa tumor burden,
where the largest nodule is <0.1 cm in diameter, results in an
improved overall survival (OS) time of 64.1 months, the longest
of all groups in the study.7 However, reduction of tumor burden
to microscopic disease is not always achievable and requires
significant expertise.7,27 Despite these and other advance-
ments in surgery, radio-, and chemotherapeutic management
of OvCa,24,28 late stage OvCa still exhibits a dismal mean OS
time of 33 months and a mean 5-year progression free survival
(PFS) rate of just 35%.23 Therapeutic modalities that comple-
ment the current standard of care by reducing the size of nodules
and priming nodules for subsequent treatments are needed to
afford better OS and PFS for OvCa patients.

PDT is an emerging treatment modality that involves the exci-
tation of a photosensitizer (PS) by light of a specific wavelength to
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produce reactive species that are toxic to cells.22 PDT is mecha-
nistically distinct from chemo- or biologic therapies and has
proven effective in cell populations that are resistant to chemo-
or radiotherapy.29,30 We21,29,31–33 and others34–39 have shown
PDT to be a promising treatment for a variety of cancers, including
intraperitoneal sarcomatoses and carcinomatoses.40–44 A study by
Molpus et al. reported that benzoporphyrin derivative (BPD)-PDT
significantly reduced tumor burden in an orthotopic mouse model
of advanced stage OvCa.45 However, multiple cycles of PDTwere
necessary to reduce tumor burden and manageable toxicities were
noted in mice that received higher concentrations of BPD. Later,
del Carmen et al. showed that BPD-PDT synergized with Erbitux-
based anti-epidermal growth factor receptor therapy to improve
tumor reduction and enhance survival with lower toxicities and
fewer PDT cycles.33

A phase II clinical trial that utilized photofrin-PDT to treat
intraperitoneal sarcomatoses and carcinomatoses demonstrated
a survival benefit in patients. Reversible toxicities from this non-
optimized regimen included capillary leak syndrome and hydro-
nephrosis.46 In rare cases, severe toxicities including pulmonary
embolism, intra-abdominal abscesses, and fistulae occurred.46

As with traditional therapies used to manage OvCa,27,47 these
results suggest that no single therapy, including PDT, will be
sufficient to treat diseases in complex sites such as the peritoneal
cavity.27,40 Combination therapies that are designed to leverage
mechanistically distinct pathways can mitigate the limitations
of each modality and may achieve improved outcomes.33 PDT-
based combination regimens represent a promising approach for
the management of OvCa because PDToperates by mechanisms
that are distinct from chemo-, radio-, and immunotherapies,44

reduces OvCa nodule size,20 and synergizes with traditional
therapies.21,33,44,48 PDT-based combination regimens repre-
sent a promising approach for the management of OvCa.
Incorporation of PDT into a comprehensive treatment plan
requires an improved understanding of how PDT dose param-
eters impact key prognostic indicators of OvCa such as size and
viability.

Preclinical treatment planning has traditionally involved
the use of animal models to probe various treatment-related
parameters, including dosage, schedule, pharmacokinetics, and
pharmacodynamics, with the overall goal of standardizing a
treatment regimen that maximizes efficacy while minimizing
toxicity.33,40,49,50 The use of animal cancer models has been his-
torically necessary for these studies because in-vitro cancer
models (e.g., monolayer cell culture) do not exhibit the required
biological or architectural features that would make treatment
planning possible.13 Animal models are time and resource inten-
sive, exhibit confounding issues related to host-specific treat-
ment response, and do not facilitate the usage of functional
analysis tools that could greatly enhance treatment evalu-
ation.2,6,13,14,16,51 Recent advances in cell culture,12,18,21,52 imag-
ing,16,20,53,54 and treatment evaluation9,55 techniques have led to
the development of tumor cell line based high throughput treat-
ment screening (HTS) platforms.56 Among these, 3-D platforms
have emerged as attractive tools for treatment planning because
they restore essential biological and structural features of tumors
observed in-vivo and enable physiologically relevant, inexpen-
sive, and highly reproducible studies.5,57–59 We20,21,31,60–62 and
others18,58,63–67 have used tumor models that restore critical
cues from the extracellular matrix to evaluate and optimize treat-
ments for OvCa and other cancers. Previous studies from our
group have demonstrated that BPD-PDT significantly decreases

the size of 3-D OvCa nodules20 and synergistically enhances
carboplatin efficacy.21 These and other studies31,59,61,68 suggest
a role for 3-D models in improved treatment planning, including
for PDT regimens. The myriad of variables that influence PDT
outcomes, including the marginal benefit gained from dose
escalation, PS concentration, fluence, and the metrics used to
evaluate treatment response require further optimization.59

Furthermore, many efforts have been made to standardize treat-
ment response criteria, most notably by the World Health
Organization (WHO), the RECIST group, and recently in a
study by Wolchok et al.1,4,69 These treatment response criteria
have been regularly revised to account for important effects
of newer modalities in order to avoid exclusion of otherwise
promising regimens from the translational research pipeline.1,3,70

These concepts related to critical evaluation of treatment
response metrics can be translated to HTS platforms as bioen-
gineered 3-D tumor models become increasingly sophisticated
and could complement current treatment planning approaches.

The past three decades have seen the introduction of new func-
tional imaging-based assays that enable rapid measurement of
physiologic, metabolic, or biochemical changes in tissues.2,3,6,10

These technologies have the potential to greatly enhance treatment
planning because they allow insights into the mechanisms that
underlie treatment response.3,10 However, functional treatment
response metrics still require development and validation before
they can be reliably used in treatment planning studies.2 3-D
tumor models may provide unique advantages to assess the utility
of functional analysis for treatment planning purposes because they
provide a simplified, yet physiologically relevant, environment in
which to probe relevant metrics. The strengths and limitations of 3-
D models for this role are still emerging, and studies that establish
and validate relevant functional response metrics are required.

In the present study, a comparative analysis of two key met-
rics was performed: (1) total volume (Fig. 1, middle row), cal-
culated from viable (calcein) and nonviable (ethidium bromide)
cells and (2) live volume, calculated from residual viable cells
(calcein) (Fig. 1, bottom row). In contrast to viability, which was
calculated by ratiometric analysis of calcein acetoxymethyl ester
(AM) and ethidium bromide fluorescence intensity, the volume-
based metrics described here were calculated from the physical
borders of nodules demarcated by calcein AM (live volume) or
calcein AM and ethidium bromide fluorescence (total vol-
ume).20 A PDT dose escalation study was performed to identify
optimal PDT parameters that yielded maximal marginal thera-
peutic benefit. Fine-grained analyses of hundreds of individual
nodules using multiple treatment response metrics provided
unique insights into heterogeneities in PDT response that
were not revealed by global averages. Live volume provided
a better representation of PDT outcome than total volume.
These findings highlight the importance of critically evaluating
and characterizing functional treatment response metrics.

2 Materials and Methods

2.1 Cell Lines

Human ovarian carcinoma cells NIH:OVCAR5 (OVCAR5)
were obtained from Fox Chase Cancer Center (Philadelphia,
Pennsylvania), where they were characterized by microsatellite
marker analysis. The cells were grown in Roswell Park
Memorial Institute 1640 medium (Mediatech Inc., Herndon,
Virginia) and supplemented with 10% heat inactivated fetal calf
serum (GIBCO Life Technologies, Grand Island, New York),
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100 U∕mL penicillin, and 100 μg∕mL streptomycin. Growth
factor reduced (GFR) Matrigel (Catalog number 354230, BD
Biosciences, San Jose, California) was used as a basement
membrane in 3-D cultures.

2.2 3-D OvCa Model

3-D OvCa cultures were plated as previously described.20,21,59,61

Briefly, GFR-Matrigel beds were prepared by pipetting 250 μL
of chilled GFR-Matrigel solution onto a 24-well plate. The plate
was placed in an incubator and matrigel beds were allowed
to gel for 30 min at 37°C. OVCAR5 cells were prepared as
a single-cell suspension in complete growth media contain-
ing 2% GFR-Matrigel and were pipetted at a density of
7500 cells∕well. Nodules were allowed to form over a period
of 10 days at 37°C in a 5% CO2 atmosphere.

2.3 Photodynamic Therapy

PDT regimens were delivered to 3-D OvCa nodules as previ-
ously described.59 Briefly, wells containing 10-day old OvCa
nodules were treated with 0.25, 1, or 10 μM BPD for 90 min
in complete growth media. The media was replaced with 2%
GFR-Matrigel media immediately prior to irradiation. Each
well was irradiated with a 690-nm fiber-coupled diode laser
(Model 7401, Intense Inc., North Brunswick, NJ) at an

irradiance of 150 mW∕cm2. Fixed PDT doses [(PS) X
Fluence] of 1.25, 5 and 10 μM � J∕cm2 were applied to nodules
incubated with 0.25, 1, or 10 μM BPD. Laser irradiation times
and delivery were calculated and controlled as previously
described.59

2.4 Evaluation of Treatment Response

The treatment response of 3-D OvCa nodules was assessed
in situ via staining with calcein AM and ethidium bromide
(live/dead, Invitrogen, L-3224, Carlsbad, California) to label
live and dead cells, respectively, as previously described.20,21,59

Images were acquired with an Olympus FV-1000 confocal
microscope at an objective magnification of 4×. Laser and pho-
tomultiplier settings, optimized for maximum dynamic range,
were kept internally consistent across experimental groups.

The normalized viability was calculated as previously
described.59 Pixel intensities from the calcein AM (live) and
ethidium bromide (dead) channels were determined using cus-
tom MATLAB routines (Mathworks, Natick, Massachusetts) and
separately averaged within individual nodules or across the
entire field of view. Subsequently, the viability of individual
nodules and the average viability for all nodules were calculated
from appropriately scaled mean intensities of fluorescent signals
per the following formula:20,59

Viability ¼ Scaled mean calcein intensity

Scaled mean calcein intensityþ Scaled mean ethidium bromide intensity

Fig. 1 Identification of problematic residual disease requires refinement of functional imaging approaches. Representative images taken at 72 h post-
PDT depicting morphologic, total, and live volumes are shown for no-treatment controls, and nodules treated with 0.25, 1, and 10 μMBPD at a dose of
10 μM � J∕cm2. Total volume images (middle row) include both viable (calcein, green) and nonviable (ethidium bromide, red) cells and serve as a
functional surrogate for morphologic volume images (bright-field, top row). Live volume images (bottom row) show corresponding viable tumors.
Yellow arrows indicate the morphologic, total, and live volume images for the same BPD-PDT treated nodule. Scale bars (white) indicate 250 μm.
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Both total and live volumes were approximated from the
major and minor axes of individual nodules using the following
formula:

Nodule volume ¼ 4

3
π

�
major axis

2

��
minor axis

2

�
2

.

Total volume was calculated by demarcating the major and
minor axes of individual nodules after adding calcein AM and
ethidium bromide fluorescence. The volumewas then calculated
using reported custom written MATLAB script.20

Live volume was calculated by segmenting calcein AM fluo-
rescence from ethidium bromide fluorescence using a custom
written MATLAB script. The major and minor axes of individual
nodules were demarcated using only calcein AM fluorescence
prior to calculating volume.

Throughout the manuscript, the descriptor “average” refers
to a mean taken from multiple wells, where each well contained
hundreds of 3-D OvCa nodules. For example, average normal-
ized live volume refers to the mean live volume of PDT-treated
wells, divided by the mean live volume of PDT nontreated wells.
Normalized live volume was also generated for individual nod-
ules by dividing the live volume of an individual-treated nodule
by the average normalized live volume of all nontreated nodules.

BPD photobleaching was quantified as previously
described.53,59 Briefly, photobleaching was evaluated in 10-
day old 3-D OvCa nodules incubated with 0.25, 1, or 10 μM
BPD for 90 min in complete growth media. Images of BPD fluo-
rescence were acquired before and immediately after PDT. The
change in BPD fluorescence was calculated using a custom-
written MATLAB routine and reported as percentages (Table 3).

Histograms describing OvCa nodule volume distributions
were generated using previously described, custom-written,
MATLAB routines.20,21,53 Live volume histograms, in which indi-
vidual nodules were segmented into logarithmically spaced
bins,20 were generated for PDT-treated (colored bars) and
untreated (black bars) nodules at 24 and 72 h post-PDT (Fig. 3).

2.5 Classification of Nodules as “Highly Viable”
and “Large”

Thresholds for “highly viable” and “large” nodules are based on
the 95th percentile of normalized viabilities and normalized live
volumes for nodules treated with the most effective dose param-
eters (0.25 μM BPD at a dose of 10 μM � J∕cm2). Twenty-four
hours after PDT, nodules that exhibited a normalized viability
>0.52 were considered highly viable, and nodules that exhib-
ited a normalized live volume >0.71 were considered large.
Seventy-two hours after PDT, nodules that exhibited a normal-
ized viability >0.61 were considered highly viable, and nodules
that exhibited a normalized live volume >0.58 were consid-
ered large.

2.6 Statistical Analysis

Unless otherwise indicated, n values indicate the number of
wells devoted to the treatment condition from a 24-well
plate. Each well contains hundreds of OvCa nodules. The com-
parisons of cytotoxic efficacy were performed with one-way
analysis of variance (ANOVA) or two-tailed t test as appropri-
ate. The comparisons for which a statistical test is not indicated
were conducted via two-tailed t test. p values of <0.05 were
considered significant. For all figures, error bars indicate

standard error of the mean. Regressions were evaluated by a
least squares fit approach, and correlation coefficients were
determined using Pearson’s product-moment correlation. The
correlations between normalized live volume and PDT dose,
or normalized viability and PDT dose, were constrained through
(0,1) to account for untreated nodules.

3 Results
Compared to live volume, total and morphologic volumes
underestimated PDT efficacy, particularly when treatment was
most effective. The morphologic, total, and live volume images
of the same OvCa nodule treated with either 0.25 μM (left col-
umn) or 10 μM (right column) BPD-PDT are indicated by yel-
low arrows (Fig. 1). A significantly greater morphologic/total
volume was evident for the nodule treated with 0.25 μM
BPD-PDT compared to live volume. More nonviable fluores-
cence (ethidium bromide, red) was apparent in the total volume
images for wells treated with 0.25 and 1 μM BPD-PDT com-
pared to 10 μM BPD-PDT or no-treatment controls (Fig. 1).

A comparative analysis of average normalized total volume
and average normalized live volume was performed to deter-
mine which functional treatment response metrics provided a
better representation of PDT outcome (Fig. 2).

The average normalized live volume of wells treated with
0.25 μM BPD-PDT at a dose 10 μM � J∕cm2 (24 h:
0.25� 0.03, 72 h: 0.15� 0.05) was significantly less than the
average normalized total volume (24 h: 0.95� 0.12, 72 h:
0.89� 0.13) at both time points [Fig. 2(a), n ≥ 6, p < 0.05].
In addition, average normalized live volume of wells treated
with 1 μM BPD-PDT at a dose of 10 μM � J∕cm2 (24 h: 0.38�
0.08, 72 h: 0.37� 0.07) was significantly less than the average
normalized total volume (24 h: 0.83� 0.09, 72 h: 0.99� 0.17)
at both time points [Fig. 2(a), n ≥ 6, p < 0.05].

The average normalized live volume of wells treated with
0.25, 1, and 10 μM BPD-PDT at a dose of 1.25 μM � J∕cm2

was not significantly different from no-treatment controls (dot-
ted line) either 24 or 72 h post-PDT [Fig. 2(a), 0.88� 0.09,
0.89� 0.07, and 0.96� 0.08, one-way ANOVA].

For wells treated with 0.25 μM BPD-PDT, the average nor-
malized total volume measured at 24 h post-PDT was
54%� 2% greater than the average normalized live volume
at a PDT dose of 5 μM � J∕cm2 and 280%� 5% greater
than the average normalized live volume at a PDT dose of
10 μM � J∕cm2 [Fig. 2(b)]. For wells treated with 1 μM
BPD-PDT, the normalized total volume was 62%� 3% greater
than the average normalized live volume at a PDT dose of
5 μM � J∕cm2 and 63%� 2% greater than the average normal-
ized live volume at a PDT dose of 10 μM � J∕cm2 [Fig. 2(b)].

For wells treated with 0.25 μM BPD-PDT, the average nor-
malized total volume measured at 72 h post-PDT was 118%�
4% greater than the average normalized live volume at a PDT
dose of 5 μM � J∕cm2 and 489%� 11% greater than the aver-
age normalized live volume at a PDT dose of 10 μM � J∕cm2

[Fig. 2(b)]. For wells treated with 1 μM BPD-PDT at the
same time point, the normalized total volume was 35%� 3%
greater than the average normalized live volume at a PDT
dose of 5 μM � J∕cm2 and 86%� 6% greater than the average
normalized live volume at a PDT dose of 10 μM � J∕cm2

[Fig. 2(b)].
Wells treated with 0.25 and 1 μM BPD at a PDT dose of

10 μM � J∕cm2 exhibited a significant and sustained reduction
in normalized live volume, which wells treated with 10 μM
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BPD-PDT did not exhibit. Because PDT dose-dependent corre-
lations could be established between the average normalized live
volume and the normalized viability or percent photobleached
BPD for several BPD-PDT conditions, average normalized live
volume likely provided a more accurate representation of PDT
efficacy than average normalized total volume (Tables 1 and 2).
Thus, the normalized live volumewas subsequently used in con-
junction with normalized viability to establish optimal PDT
dose parameters to treat 3-D OvCa nodules.

Wells treated with 0.25, 1, and 10 μM BPD at a dose of
10 μM � J∕cm2 exhibited average normalized live volumes
(0.25� 0.03, 0.38� 0.08, 0.64� 0.10, respectively) that
were significantly less than no-treatment controls (dotted
line) at 24 h post-PDT [Fig. 3(a) left, n ¼ 8 wells∕condition,
p < 0.05]. Normalized live volume histograms revealed that
wells treated with 0.25, 1, and 10 μM BPD-PDT (n ¼ 5240,
6430, and 4677 nodules, respectively) exhibited a larger pro-
portion of nodules with volumes ≤65400 μm3 compared to no-
treatment controls (black bars) at 24 h post-PDT [Fig. 3(a),
right]. This indicated that the PDT-induced reduction in average
normalized live volume caused a population shift from nodules
of large live volume to those of small live volume.

At 72 h post-PDT, wells treated with 0.25 and 1 μMBPD at a
dose of 10 μM � J∕cm2 exhibited the average normalized live
volumes (0.15� 0.05, 0.37� 0.07, respectively) that were

significantly less than no-treatment controls [Fig. 3(b) left, n ¼
6 wells, p < 0.05].

The average normalized live volumes of wells treated with
0.25 and 1 μM at a PDT dose of 10 μM � J∕cm2 in 72 h
post-PDT were not significantly different from those observed
in 24 h post-PDT [Figs. 3(a) and 3(b), left n ≥ 6 wells].
Furthermore, the normalized live volume histograms of wells
treated with 0.25 and 1 μMBPD-PDT (n ¼ 4649 and 5737 nod-
ules, respectively) revealed a larger proportion of nodules with
volumes <65;400 μm3 compared to no-treatment controls
(black bars) at 72 h post-PDT [Fig. 3(b), right]. This indicated
that, for wells treated with these BPD-PDT parameters, the shift
from nodules of large volume to those of small volume was sus-
tained up to 72 h post-PDT.

Wells treated with 10 μM BPD at a dose of 10 μM � J∕cm2

exhibited an average normalized live volume that was not sig-
nificantly different from no-treatment controls at 72 h post-PDT
[Fig. 3(b), left, n ¼ 6 wells]. Wells treated with 10 μM BPD-
PDT exhibited a similar proportion of nodules with volumes
>64;500 μm3 compared to no-treatment controls [Fig. 3(b),
right, n ¼ 6 wells]. Thus, although there was an initial reduction
in normalized live volume of nodules treated with 10 μM BPD-
PDT at a dose of 10 μM � J∕cm2 in 24 h post-PDT, by 72 h
post-PDT, this reduction in volume was lost [Figs. 4(a) and
4(b)].

Fig. 2 Percent difference in functional imaging metrics increases with PDT dose. An average normalized total volume (black bars) and average nor-
malized live volume (gray bars) are plotted for nodules treated with 0.25, 1, and 10 μMBPD-PDT at doses of 1.25 (top row) and 10 μM � J∕cm2 (bottom
row) at both 24 (left column) and 72 (right column) h post-PDT (a). Average total and average live volume were normalized to no-treatment controls,
which are indicated by a dotted black line. The percent difference in average normalized total volume relative to average normalized live volume is
plotted for nodules treated with 0.25 μM (black), 1 μM (shaded gray), and 10 μM (white) BPD-PDT at doses of 1.25, 5, and 10 μM � J∕cm2 at both 24
(left) and 72 (right) h post-PDT (b).
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Wells treated with 0.25 μM BPD-PDT at a PDT dose of
10 μM� J∕cm2 exhibited the greatest reduction in average nor-
malized live volume compared to those treated with 1 or 10 μM
BPD-PDT in both 24 and 72 h post-PDT [Figs. 3(a) and 3(b),
left, one-way ANOVA, p < 0.05].

PDT dose escalation resulted in a linear increase in efficacy
when measured by normalized live volume but a nonlinear
increase in efficacy when measured by normalized viability.
Wells treated with a PDT dose of 10 μM � J∕cm2 exhibit a
smaller percentage of nodules that are large and highly viable
than wells treated with 5 μM� J∕cm2.

To determine the marginal therapeutic benefit of increasing
PDT dose, average normalized live volume [Fig. 4(a), top
row] and average normalized viability [Fig. 4(a), bottom
row] were plotted against increasing PDT dose for wells
treated with 0.25, 1, and 10 μM BPD at 24 h post-PDT
[Fig. 4(a)].

Significant, monotonically decreasing, linear correlations
were established between average normalized live volume and
increasing PDT dose for wells treated with 0.25 μM (top left),
1 μM (top center), and 10 μM (top right) BPD at 24 h post-
PDT [Fig. 4(a), top row, p < 0.05, r2 ≥ 0.98]. This suggested
that increasing the delivered PDT dose from 1.25 to 10 μM �
J∕cm2 resulted in linearly increasing therapeutic efficacy as
evaluated by the average normalized live volume at 24 h
post-PDT.

A nonlinear correlation characterized by decreasing slope
was observed between average normalized viability and increas-
ing PDT dose for wells treated with 0.25 μM (bottom left), 1 μM
(bottom center), and 10 μM (bottom right) BPD-PDT at 24 h
post-PDT [Fig. 4(a) bottom row, nonlinear exponential decay,
r2 ≥ 0.67]. Thus, increasing the PDT dose resulted in diminish-
ing returns to PDT efficacy as evaluated by the average normal-
ized viability at 24 h post-PDT.

Table 1 Normalized live volume of nodules treated with 0.25 μM BPD-PDT correlates with independent metrics of PDT efficacy, whereas nor-
malized total volume does not correlate at 24 h post-PDT.

24 h post-PDT

Metric
[BPD]
(μM)

PDT Dose (μM � J∕cm2) Correlation with
normalized
viability?

p-
value r2

Correlation with
% BPD

photobleaching p-value r21.25 5 10

Average
normalized
live volume

0.25 0.88� 0.08 0.58� 0.07 0.25� 0.03 Yes 0.038 0.98 Yes 0.0501 0.99

1 0.89� 0.10 0.56� 0.05 0.38� 0.08 Yes 0.037 0.99 Yes 0.0404 0.97

10 0.96� 0.07 0.73� 0.07 0.64� 0.10 Yes 0.053 0.94 Yes 0.0495 0.95

Average
normalized
total volume

0.25 0.72� 0.10 0.90� 0.18 0.95� 0.13 No 0.207 0.87 No 0.232 0.78

1 0.64� 0.10 0.91� 0.16 0.62� 0.07 No 0.906 0.02 No 0.925 0.01

10 0.90� 0.09 0.94� 0.13 0.83� 0.11 No 0.550 0.42 No 0.542 0.43

Table indicates the average normalized live volume and average normalized total volume of BPD-PDT treated wells, and whether significant non-zero
correlations could be established between these metrics and either normalized viability or PS photobleaching at 24 h post-PDT.

Table 2 Normalized live volume of nodules treated with 0.25 μM BPD-PDT correlates with independent metrics of PDT efficacy, whereas nor-
malized total volume does not correlate at 72 h post-PDT.

72 h post-PDT

Metric
[BPD]
(μM)

PDT Dose (μM � J∕cm2) Correlation
with normalized

viability?
p-

value r2

Correlation with
% BPD

photobleaching
p-

value r21.25 5 10

Average
normalized
live volume

0.25 0.88� 0.12 0.36� 0.03 0.15� 0.05 Yes 0.007 0.99 Yes 0.017 0.99

1 0.90� 0.09 0.65� 0.05 0.37� 0.02 Yes 0.031 0.98 Yes 0.016 0.98

10 1.05� 0.08 1.09� 0.11 1.06� 0.04 No 0.645 0.23 No 0.781 0.11

Average
normalized
total volume

0.25 0.87� 0.20 0.79� 0.16 0.89� 0.13 No 0.988 0.00 No 0.885 0.03

1 0.66� 0.13 0.87� 0.15 0.69� 0.17 No 0.896 0.03 No 0.930 0.01

10 1.1� 0.17 1.2� 0.20 0.99� 0.14 No 0.879 0.04 No 0.743 0.15

Table indicates the average normalized live volume and average normalized total volume of BPD-PDT treated wells, and whether significant nonzero
correlations could be established between these metrics and either normalized viability or PS photobleaching 72 h post-PDT.
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Because average normalized live volume and average nor-
malized viability provided conflicting information regarding
the efficacy of PDT dose escalation, a fine-grained treatment
response analysis that included the normalized live volume
and viability of hundreds of individual nodules was performed.
Normalized live volume was plotted against normalized viabil-
ity for individual OvCa nodules treated with 0.25 (middle row
left), 1 (middle row center) and 10 (middle row right) μM BPD
at PDT doses of 5 and 10 μM � J∕cm2 at 24 [Fig. 4(a)] and 72 h
post-PDT [Fig. 4(b)].

Wells treated with 0.25 μM BPD at a dose of 10 μM� J∕cm2

exhibited a smaller percentage of nodules that were large and
highly viable (5% of nodules exhibited a normalized viability
>0.52, and 5% of nodules exhibited a normalized live volume
>0.71) compared to those treated at a dose of 5 μM � J∕cm2

(28.3% of nodules exhibited a normalized viability >0.52,
and 14.2% of nodules exhibited a normalized live volume
>0.71) at 24 h post-PDT [Fig. 4(a), middle left, n ¼ 5240

and 4780 nodules, respectively].
Wells treated with 1 μM BPD at a dose of 10 μM � J∕cm2

also exhibited a smaller percentage of nodules that were highly
viable (28.0% of nodules exhibited a normalized viability
>0.52) than those treated at a dose of 5 μM� J∕cm2 (48.2%
of nodules exhibited a viability that was >0.52) at 24 h post-
PDT [Fig. 4(a), middle center]. However, the percentage of
large nodules following 1 μM BPD-PDT at a dose of 10 μM �
J∕cm2 (8.2% of nodules exhibited a normalized live volume
>0.71) was not different from 5 μM� J∕cm2 (7.7% of nodules
exhibited a normalized live volume >0.71) at 24 h post-PDT
[Fig. 4(a), middle row center, n ¼ 6430 and 6878 nodules,
respectively].

The percentage of highly viable and large nodules present
following 10 μM BPD-PDT at a dose of 10 μM � J∕cm2

(55.8% of nodules exhibited a normalized viability >0.52,
and 8.5% of nodules exhibited a normalized live volume
>0.71) was not different from 5 μM � J∕cm2 (59.4% of nodules
exhibited a normalized viability >0.52, and 7.9% of nodules
exhibited a normalized live volume >0.71) at 24 h post-PDT
[Fig. 4(a), middle row right, n ¼ 5271 and 4677 nodules,
respectively].

Similar trends in PDT efficacy were observed in 72 h
post-PDT. Significant, monotonically decreasing correlations
were established between average normalized live volume
and PDT dose for wells treated with 0.25 μM [Fig. 4(b), top
left], 1 μM (top center), and 10 μM (top right) BPD at 72 h
post-PDT [Fig. 4(b), top row, p < 0.05, r2 ≥ 0.94]. This sug-
gested that increasing the delivered PDT dose from 1.25 to
10 μM � J∕cm2 resulted in increasing therapeutic efficacy
when treatment response was evaluated by normalized live
volume at 72 h post-PDT.

A nonlinear correlation characterized by decreasing slope
was observed between average normalized viability and
increasing PDT dose for wells treated with 0.25 μM
[Fig. 4(b), bottom left], 1 μM (bottom center), and 10 μM
(bottom right) BPD-PDT at 72 h post-PDT [Fig. 4(b), bottom
row, nonlinear exponential decay model, r2 ≥ 0.82]. This sug-
gested that increasing the PDT dose resulted in diminishing
returns to marginal PDT efficacy as evaluated by average nor-
malized viability.

Wells treated with 0.25 μMBPD at a dose of 10 μM � J∕cm2

exhibited a smaller percentage of highly viable and large nod-
ules (5% of nodules exhibited normalized viabilities >0.59,
and 5% of nodules exhibited normalized live volumes >0.60)
than those treated with 5 μM � J∕cm2 (11.8% of nodules
exhibited normalized viabilities >0.59, and 10.2% of nodules
exhibited normalized live volumes >0.60) at 72 h post-PDT

Fig. 3 0.25 and 1 μMBPD-PDT resulted in a sustained reduction in normalized live nodule volume. Average normalized live volumemeasured at 24 h
post-PDT is plotted for wells treated with 0.25 μM (blue), 1 μM (red), and 10 μM (green) BPD at a PDT dose of 10 μM � J∕cm2 (a, left). An average
normalized live volume of no treatment controls is indicated as a dotted line. Live volume histograms of nodules treated with 0.25, 1, and 10 μM BPD,
and no-treatment controls (black bars) are shown at 24 h post-PDT (a, right). Average normalized live volume measured at 72 h post-PDT is plotted for
wells treated with 0.25, 1, and 10 μMBPD at a PDT dose of 10 μM � J∕cm2 (b, left). Live volume histograms of nodules treated with 0.25, 1, and 10 μM
BPD, and no-treatment controls (black bars) are shown 72 h post-PDT (b, right). The dotted black line indicates no-treatment controls (a and b, left).
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[Fig. 4(b), middle row left, n ¼ 4649 and 3153 nodules,
respectively].

Wells treated with 1 μM BPD at a dose of 10 μM� J∕cm2

exhibited a smaller percentage of highly viable and large nod-
ules (9.3% of nodules exhibited normalized viabilities >0.59,
and 17.7% of nodules exhibited normalized live volumes
>0.60) than those treated with 5 μM � J∕cm2 (16.8% of nod-
ules exhibited normalized viabilities >0.59, and 21.2% of nod-
ules exhibited normalized live volumes>0.60) at 72 h post-PDT
[Fig. 4(b), middle row center, n ¼ 5737 and 2907, respectively].

Wells treated with 10 μM BPD at a dose of 10 μM � J∕cm2

exhibited a percentage of highly viable and large nodules
(35.1% of nodules exhibited a normalized viability >0.59,

and 42.2% nodules exhibited a normalized live volume
>0.60) that was minimally different from those treated at a
dose of 5 μM � J∕cm2 (36.1% of nodules exhibited a normal-
ized viability that was >0.59, and 40.0% of nodules exhibited a
normalized live volume >0.60) at 72 h post-PDT [Fig. 4(b),
middle row right, n ¼ 2929 and 2825 nodules, respectively].

Nodules treated with 0.25 μM BPD at a dose of
10 μM � J∕cm2 exhibited the greatest reduction in average nor-
malized live volume and average normalized viability of all
BPD-PDT conditions tested at both time points (p < 0.05, one-
way ANOVA). Furthermore, nodules treated with 0.25 μMBPD
at a dose of 10 μM � J∕cm2 exhibited the smallest percentage of
large and highly viable nodules at both time points.

Fig. 4 Treatment response distributions comprised of individual nodules reveal PDT parameter-dependent benefits not reflected in average outcomes.
For data acquired 24 h post-PDT, average normalized live volume is plotted against increasing dose for tumors treated with 0.25 μM (a, top row, left),
1 μM (a, top row, center), and 10 μM (a, top row, right) BPD-PDT (a). Normalized viability of corresponding individual nodules is plotted against
normalized live volume for tumors treated with 0.25 μM (A, middle row, left), 1 μM (A, middle row, center), and 10 μM (A, middle row, right) BPD-PDT
at doses of 5 and 10 μM � J∕cm2 (a). Average normalized viability is plotted against increasing PDT dose for tumors treated with 0.25 μM (a, bottom
row, left), 1 μM (a, bottom row, center), and 10 μM (a, bottom row, right) BPD-PDT (a). Corresponding plots for treatment response 72 h post-PDT are
provided in (b). Red shaded regions indicate normalized live volumes and normalized viabilities in the 95th percentile of nodules treated with the most
effective dose parameters (0.25 μM BPD at a dose of 10 μM � J∕cm2).
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Nodules treated with 10 μM BPD exhibited the smallest
reduction in both the average normalized live volume and the
average normalized viability of BPD-PDT conditions tested
at 24 and 72 h post-PDT [Figs. 4(a) and 4(b), right column].
Furthermore, the normalized live volume versus normalized
viability distribution of individual wells treated with 10 μM
BPD revealed no reduction in the number of highly viable
and large nodules after increasing PDT dose from 5 to
10 μM � J∕cm2.

Normalized live volume correlates with two-independent
metrics for PDT efficacy, normalized viability and percent pho-
tobleached BPD, in wells treated with 0.25 and 1 μMBPD-PDT.

It was unclear whether average normalized live volume or
average normalized total volume provided a better volume-
based treatment response metrics. Thus, the relationship
between these metrics and two independent metrics of treatment
efficacy, normalized viability, and percent photobleached BPD,
was investigated at 24 h post-PDT (Table 1) and 72 h post-PDT
(Table 2).

PS photobleaching (Table 3) is a widely used dosimetric
parameter that is characterized by a loss of PS fluorescence
and depending on context, can be a function of reactive oxygen
species produced as a result of PDT.53,59,71–74 Normalized viabil-
ity, a ratiometric of calcein and ethidium bromide fluorescence
intensity, provided a measure of cytotoxicity in treated cells
relative to no-treatment controls and is a well established treat-
ment response metrics for in-vitro treatment screening
applications.75,76

A significant PDT dose-dependent correlation was estab-
lished between the normalized viability and the average normal-
ized live volume for wells treated with 0.25 and 1 μMBPD-PDT
in both 24 and 72 h post-PDT (Tables 1 and 2, n ≥ 6 wells). No
correlation between normalized viability and average normal-
ized total volume could be established for any BPD concentra-
tion at either time point.

A significant PDT dose-dependent correlation was observed
between average normalized live volume and percent photo-
bleached BPD for wells treated with 0.25 and 1 μM BPD-
PDT in both 24 and 72 h post-PDT (Tables 1 and 2, n ≥ 6

wells). No correlation between normalized total volume and per-
cent photobleached BPD could be established for any concen-
tration of BPD at either time point. Data points for percent
photobleached BPD are shown in Table 3.

For wells treated with 10 μM BPD-PDT, a significant corre-
lation between normalized live volume and normalized viability
could be established at 24 h after PDT (Table 1, n ¼ 8wells) but
not at 72 h post-PDT (Table 2, n ¼ 6 wells). The same was true
of correlations between normalized live volume and percent
photobleached BPD for wells treated at this dose, in that a cor-
relation could only be established at 24 h post-PDT (Table 1,
n ¼ 8) but not at 72 h post-PDT (Table 2, n ¼ 6). This may
be because, at 72 h post-PDT, the average normalized live
volumes of wells treated with 10 μM BPD-PDT were not sig-
nificantly different from no-treatment controls at all three PDT
doses.

4 Discussion
In an effort to contribute to a quantitative treatment evaluation
framework being developed by us and others,6,20,21,53,59,61,77 two
functional volume-based metrics of treatment response were
critically evaluated: (1) total volume, a surrogate for morpho-
logical evaluation of tumor volume; and (2) live volume,
which identifies the residual viable portions of tumor nodules.
Two independent and distinct metrics, normalized viability,20,59

and PS photobleaching53,74,78,79 were used to corroborate this
volume-based interpretation of treatment response. Within
this framework, four major conclusions to guide the evaluation
of PDT-based regimens in preclinical settings are highlighted by
this study: (1) morphologic imaging systematically misrepre-
sents treatment efficacy, often when treatment is most effective;
(2) live volume, which indicates residual viable cells, likely pro-
vides a more accurate representation of therapeutic efficacy than
morphologic and total volume; (3) fine-grained analysis of indi-
vidual nodules provides unique insights into susceptibilities of
tumor populations that are missed in global averages; and (4) the
interpretation of marginal therapeutic benefit from increasing
PDT dose depends on the PS-light parameters and the metrics
used to evaluate efficacy.

To minimize variation in the reporting of treatment
outcomes, there have been several attempts to standardize
response criteria of solid tumors to therapy, most notably by
the WHO69 and the RECIST group.1 In 1979, the WHO defined
tumor regression as a primary therapeutic endpoint, implying
that any successful treatment would result in a reduction in
tumor volume, whereas unsuccessful treatments would result
in a maintenance of tumor size or tumor progression.1,3,4

Although a reduction in tumor volume resulting from surgical
and cytotoxic regimens is an appropriate prognostic indicator for
OvCa,8,28,70,80 several clinically available therapies, including
antibodies and small molecule inhibitors, often stabilize disease
progression rather than eliciting tumor shrinkage.2,4 As a result,
RECIST revised treatment response criteria in 2000 to include
guidelines for reporting stable disease as a clinical endpoint. A
study published byWolchok et al. built on these efforts by estab-
lishing new criteria that capture subtle treatment response pro-
files characteristic of targeted therapies.4 These criteria included
“durable stable disease,” which denoted tumors characterized
by a slow decline in volume following therapy and “responses
after an initial increase in total tumor burden.4” The guidelines
for tumor reduction and stabilization continue to be revised
by the WHO, RECIST, and others to encompass response to
emerging therapies, highlighting the challenges associated
with defining relevant metrics.2,4 There remains a need in pre-
clinical and clinical settings to validate new metrics that can
detect subtle anatomical, functional, and morphological changes

Table 3 Percent BPD photobleached resulting from 0.25, 1, and
10 μM BPD-PDT.

PDT dose (μM � J∕cm2)

1.25 5 10

0.25 13.9� 2.5 31.0� 4.0 44.0� 0.3

1 0.0� 1.3 10.7� 1.1 23.0� 3.3

10 −0.3� 1.8 3.2� 1.4 6.0� 1.3

Table indicates the average percentages of BPD that photobleached
resulting from 0.25, 1 and 10 μM BPD-PDT at doses of 1.25, 5, and
10 μM� J∕cm2. BPD fluorescence was measured immediately before
and after PDT. Percent photobleached BPD was used to establish cor-
relations with average normalized live volume and average normalized
total volume.
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in tumors to more fully leverage emerging therapies in treatment
planning.2,3,6,10,11

This study adds to these efforts by comparatively evaluating
two functional volume-based metrics, total and live volumes,
which assess both the size and functional status of 3-D tumor
nodules. It was observed that the average normalized total
volume was often different from the average normalized live
volume for wells treated with the same BPD-PDT conditions
(Figs. 1 and 2). This can likely be attributed to important
differences in the metrics. Normalized total volume is similar
to the morphologic volume of disease (Fig. 1), which is based
on structural boundaries distinguished by white-light
contrast.1,70 Total and morphologic volume may misrepresent
treatment efficacy because they inconsistently report reduc-
tions in viable disease (Fig. 2, Tables 1 and 2). Normalized live
volume is a functional metric that quantitates the volume of
only viable cells in tumors based on their esterase activity
(Fig. 1).20,21 In the present study, normalized total volume
and morphologic volume under-reported treatment response,
particularly in situations where PDT was most effective.
This was because, following treatment, a large proportion of
dead nodules remained in the well and contributed to the cal-
culation of total volume but not live volume (Figs. 1 and 2).
This was particularly apparent in wells treated with 0.25 μM
BPD at a dose of 10 μM � J∕cm2, in which normalized total
volume was not significantly different from no-treatment con-
trols, but the normalized live volume was significantly less
than all other BPD-PDT conditions tested (Fig. 2).
Conversely, in situations where PDT was not effective and
only a few nonviable cells remained in a well (as in the
case of 10 μM BPD-PDT at a dose of 10 μM � J∕cm2), nor-
malized total volume was not significantly different from nor-
malized live volume and tended to accurately report efficacy
(Fig. 2). This was because the volume of dead cells did not
appreciably contribute to the calculation of total nodule vol-
ume. Thus, differences in the calculation of functional treat-
ment response metrics significantly contribute to the
interpretation of treatment outcome.

As discussed by Sullivan et al., in the absence of a “gold-
standard” metric, it is important to consider efficacy from
multiple perspectives to provide complementary viewpoints
regarding the physical and biological effects of any treat-
ment.2–4 Guided by this perspective, the present study validated
two functional volume-based metrics, live volume and total
volume, with two additional independent metrics for treatment
response: normalized viability and PS photobleaching.2 In cases
where PDT caused a significant reduction in normalized live
volume, normalized live volume correlated well with both nor-
malized viability and percent BPD photobleaching (Tables 1 and
2). Normalized total volume, however, likely provided a poor
representation of PDT efficacy because no significant correla-
tions were observed with normalized viability or percent
BPD photobleached for all conditions tested in this study
(Tables 1 and 2). Because normalized total volume most signifi-
cantly under-reported PDTefficacy in cases where PDTwas par-
ticularly effective, these results suggest that commonly used
approaches to evaluate treatment response based solely on mor-
phological changes in disease, such as white light imaging, may
lead to exclusion of potentially effective therapies. Metrics that
incorporate information from functional imaging techniques,
such as the measurement of viable cells in-vivo,10 will likely
require substantial application-specific refinement. These

findings highlight the importance of critically evaluating the
metrics derived from functional imaging–based assays to ensure
accurate evaluation of therapeutic efficacy in both in-vitro and
in-vivo settings.

Additional confounding factors in defining appropriate treat-
ment response metrics are the differential cell death and survival
processes that affect PDT efficacy.81,82 These pathways are
impacted by many factors including the PS properties,82,83

the cellular localization and aggregation status of the PS,84–86

biological cues from the microenvironment,87 and the light
delivery regimen.59,88,89 Depending on the concentration and
the target tissue, BPD-PDT could induce cell death by various
mechanisms including autophagy, necrosis, and apoptosis.81,90–93

Autophagy is a programmed lysosomal degradation pathway in
which a cell self digests via autophagosomes to maintain
homeostasis, adapt to stress, or recycle resources as part of either
a cytotoxic or cytoprotective response depending on context.94

Although cell death with autophagy is characterized by large-
scale vacuolization of the cytoplasm and the absence of chroma-
tin condensation,95 the impact of these features on tumor volume
remains poorly explored. Necrosis is a cell-death process that
may be programmed and results from the depletion of bioener-
getic molecules that are necessary for cell survival.81,82,90 Cells
that are stressed or dying from necrotic mechanisms exhibit a
swelling phenotype that leads to an increase in cell diameter.95,96

In these cases, an increase in normalized live volume may occur,
and falsely under-report therapeutic efficacy resulting from
PDT. Thus, multiple metrics should be used to complement nor-
malized live volume to increase the probability of accurately
reporting therapeutic efficacy. In addition, BPD-PDT has been
shown to induce cell death by apoptosis, a well-studied bio-
chemical process that is characterized by many morphological
changes including chromatin condensation, fragmentation of
DNA, and, importantly, cell shrinkage.2,59,82,97 PDT that results
in a significant reduction in normalized live volume may be
mediated in part by apoptotic mechanisms. An understanding
of the relationships among cell-death mechanisms, the structural
features of the disease following treatment, and the metrics that
capture these features is necessary to develop more potent thera-
pies that specifically target these cell-death pathways.59,98

An interesting finding was diminished efficacy with 10 μM
BPD compared to 0.25 or 1 μM BPD at a fixed PDT dose
(Figs. 3 and 4). This observation was echoed in a previous
study by our group59 and is in contrast to a previous study
by Andrzejak et al. who demonstrated that at an equivalent
PDT dose, 10 μM BPD-PDT is significantly more effective
than 1 μM BPD-PDT in preventing colony formation of
1c1c7 murine hepatoma cells.81 The authors suggested that
this potentiation of PDT with higher concentrations of BPD
is due to inhibition of autophagy because autophagosomes
that are formed as a result of an autophagy-mediated cellular
response can be inhibited by 10 μM BPD.99 It has been
shown in several instances that autophagy can be cytoprotective
against phototoxicity.81,100 However, biological variability
between cell lines and disease models significantly impacts
overall PDT efficacy for many reasons including differential
PS uptake, PS localization, and differences in the photochemical
and photophysical mechanisms lead to cytotoxicity.101,102 These
factors may contribute to inconsistencies between this study and
previous ones.

The BPD concentration-dependent efficacy observed in this
study could be due to a variety of factors including BPD
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aggregation,85 BPD self shielding,83,103 the high extinction coef-
ficient of BPD,83 and concentration-dependent subcellular
localization of BPD.59 Furthermore, lowering the irradiance
of incident light while maintaining a fixed PDT dose was
shown to increase cytotoxicity associated with 10 μM BPD-
PDT.59 This suggests that oxygen diffusion to the site of photo-
dynamic activity may play a significant role in mediating PDT
efficacy in 3-D OvCa nodules. However, further study into the
disease-specific biological and physical mechanisms that govern
PDT efficacy will be required to fully optimize PDT regimens in
both preclinical and clinical settings.

The findings of the present study indicate that the response of
3-D OvCa nodules to PDT is heterogeneous. Following treat-
ment with the same conditions, some nodules exhibited signifi-
cant reductions in normalized live volume and viability, whereas
others did not (Fig. 4). A number of physical and biological fac-
tors could explain this apparent PDT resistance exhibited by cer-
tain 3-D OvCa nodules. As discussed in a comprehensive review
by Casas et al., variations in PS uptake and efflux, intracellular
PS trafficking, PS aggregation, subcellular localization of the
PS, expression of PDT cytoprotective proteins, hypoxia at tissue
depth, and the specific cell-death pathways activated by PDT,
could all potentially protect target tissues from phototoxicity.104

In addition, light attenuation due to depth-dependent scattering
and absorption is well known to significantly diminish PDT effi-
cacy and cause apparent PDT resistance.105,106 Because the biol-
ogy of seemingly identical 3-D OvCa nodules may be in reality
quite diverse,20 it is possible that variability in any of the above
PDT cytoprotective mechanisms nonuniformly affected PDT
efficacy across 3-D OvCa nodule distributions. An understand-
ing of the specific physical and biological mechanisms that
underlie PDT resistance will be required to design more effec-
tive treatment regimens.

Heterogeneity in the treatment response characteristics of
OvCa nodules may have potential relevance to clinical observa-
tions of advanced stage disease. As discussed in an elegant
review by Bast et al., the growth and treatment response of clini-
cal OvCa are often highly varied.47 Even if small numbers of
treatment resistant OvCa cells persist in the peritoneal cavity
following treatment, recurrence and eventually death can
occur.47 In line with these observations, a previous study by
our group demonstrated that the growth dynamic of 3-D
OvCa nodules is diverse, exhibiting a bimodal log-normal
size distribution.20 It is possible that this variability in OvCa
nodule growth partially reflects the heterogeneity that is typical
of OvCa biology and treatment response.

The present study found that when the delivered PDT dose
was increased from 5 to 10 μM � J∕cm2 for nodules treated
with 0.25 and 1 μM BPD, a significant linear reduction in aver-
age normalized live volume was observed at both 24 and 72 h
post-PDT. In contrast, a nonlinear reduction was observed using
average normalized viability as a treatment response metric
[Figs. 4(a) and 4(b)]. The discrepancy between average normal-
ized viability and average normalized live volume indicated
ambiguity in marginal therapeutic benefit from PDT dose esca-
lation. However, when the normalized live volume and viability
of individual nodules were evaluated using fine-grained analysis
routines, a smaller percentage of residual large and highly viable
nodules were found to be present after 10 μM � J∕cm2 com-
pared to 5 μM � J∕cm2 at both 24 and 72 h post-PDT.
Therefore, considering average normalized live volume, but
not viability, accurately revealed the therapeutic benefit afforded

by increasing PDT dose. Because nodule volume is a key indi-
cator of OvCa progression,7,24–26 these findings suggest PDT
with low concentrations of BPD could yield nodules better
primed for additional therapies29 and could result in better OS
and PFS for patients. Furthermore, these custom fine-grained
analysis routines facilitate the usage of multiple metrics to reveal
heterogeneity and create a picture of treatment response that is
more comprehensive than global averages. This framework,
however, will require further refinement and validation toward
its implementation for treatment planning purposes.

As with all treatment modalities, none of the PDT regimens
evaluated in this study completely eliminated residual large and
highly viable nodules (Fig. 4). This was apparent after compil-
ing individual nodules from a treatment group into a treatment
response distribution based on their normalized viability and
normalized live volume. Individual nodules were segmented
into groups of PDT responders and nonresponders. Although the
methodology underlying this segmentation is statistically robust,
clearly defines responders from nonresponders, and reveals
heterogeneity in treatment response, it does not include a physi-
cally or biologically relevant rationale that underlies segmen-
tation. Segmentation of nodules based on features related to
PDT resistance, such as expression of cytoprotective proteins,
degree of hypoxia, or nodule size, could be a more robust method
to classify nodules as PDT responders versus nonresponders.

The present study demonstrates how in-vitro 3-D platforms
may be a useful tool to identify populations of nodules that do
not fully respond to treatment, allowing for the development of a
combination treatment regimens that can address potentially
problematic diseases. Although promising functional imaging
techniques are currently in development for various cancer
applications, the most commonly used methodologies to evalu-
ate treatment response ignore subtle yet potentially important
aspects of drug–cell interactions.3,10,11 This is especially impor-
tant in context of late-stage OvCa because 80% of patients
develop recurrent disease, indicating that a proportion of cells
did not respond to initial treatment.7,8,27 Along with critical con-
sideration of appropriately defined treatment response metrics,
in-vitro 3-D platforms can be leveraged to aid in the develop-
ment and optimization of rationally designed combination strat-
egies that target problematic residual disease with the goal of
reducing toxicities and improving outcomes.

Acknowledgments
We would like to thank Ms. Sriya Anbil for advice regard-
ing analysis of complex data sets, Dr. Akilan Palanisami for
discussion regarding quantification of photosensitizer photo-
bleaching, and Dr. Bryan Spring for advice regarding image
processing. Dr. Hasan and Dr. Celli wish to acknowledge sup-
port from the National Cancer Institute and the National
Institutes of Health: 1RC1CA146337 (T.H.), R01CA158415
(T.H.), R01CA1609998 (T.H.), and R00CA155045 (J.P.C.).

References
1. P. Therasse et al., “New guidelines to evaluate the response to treatment

in solid tumors. European Organization for Research and Treatment of
Cancer, National Cancer Institute of the United States, National Cancer
Institute of Canada,” J. Natl. Cancer Inst. 92(3), 205–216 (2000).

2. D. C. Sullivan and C. Gatsonis, “Response to treatment series: part 1
and introduction, measuring tumor response—challenges in the era of
molecular medicine,” AJR Am. J. Roentgenol. 197(1), 15–17 (2011).

Journal of Biomedical Optics 098004-11 September 2013 • Vol. 18(9)

Anbil et al.: Impact of treatment response metrics on photodynamic therapy planning. . .

http://dx.doi.org/10.1093/jnci/92.3.205
http://dx.doi.org/10.2214/AJR.11.7083


3. V. Yaghmai et al., “Response to treatment series: part 2, tumor response
assessment—using new and conventional criteria,” AJR Am. J.
Roentgenol. 197(1), 18–27 (2011).

4. J. D. Wolchok et al., “Guidelines for the evaluation of immune therapy
activity in solid tumors: immune-related response criteria,” Clin. Cancer
Res. 15(23), 7412–7420 (2009).

5. N. T. Elliott and F. Yuan, “A review of three-dimensional in vitro tissue
models for drug discovery and transport studies,” J. Pharm. Sci. 100(1),
59–74 (2011).

6. F. Leblond et al., “Pre-clinical whole-body fluorescence imaging:
review of instruments, methods and applications,” J. Photochem.
Photobiol. B 98(1), 77–94 (2010).

7. W. Winter et al., “Tumor residual after surgical cytoreduction in prediction
of clinical outcome in stage IV epithelial ovarian cancer: a Gynecologic
Oncology Group Study,” J. Clin. Oncol. 26(1), 83–92 (2008).

8. E. J. Tanner et al., “Surveillance for the detection of recurrent ovarian
cancer: survival impact or lead-time bias?” Gynecol. Oncol. 117(2),
336–340 (2010).

9. O. Kepp et al., “Cell death assays for drug discovery,” Nat. Rev. Drug
Discov. 10(3), 221–237 (2011).

10. Y. Urano et al., “Selective molecular imaging of viable cancer cells with
pH-activatable fluorescence probes,” Nat. Med. 15(1), 104–109 (2009).

11. J. Grimm et al., “Use of gene expression profiling to direct in vivo
molecular imaging of lung cancer,” Proc. Natl Acad. Sci. U. S. A.
102(40), 14404–14409 (2005).

12. W. Mueller-Klieser, “Three-dimensional cell cultures: from molecular
mechanisms to clinical applications,” Am. J. Physiol. 273(4 Pt 1),
C1109–C1123 (1997).

13. M. Singh, C. L. Murriel, and L. Johnson, “Genetically engineered
mouse models: closing the gap between preclinical data and trial out-
comes,” Cancer Res. 72(11), 2695–2700 (2012).

14. S. Loisel et al., “Relevance, advantages and limitations of animal
models used in the development of monoclonal antibodies for cancer
treatment,” Crit. Rev. Oncol. Hematol. 62(1), 34–42 (2007).

15. N. E. Sharpless and R. A. Depinho, “The mighty mouse: genetically
engineered mouse models in cancer drug development,” Nat. Rev.
Drug Discov. 5(9), 741–754 (2006).

16. F. Pampaloni, E. G. Reynaud, and E. H. Stelzer, “The third dimension
bridges the gap between cell culture and live tissue,” Nat. Rev. Mol. Cell
Biol. 8(10), 839–845 (2007).

17. A. L. Correia and M. J. Bissell, “The tumor microenvironment is a dom-
inant force in multidrug resistance,” Drug Resist. Updat. 15(1–2), 39–49
(2012).

18. G. Y. Lee et al., “Three-dimensional culture models of normal and
malignant breast epithelial cells,” Nat. Methods 4(4), 359–365 (2007).

19. P. A. Vidi, M. J. Bissell, and S. A. Lelievre, “Three-dimensional culture
of human breast epithelial cells: the how and the why,” Methods Mol.
Biol. 945, 193–219 (2013).

20. J. P. Celli et al., “Quantitative imaging reveals heterogeneous growth
dynamics and treatment-dependent residual tumor distributions in a three-
dimensional ovarian cancermodel,” J. Biomed.Opt.15(5), 051603 (2010).

21. I. Rizvi et al., “Synergistic enhancement of carboplatin efficacy with
photodynamic therapy in a three-dimensional model for micrometastatic
ovarian cancer,” Cancer Res. 70(22), 9319–9328 (2010).

22. T. J. Dougherty et al., “Photodynamic therapy,” J. Natl. Cancer Inst.
90(12), 889–905 (1998).

23. R. Siegel, D. Naishadham, and A. Jemal, “Cancer Statistics, 2012,”
CA: Cancer J. Clin. 62(1), 10–29 (2012).

24. V. Guarneri et al., “Achievements and unmet needs in the management
of advanced ovarian cancer,” Gynecol. Oncol. 117(2), 152–158 (2010).

25. W. J. Hoskins et al., “The effect of diameter of largest residual disease
on survival after primary cytoreductive surgery in patients with subop-
timal residual epithelial ovarian carcinoma,” Am. J. Obstet. Gynecol.
170(4), 974–979; discussion 979–980 (1994).

26. J. I. Akahira et al., “Prognostic factors of stage IV epithelial ovarian
cancer: a multicenter retrospective study,” Gynecol. Oncol. 81(3),
398–403 (2001).

27. S. Vaughan et al., “Rethinking ovarian cancer: recommendations for
improving outcomes,” Nat. Rev. Cancer 11(10), 719–725 (2011).

28. D. Chi et al., “Improved progression-free and overall survival in
advanced ovarian cancer as a result of a change in surgical paradigm,”
Gynecol. Oncol. 114(1), 26–57 (2009).

29. J. P. Celli et al., “Verteporfin-based photodynamic therapy overcomes
gemcitabine insensitivity in a panel of pancreatic cancer cell lines,”
Lasers Surg. Med. 43(7), 565–574 (2011).

30. M. Triesscheijn et al., “Photodynamic therapy in oncology,” Oncologist
11(9), 1034–1044 (2006).

31. C. L. Evans et al., “Killing hypoxic cell populations in a 3D tumor
model with EtNBS-PDT,” PLoS One 6(8), e23434 (2011).

32. I. Rizvi et al., “Photoimmunotherapy and irradiance modulation reduce
chemotherapy cycles and toxicity in a murine model for ovarian carci-
nomatosis: perspective and results,” Israel J. Chem. 52(8–9), 776–787
(2012).

33. M. G. del Carmen et al., “Synergism of epidermal growth factor recep-
tor-targeted immunotherapy with photodynamic treatment of ovarian
cancer in vivo,” J. Natl. Cancer Inst. 97(20), 1516–1524 (2005).

34. C. M. Peterson, “Photodynamic therapy of human ovarian epithelial
carcinoma, OVCAR-3, heterotransplanted in the nude mouse,” Am.
J. Obstet. Gynecol. 167(6), 1852–1855 (1992).

35. N. Pfeiffer, “Photodynamic therapy curbs ovarian cancer,” J. Clin. Laser
Med. Surg. 11(3), 151–152 (1993).

36. L. Lilge et al., “Light dosimetry for intraperitoneal photodynamic
therapy in a murine xenograft model of human epithelial ovarian car-
cinoma,” Photochem. Photobiol. 68(3), 281–288 (1998).

37. B. A. Goff et al., “Treatment of ovarian cancer with photodynamic
therapy and immunoconjugates in a murine ovarian cancer model,”
Br. J. Cancer 74(8), 1194–1198 (1996).

38. K. Song et al., “Intraperitoneal photodynamic therapy for an ovarian
cancer ascite model in Fischer 344 rat using hematoporphyrin mono-
methyl ether,” Cancer Sci. 98(12), 1959–1964 (2007).

39. L. Guyon et al., “Photodiagnosis and photodynamic therapy of perito-
neal metastasis of ovarian cancer,” Photodiagn. Photodyn. Ther. 9(1),
16–47 (2012).

40. P. Agostinis et al., “Photodynamic therapy of cancer: an update,”
CA Cancer J. Clin. 61(4), 250–281 (2011).

41. K. A. Cengel, E. Glatstein, and S. M. Hahn, “Intraperitoneal photody-
namic therapy,” Cancer Treat. Res. 134, 493–514 (2007).

42. M. Ascencio et al., “The place of photodynamic therapy in gynecology,”
Gynecol. Obstet. Fertil. 35(11), 1155–1165 (2007).

43. W. Zhong et al., “In vivo high-resolution fluorescence microendoscopy
for ovarian cancer detection and treatment monitoring,” Br. J. Cancer
101(12), 2015–2022 (2009).

44. M. F. Zuluaga and N. Lange, “Combination of photodynamic therapy
with anti-cancer agents,” Curr. Med. Chem. 15(17), 1655–1673 (2008).

45. K. L. Molpus et al., “Intraperitoneal photodynamic therapy of human
epithelial ovarian carcinomatosis in a xenograft murine model,” Cancer
Res. 56(5), 1075–1082 (1996).

46. S. K. Hendren et al., “Phase II trial of debulking surgery and photody-
namic therapy for disseminated intraperitoneal tumors,” Ann. Surg.
Oncol. 8(1), 65–71 (2001).

47. R. C. Bast, Jr., B. Hennessy, and G. B. Mills, “The biology of ovarian
cancer: new opportunities for translation,” Nat. Rev. Cancer 9(6), 415–
428 (2009).

48. L. R. Duska et al., “Combination photoimmunotherapy and cisplatin:
effects on human ovarian cancer ex vivo,” J. Natl. Cancer Inst. 91(18),
1557–1563 (1999).

49. D.K.Armstrong, “Relapsed ovarian cancer: challenges andmanagement
strategies for a chronic disease,” Oncologist 7(90005), 20–28 (2002).

50. Z. Huang et al., “Photodynamic therapy for treatment of solid tumors—
potential and technical challenges,” Technol. Cancer Res. Treat. 7(4),
309–320 (2008).

51. M. Vinci et al., “Advances in establishment and analysis of three-dimen-
sional tumor spheroid-based functional assays for target validation and
drug evaluation,” BMC Biol. 10(1), 29 (2012).

52. S. V. Sharma, D. A. Haber, and J. Settleman, “Cell line-based platforms
to evaluate the therapeutic efficacy of candidate anticancer agents,” Nat.
Rev. Cancer 10(4), 241–253 (2010).

53. M. D. Glidden et al., “Image-based quantification of benzoporphyrin
derivative uptake, localization, and photobleaching in 3D tumor models,
for optimization of PDT parameters,” Theranostics 2(9), 827–839 (2012).

54. J. P. Celli et al., “Imaging and photodynamic therapy: mechanisms,
monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).

55. J. Hatok et al., “In vitro assays for the evaluation of drug resistance in
tumor cells,” Clin. Exp. Med. 9(1), 1–7 (2009).

Journal of Biomedical Optics 098004-12 September 2013 • Vol. 18(9)

Anbil et al.: Impact of treatment response metrics on photodynamic therapy planning. . .

http://dx.doi.org/10.2214/AJR.11.6581
http://dx.doi.org/10.2214/AJR.11.6581
http://dx.doi.org/10.1158/1078-0432.CCR-09-1624
http://dx.doi.org/10.1158/1078-0432.CCR-09-1624
http://dx.doi.org/10.1002/jps.22257
http://dx.doi.org/10.1016/j.jphotobiol.2009.11.007
http://dx.doi.org/10.1016/j.jphotobiol.2009.11.007
http://dx.doi.org/10.1200/JCO.2007.13.1953
http://dx.doi.org/10.1016/j.ygyno.2010.01.014
http://dx.doi.org/10.1038/nrd3373
http://dx.doi.org/10.1038/nrd3373
http://dx.doi.org/10.1038/nm.1854
http://dx.doi.org/10.1073/pnas.0503920102
http://dx.doi.org/10.1158/0008-5472.CAN-11-2786
http://dx.doi.org/10.1016/j.critrevonc.2006.11.010
http://dx.doi.org/10.1038/nrd2110
http://dx.doi.org/10.1038/nrd2110
http://dx.doi.org/10.1038/nrm2236
http://dx.doi.org/10.1038/nrm2236
http://dx.doi.org/10.1016/j.drup.2012.01.006
http://dx.doi.org/10.1038/nmeth1015
http://dx.doi.org/10.1007/978-1-62703-125-7
http://dx.doi.org/10.1007/978-1-62703-125-7
http://dx.doi.org/10.1117/1.3483903
http://dx.doi.org/10.1158/0008-5472.CAN-10-1783
http://dx.doi.org/10.1093/jnci/90.12.889
http://dx.doi.org/10.3322/caac.20138
http://dx.doi.org/10.1016/j.ygyno.2009.11.033
http://dx.doi.org/10.1016/S0002-9378(94)70090-7
http://dx.doi.org/10.1006/gyno.2001.6172
http://dx.doi.org/10.1038/nrc3144
http://dx.doi.org/10.1016/j.ygyno.2009.03.018
http://dx.doi.org/10.1634/theoncologist.11-9-1034
http://dx.doi.org/10.1371/journal.pone.0023434
http://dx.doi.org/10.1002/ijch.v52.8/9
http://dx.doi.org/10.1093/jnci/dji314
http://dx.doi.org/10.1016/0002-9378(92)91786-A
http://dx.doi.org/10.1016/0002-9378(92)91786-A
http://dx.doi.org/10.1111/php.1998.68.issue-3
http://dx.doi.org/10.1038/bjc.1996.516
http://dx.doi.org/10.1111/cas.2007.98.issue-12
http://dx.doi.org/10.1016/j.pdpdt.2011.08.003
http://dx.doi.org/10.3322/caac.v61:4
http://dx.doi.org/10.1007/978-0-387-48993-3_34
http://dx.doi.org/10.1016/j.gyobfe.2007.07.035
http://dx.doi.org/10.1038/sj.bjc.6605436
http://dx.doi.org/10.2174/092986708784872401
http://dx.doi.org/10.1007/s10434-001-0065-x
http://dx.doi.org/10.1007/s10434-001-0065-x
http://dx.doi.org/10.1038/nrc2644
http://dx.doi.org/10.1093/jnci/91.18.1557
http://dx.doi.org/10.1634/theoncologist.7-suppl_5-20
http://dx.doi.org/10.1186/1741-7007-10-29
http://dx.doi.org/10.1038/nrc2820
http://dx.doi.org/10.1038/nrc2820
http://dx.doi.org/10.7150/thno.4334
http://dx.doi.org/10.1021/cr900300p
http://dx.doi.org/10.1007/s10238-008-0011-3


56. L. A. Kunz-Schughart et al., “The use of 3-D cultures for high-through-
put screening: the multicellular spheroid model,” J. Biomol. Screen.
9(4), 273–285 (2004).

57. J. Debnath and J. S. Brugge, “Modelling glandular epithelial cancers in
three-dimensional cultures,” Nat. Rev. Cancer 5(9), 675–688 (2005).

58. J. M. Lee et al., “A three-dimensional microenvironment alters protein
expression and chemosensitivity of epithelial ovarian cancer cells in
vitro,” Lab. Invest. 93(5), 528–542 (2013).

59. I. Rizvi et al., “PDT dose parameters impact tumoricidal durability and
cell death pathways in a 3D ovarian cancer model,” Photochem.
Photobiol. 89(4), 942–952 (2013).

60. C. L. Evans et al., “Visualizing photodynamic therapy response with
time-lapse OCT in an in vitro model of metastatic ovarian cancer,”
Proc. SPIE 7551, 75510J (2010).

61. R. Rahmanzadeh et al., “Ki-67 as a molecular target for therapy in an in
vitro three-dimensional model for ovarian cancer,” Cancer Res. 70(22),
9234–9242 (2010).

62. A. O. Abu-Yousif et al., “PuraMatrix encapsulation of cancer cells,”
J. Vis. Exp. 17(34), e1692 (2009).

63. Y. C. Tung et al., “High-throughput 3D spheroid culture and drug testing
using a 384 hanging drop array,” Analyst 136(3), 473–478 (2011).

64. H. Hosoya et al., “Engineering fibrotic tissue in pancreatic cancer: a
novel three-dimensional model to investigate nanoparticle delivery,”
Biochem. Biophys. Res. Commun. 419(1), 32–37 (2012).

65. Z. Yang and X. Zhao, “A 3D model of ovarian cancer cell lines on pep-
tide nanofiber scaffold to explore the cell-scaffold interaction and
chemotherapeutic resistance of anticancer drugs,” Int. J. Nanomed. 6,
303–310 (2011).

66. M. J. Bissell, H. G. Hall, and G. Parry, “How does the extracellular
matrix direct gene expression?,” J. Theor. Biol. 99(1), 31–68 (1982).

67. K. Lawrenson et al., “In vitro three-dimensional modelling of human
ovarian surface epithelial cells,” Cell Prolif. 42(3), 385–393 (2009).

68. S. Coutier et al., “Effects of fluence rate on cell survival and photo-
bleaching in meta-tetra-(hydroxyphenyl)chlorin-photosensitized Colo
26 multicell tumor spheroids,” Photochem. Photobiol. 73(3), 297–
303 (2001).

69. WHO Handbook for Reporting Results Of Cancer Treatment, World
Health Organization Offset Publication 48, Geneva, Switzerland (1979).

70. F. Cademartiri et al., “Imaging for oncologic staging and follow-up:
review of current methods and novel approaches,” Acta Biomedica
Atenei Parmensis 79(2), 85–91 (2008).

71. B. C. Wilson, M. S. Patterson, and L. Lilge, “Implicit and explicit
dosimetry in photodynamic therapy: a new paradigm,” Lasers Med.
Sci. 12(3), 182–199 (1997).

72. T. S. Mang et al., “Photobleaching of porphyrins used in photodynamic
therapy and implications for therapy,” Photochem. Photobiol. 45(4),
501–506 (1987).

73. B. W. Pogue et al., “Protoporphyrin IX fluorescence photobleaching
increases with the use of fractionated irradiation in the esophagus,”
J. Biomed. Opt. 13(3), 034009 (2008).

74. M. Weston and M. Patterson, “Calculation of singlet oxygen dose using
explicit and implicit dose metrics during benzoporphyrin derivative
monoacid ring A (BPD-MA)-PDT in vitro and correlation with MLL
cell survival,” Photochem. Photobiol. 87(5), 1129–1166 (2011).

75. S. J. Morris, “Real-time multi-wavelength fluorescence imaging of
living cells,” Biotechniques 8(3), 296–308 (1990).

76. I. MacCoubrey, P. Moore, and R. Haugland, “Quantitative fluorescence
measurements of cell viability (cytotoxicity) with a multi-well plate
scanner,” J. Cell Biol. 111(5 pt 2), 58a (1990).

77. M. Rudin and R. Weissleder, “Molecular imaging in drug discovery and
development,” Nat. Rev. Drug Discov. 2(2), 123–131 (2003).

78. M. Ascencio et al., “Protoporphyrin IX fluorescence photobleaching
is a useful tool to predict the response of rat ovarian cancer following
hexaminolevulinate photodynamic therapy,” Lasers Surg. Med. 40(5),
332–341 (2008).

79. S. Anbil et al., “A photobleaching-based PDT dose metric predicts PDT
efficacy over certain BPD concentration ranges in a three-dimensional
model of ovarian cancer,” Proc. SPIE 8568, 85680S (2013).

80. E. L. Eisenhauer et al., “The effect of maximal surgical cytoreduction on
sensitivity to platinum-taxane chemotherapy and subsequent survival
in patients with advanced ovarian cancer,” Gynecol. Oncol. 108(2),
276–281 (2008).

81. M. Andrzejak, M. Price, and D. H. Kessel, “Apoptotic and autophagic
responses to photodynamic therapy in 1c1c7 murine hepatoma cells,”
Autophagy 7(9), 979–984 (2011).

82. E. Buytaert, M. Dewaele, and P. Agostinis, “Molecular effectors of
multiple cell death pathways initiated by photodynamic therapy,”
BBA Rev. Cancer 1776(1), 86–107 (2007).

83. B. Aveline, T. Hasan, and R. W. Redmond, “Photophysical and photo-
sensitizing properties of benzoporphyrin derivative monoacid ring A
(BPD-MA),” Photochem. Photobiol. 59(3), 328–335 (1994).

84. D. Kessel et al., “The role of subcellular localization in initiation of
apoptosis by photodynamic therapy,” Photochem. Photobiol. 65(3),
422–426 (1997).

85. B. M. Aveline, T. Hasan, and R. W. Redmond, “The effects of aggre-
gation, protein binding and cellular incorporation on the photophysical
properties of benzoporphyrin derivative monoacid ring A (BPDMA),”
J. Photochem. Photobiol. B Biol. 30(2–3), 161–169 (1995).

86. B. Aveline and R. Redmond, “Can cellular phototoxicity be accurately
predicted on the basis of sensitizer photophysics?,” Photochem.
Photobiol. 69(3), 306–316 (1999).

87. C. M. Whitacre et al., “Photodynamic therapy of human breast cancer
xenografts lacking caspase-3,” Cancer Lett. 179(1), 43–49 (2002).

88. T. H. Foster et al., “Fluence rate effects in photodynamic therapy of
multicell tumor spheroids,” Cancer Res. 53(6), 1249–1254 (1993).

89. B. C. Wilson, “Photodynamic therapy: light delivery and dosage for
second-generation photosensitizers,” in Photosensitizing Compounds:
Their chemistry, Biology and Clinical Use, Anonymous, Ed.,
pp. 60–77, CIBA Found Symp., Basel, Switzerland (1989).

90. S. G. Parekh et al., “Photodynamic modulation of wound healing with
BPD-MA and CASP,” Lasers Surg. Med. 24(5), 375–381 (1999).

91. P. C. Ana, N. D. Tatiana, and R. H. Michael, “Mechanisms in photo-
dynamic therapy: part two—cellular signaling, cell metabolism and
modes of cell death,” Photodiagn. Photodyn. Ther. 2(1), 1–23 (2005).

92. D. Kessel and Y. Luo, “Photodynamic therapy: a mitochondrial inducer
of apoptosis,” Cell Death Differ. 6(1), 28–35 (1999).

93. D. Kessel, M. G. Vicente, and J. J. Reiners Jr., “Initiation of apoptosis
and autophagy by photodynamic therapy,” Lasers Surg. Med. 38(5),
482–488 (2006).

94. B. Levine and G. Kroemer, “Autophagy in the pathogenesis of disease,”
Cell 132(1), 27–42 (2008).

95. G. Kroemer and B. Levine, “Autophagic cell death: the story of
a misnomer,” Nat. Rev. Mol. Cell. Biol. 9(12), 1004–1010 (2008).

96. A. L. Edinger and C. B. Thompson, “Death by design: apoptosis,
necrosis and autophagy,” Curr. Opin. Cell Biol. 16(6), 663–669 (2004).

97. L. G. Ratkay et al., “Amelioration of antigen-induced arthritis in rabbits by
induction of apoptosis of inflammatory cells with local application of trans-
dermal photodynamic therapy,” Arthritis Rheum. 41(3), 525–534 (1998).

98. A. Castano, T. Demidova, and M. Hamblin, “Mechanisms in photody-
namic therapy: part two—cellular signaling, cell metabolism and modes
of cell death,” Photodiagn. Photodyn. Ther. 2(1), 1–23 (2005).

99. E. Donohue et al., “Inhibition of autophagosome formation by the ben-
zoporphyrin derivative verteporfin,” J. Biol. Chem. 286(9), 7290–7300
(2011).

100. J. J. Reiners, Jr. et al., “Assessing autophagy in the context of photo-
dynamic therapy,” Autophagy 6(1), 7–18 (2010).

101. K. T. Moesta et al., “Lack of reciprocity in drug and light dose depend-
ence of photodynamic therapy of pancreatic adenocarcinoma in vitro,”
Cancer Res. 55(14), 3078–3084 (1995).

102. T. Osaki et al., “Intracellular localization and concentration as well as
photodynamic effects of benzoporphyrin derivative monoacid ring A
in four types of rodent tumor cells,” Cancer Lett. 243(2), 281–292
(2006).

103. I. Georgakoudi, “Singlet oxygen- versus nonsinglet oxygen-mediated
mechanisms of sensitizer photobleaching and their effects on
photodynamic dosimetry,” Photochem. Photobiol. 67(6), 612–625
(1998).

104. A. Casas et al., “Mechanisms of resistance to photodynamic therapy,”
Curr. Med. Chem. 18(16), 2486–2515 (2011).

105. B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption
and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830
(1983).

106. T. S. Mang, “Lasers and light sources for PDT: past, present and
future,” Photodiagn. Photodyn. Ther. 1(1), 43–48 (2004).

Journal of Biomedical Optics 098004-13 September 2013 • Vol. 18(9)

Anbil et al.: Impact of treatment response metrics on photodynamic therapy planning. . .

http://dx.doi.org/10.1177/1087057104265040
http://dx.doi.org/10.1038/nrc1695
http://dx.doi.org/10.1111/php.12065
http://dx.doi.org/10.1111/php.12065
http://dx.doi.org/10.1117/12.843271
http://dx.doi.org/10.1158/0008-5472.CAN-10-1190
http://dx.doi.org/10.3791/1692
http://dx.doi.org/10.1039/c0an00609b
http://dx.doi.org/10.1016/j.bbrc.2012.01.117
http://dx.doi.org/10.2147/IJN
http://dx.doi.org/10.1016/0022-5193(82)90388-5
http://dx.doi.org/10.1111/cpr.2009.42.issue-3
http://dx.doi.org/10.1562/0031-8655(2001)073<0297:EOFROCtpmkset 
http://dx.doi.org/10.1111/php.1987.45.issue-4
http://dx.doi.org/10.1117/1.2937476
http://dx.doi.org/10.1111/php.2011.87.issue-5
http://dx.doi.org/10.1038/nrd1007
http://dx.doi.org/10.1002/(ISSN)1096-9101
http://dx.doi.org/10.1117/12.2010840
http://dx.doi.org/10.1016/j.ygyno.2007.10.022
http://dx.doi.org/10.4161/auto
http://dx.doi.org/10.1016/j.bbcan.2007.07.001
http://dx.doi.org/10.1111/php.1994.59.issue-3
http://dx.doi.org/10.1111/php.1997.65.issue-3
http://dx.doi.org/10.1016/1011-1344(95)07174-Z
http://dx.doi.org/10.1562/0031-8655(1999)069<0306:CCPBAPtpmkset 
http://dx.doi.org/10.1562/0031-8655(1999)069<0306:CCPBAPtpmkset 
http://dx.doi.org/10.1002/(ISSN)1096-9101
http://dx.doi.org/10.1038/sj.cdd.4400446
http://dx.doi.org/10.1002/(ISSN)1096-9101
http://dx.doi.org/10.1016/j.cell.2007.12.018
http://dx.doi.org/10.1038/nrm2529
http://dx.doi.org/10.1016/j.ceb.2004.09.011
http://dx.doi.org/10.1002/(ISSN)1529-0131
http://dx.doi.org/10.1016/S1572-1000(05)00030-X
http://dx.doi.org/10.1074/jbc.M110.139915
http://dx.doi.org/10.4161/auto
http://dx.doi.org/10.1016/j.canlet.2005.11.044
http://dx.doi.org/10.1111/j.1751-1097.1998.tb09102.x
http://dx.doi.org/10.2174/092986711795843272
http://dx.doi.org/10.1118/1.595361
http://dx.doi.org/10.1016/S1572-1000(04)00012-2

	Dartmouth College
	Dartmouth Digital Commons
	9-25-2013

	Impact of Treatment Response Metrics on Photodynamic Therapy Planning and Outcomes in a Three-Dimensional Model of Ovarian Cancer
	Sriram Anbil
	Imran Rizvi
	Jonathan P. Celli
	Nermina Alagic
	Brian W. Pogue
	See next page for additional authors
	Recommended Citation
	Authors


	JBO-130307R 14..14 ++

