
Dartmouth College
Dartmouth Digital Commons

Open Dartmouth: Faculty Open Access Articles

11-1-2010

Image Guided Near-Infrared Spectroscopy of
Breast Tissue In Vivo Using Boundary Element
Method
Subhadra Srinivasan
Dartmouth College

Colin M. Carpenter
Stanford University

Hamid R. Ghadyani
Dartmouth College

Senate J. Taka
Dartmouth College

Peter A. Kaufman
Dartmouth College

See next page for additional authors

Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa

Part of the Engineering Commons, and the Medicine and Health Sciences Commons

This Article is brought to you for free and open access by Dartmouth Digital Commons. It has been accepted for inclusion in Open Dartmouth: Faculty
Open Access Articles by an authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

Recommended Citation
Srinivasan, Subhadra; Carpenter, Colin M.; Ghadyani, Hamid R.; Taka, Senate J.; Kaufman, Peter A.; diFlorio-Alexander, Roberta M.;
Wells, Wendy A.; Pogue, Brian W.; and Paulsen, Keith D., "Image Guided Near-Infrared Spectroscopy of Breast Tissue In Vivo Using
Boundary Element Method" (2010). Open Dartmouth: Faculty Open Access Articles. 3735.
https://digitalcommons.dartmouth.edu/facoa/3735

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/231144447?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3735&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3735&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3735&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3735&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3735&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa/3735?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3735&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


Authors
Subhadra Srinivasan, Colin M. Carpenter, Hamid R. Ghadyani, Senate J. Taka, Peter A. Kaufman, Roberta M.
diFlorio-Alexander, Wendy A. Wells, Brian W. Pogue, and Keith D. Paulsen

This article is available at Dartmouth Digital Commons: https://digitalcommons.dartmouth.edu/facoa/3735

https://digitalcommons.dartmouth.edu/facoa/3735?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3735&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal of Biomedical Optics 15(6), 061703 (November/December 2010)

Image guided near-infrared spectroscopy of breast tissue
in vivo using boundary element method

Subhadra Srinivasan
Dartmouth College
Thayer School of Engineering
Hanover, New Hampshire 03755

Colin M. Carpenter
Stanford University
School of Medicine
Department of Radiation Oncology
Stanford, California 94305

Hamid R. Ghadyani
Dartmouth College
Thayer School of Engineering
Hanover, New Hampshire 03755

Senate J. Taka
Dartmouth College
Department of Computer Science
Hanover, New Hampshire 03755

Peter A. Kaufman
Dartmouth Hitchcock Medical Center
Department of Hematology/Oncology
One Medical Center Drive
Lebanon, New Hampshire 03756

Roberta M. DiFlorio-Alexander
Dartmouth Hitchcock Medical Center
Department of Radiology
One Medical Center Drive
Lebanon, New Hampshire 03756

Wendy A. Wells
Dartmouth Hitchcock Medical Center
Department of Pathology
One Medical Center Drive
Lebanon, New Hampshire 03756

Brian W. Pogue
Keith D. Paulsen
Dartmouth College
Thayer School of Engineering
Hanover, New Hampshire 03755

Abstract. We demonstrate quantitative functional imaging using image-
guided near-infrared spectroscopy (IG-NIRS) implemented with the
boundary element method (BEM) for reconstructing 3-D optical prop-
erty estimates in breast tissue in vivo. A multimodality MRI-NIR system
was used to collect measurements of light reflectance from breast tis-
sue. The BEM was used to model light propagation in 3-D based only
on surface discretization in order to reconstruct quantitative values of
total hemoglobin (HbT), oxygen saturation, water, and scatter. The tech-
nique was validated in experimental measurements from heterogeneous
breast-shaped phantoms with known values and applied to a total of
seven subjects comprising six healthy individuals and one participant
with cancer imaged at two time points during neoadjuvant chemother-
apy. Using experimental measurements from a heterogeneous breast
phantom, BEM for IG-NIRS produced accurate values for HbT in the
inclusion with a <3% error. Healthy breast tissues showed higher HbT
and water in fibroglandular tissue than in adipose tissue. In a subject
with cancer, the tumor showed higher HbT compared to the back-
ground. HbT in the tumor was reduced by 9 μM during treatment. We
conclude that 3-D MRI-NIRS with BEM provides quantitative and func-
tional characterization of breast tissue in vivo through measurement
of hemoglobin content. The method provides potentially complemen-
tary information to DCE-MRI for tumor characterization. C©2010 Society of
Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3499419]

Keywords: optical tomography; breast cancer; image-guided; boundary element
method; near infrared; clinical.
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1 Introduction
Breast magnetic resonance imaging (MRI) is increasingly be-
ing used for screening of the high-risk population,1, 2 detection
and diagnosis of breast cancer,3 and monitoring of neoadjuvant

Address all correspondence to: Subhadra Srinivasan, Dartmouth College, Thayer
School of Engineering, 8000 Cummings Hall, Hanover, New Hampshire, 03755,
United States of America, Tel: 603-646-2119; Fax: 603-646-3699. E-mail: sub-
hadra.srinivasan@dartmouth.edu.

chemotherapy treatment (NACT) of locally advanced disease.4–6

In breast cancer screening, the advantage of conventional
contrast-enhanced (CE) MRI is high sensitivity; but in the di-
agnostic setting the technique is limited by its specificity (rang-
ing from 37 to 97%).7, 8 The specificity of MRI has recently
been improved with the use of dynamic CE-MRI (DCE-MRI)
and MR spectroscopy.8 DCE-MRI images the breast following
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gadolinium injection and provides kinetic parameters such as
signal enhancement ratio, contrast wash-in transfer constant
(Ktrans), contrast wash-out rate constant (Kep), relative blood
flow, relative blood volume, and mean transit time. Proton MR
spectroscopy is also functional, based on detecting elevated lev-
els of total choline compounds (tCho) and increased water by
measuring water-to-fat (W-F) ratios. These techniques have re-
cently been extended to assess the response of primary breast
cancer to NACT of locally advanced disease.9, 10 The metrics
used to differentiate response include tumor volume;5 change in
tCho11 and W-F ratio12 using MR spectroscopy, signal enhance-
ment ratio13 and other kinetics14, 15 through contrast MRI. A
potential drawback associated with MRI is the inability to pro-
vide quantitative and absolute values of physiological parame-
ters. Here, we present a multimodality paradigm that combines
optical techniques with MRI to provide absolute and quantita-
tive values of HbT, oxygen saturation, water, and scatter that is
repeatable and can be used for breast tissue characterization and
evaluation of response to NACT.

Optical technologies using near-infrared (NIR) light (in the
wavelength range of 600–1000 nm) provide measurements of
HbT noninvasively.16 The data are obtained using a probe con-
sisting of optical fibers suitably placed around the periphery
of the breast, which transmit laser light at low power and col-
lect measurements of light reflectance. These measurements are
then analyzed with a model of light propagation in tissue to
provide maps of absorption and scattering coefficients. From
these optical properties, HbT and other associated parameters
can be obtained by spectral fitting. Several studies have investi-
gated the use of stand-alone NIR imaging and spectroscopy for
breast cancer diagnosis and showed intrinsic tumor-to-normal-
tissue contrasts of up to 200% in HbT.17–20 In a cohort of 100
subjects imaged optically, a statistically significant difference
was found between malignant and normal tissue.21 The resolu-
tion of NIR imaging by itself is poor, confounded by the high
optical scattering of tissue. It has been improved in recent stud-
ies through a multimodality approach,22–24 where a combined
MRI-NIR method provides high-resolution quantitative and ab-
solute functional characterization of tissue in vivo. Such an imag-
ing technique uses MRI anatomical structure to guide the opti-
cal parameter recovery. The results complement DCE-MRI by
giving additional tissue vascular and oxygenation information
in vivo that is quantitative and repeatable.

Prior studies have applied this technique to recover 2-D maps
of NIR estimates during clinical breast exams in vivo.24, 25 How-
ever, it is well known that light propagation in tissue is inherently
a 3-D process and 2-D approximations may result in artifacts
or erroneous values.26 3-D problems are plagued by long com-
putational times resulting from the need to create volumetric
meshes of arbitrary tissue shapes and reconstruct optical param-
eters for large numbers of unknowns. The number of parame-
ter estimates can be reduced by using “hard priors,” where the
number of unknowns is proportional to the number of known ho-
mogeneous regions [termed as image-guided NIR spectroscopy
(IG-NIRS)].27 However, traditional techniques based on the fi-
nite element method (FEM) still require volumetric meshing,
which can be time consuming and unreliable and difficult to
automate. The boundary element method (BEM) reduces the di-
mensionality of the computations through surface discretization
(rather than requiring a volume mesh in three dimensions). The

method was found to be 44–72% computationally faster, but
more importantly, it is more reliable because surface meshing is
easily accomplished and robust and more easily automatable.28

Previous studies using BEM have been limited to simulations
and experiments.28 Here, we extend the functionality of BEM
for 3-D multispectral IG-NIRS and provide the first experimen-
tal validation and preliminary 3-D clinical breast imaging results
in vivo. We present data from six healthy subjects and a sub-
ject with cancer at two different time points during neoadjuvant
chemotherapy. The results illustrate that BEM provides quanti-
tative NIR property parameter estimates that allow reliable 3-D
volumetric breast tissue characterization that has the potential
to complement results obtained from MRI.

2 Methods
2.1 MRI Imaging Studies
A 3T Philips MR scanner was used to acquire T1-weighted and
DCE-MR scans. 2-D T1-weighted Spin Echo (TR/TE = 900/10,
flip angle = 90 deg) images were obtained for all subjects. For
the subject with abnormality, regions of interest, determined
by DCE-MR, were recorded by injecting a bolus of contrast
agent (Magnavist) intravenously and taking a series of 3-D T1-
W volume images (TR/TE = 10/6, flip angle 20 deg) after each
minute, beginning 40 s postinjection.

2.2 NIR Imaging Studies
The NIR instrumentation is shown in Fig. 1 and used 16 fibers to
sequentially transmit light from each of multiple laser sources
and deliver the measured signal to a bank of photomultiplier tube
detectors. Light from six individual diode lasers (wavelength
ranges of 660–850 nm) was sequentially delivered through the
fibers to the breast with an intensity modulation frequency of
100 MHz. The amplitude and phase shift of the transmitted light
were recorded at multiple locations around the periphery of the
breast. These frequency domain measurements allow separation
of absorption and scatter processes during image reconstruction.
The fiber-optic cables were nonmagnetic and integrated with a
MR breast coil, allowing NIR data acquisition while the scanner
was in operation. The patient was positioned prone inside the
MRI (3T Philips Achieva, X-series) with the breast pendant
into the fiber-holder interface. Although much of our initial
work positioned the fibers in a circular geometry,29 a version of
the system that conforms to the standard parallel-plate biopsy
geometry27 is also available to facilitate clinical workflow. This
change in geometry does not significantly alter the NIR imaging
performance.

2.3 Image Segmentation and Breast Surface
Rendering

The MR images were segmented into adipose and fibroglandular
(FG) tissues using the T1-weighted MR acquisitions based on
thresholding and region-growing operations applied to the gray-
scale intensities. The image segmentation was accomplished
using a commercial software package (MimicsTM, Materialise
Inc.). An example of this process is shown in Fig. 2. In the subject
with cancer, the corresponding DCE-MRI was used to segment
the lesion. The segmented tissues were surface rendered using
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Fig. 1 (a) Biopsy plate slab interface with slots for fibers, (b) circular breast interface containing optical fibers shown positioned in the MR breast
coil, and (c) integrated mobile cart containing the NIR data collection instrumentation.

the software and exported to apply diffusion light modeling for
image reconstruction.

2.4 BEM-Based Multispectral Image Reconstruction
The diffusion approximation to radiative transport theory has
been successfully used in the past to model light propagation
in highly scattering media.30–32 The BEM was applied to the
diffusion approximation under the assumption that the tissue
being imaged contains homogeneous regions whose boundaries
are known a priori (from MRI).28, 33 It reduces the dimension-
ality of the problem, requiring only surface rather than volume
discretization in three dimension, which is significantly easier
and more reliable to generate. Using this numerical model to
solve the diffusion equation, unknown NIRS parameters can
be reconstructed from boundary measurement of light ampli-
tude and phase. This inverse problem was solved iteratively
using a modified Newton’s method and Levenberg–Marquardt
regularization.34

By applying a BEM model for the diffusion equation, aver-
age region-based IG-NIRS estimates of HbT, oxygen saturation,
water, and scatter were obtained for each of the constituent tis-

sues in the breast. Briefly, the acquired boundary measurements
of light amplitude and phase underwent a calibration proce-
dure to compensate for system offsets due to source–detector
fiber transmission, alignment characteristics, and errors in dis-
cretization or model–data mismatch.35 This calibration proce-
dure, also called homogeneous fitting, used a two-step proce-
dure to estimate the slopes of the log of light intensity and
phase with distance r using (i) analytical solution to an infinite
medium and (ii) Newton–Raphson fitting with a homogeneous
BEM model. Postcalibration, the clinical image reconstructions
were accomplished using a multispectral direct chromophore
and scatter recovery algorithm that has been demonstrated to re-
duce cross-coupling between parameters and provide the most
accurate optical estimates of tissue composition.36, 37 In this re-
construction, concentrations of oxyhemoglobin (HbO), deoxy-
hemoglobin (Hb), water, and scatter were obtained, and ex-
tended indices such as [HbT] = [Hb] + [HbO], and oxygen
saturation StO2 = [HbO]/[HbT] in percent were calculated. The
starting values for the reconstruction were obtained from the
homogeneous fitting procedure, except for water whose starting
value was set at 100%. This recovered the most accurate wa-
ter content in simulations and experiments. The reconstruction
constrained water content to be within the range 0–100%.

Fig. 2 (a) Sample MR coronal image of a healthy subject, (b) thresholding results in a binary mask delineating the FG tissue from the rest of the
breast shown in purple, and (c) binary mask delineating the breast from the background. Surface renderings for the breast outer contour and FG
tissue from 3-D segmentation are shown in (d). This geometry was directly used in the BEM toolbox for NIR image reconstruction.
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Fig. 3 (a) Breast phantom imaged in the MRI-NIR system is shown with a representative MR slice in (b) containing fiducial markers indicating the
positioning of the fibers (in red) and (c) segmented background and inclusion surfaces. These surfaces were used to reconstruct the NIRS parameters
of the phantom shown in (d) with comparison to expected values. Water was reconstructed with 100% accuracy in this case, because it was the
maximum allowable by the reconstruction.

2.5 Patients
The clinical enrollment consisted of seven patients of whom
six were healthy subjects with no known abnormality, and one
was diagnosed with infiltrating ductal carcinoma (IDC). All
subjects provided informed consent and were imaged according
to study protocols approved by the Institutional Review Board
at Dartmouth. NIR measurements were acquired simultaneously
with MRI acquisition in all subjects with no additional increase
in imaging time. Up to six wavelengths were applied during
the NIR exam. The MRI of the subjects was used to provide
anatomical tissue structure for optical image reconstruction.

The subject with cancer was a 36-year-old female volun-
teer diagnosed with a 3-cm, intermediate-grade, triple-negative
(for estrogen, progesterone, and HER2/neu expression), node-
positive IDC with three satellite malignancies in her left breast.
She underwent neoadjuvant chemotherapy, and her chemother-
apy regimen consisted of six cycles of docetaxol/adriamycin/
cylcophosphamide. The subject had a complete pathological re-
sponse subsequent to chemotherapy as confirmed by histology.
Multiple imaging sessions of T1-weighted and DCE-MRI and
NIR measurements were performed over the course of treatment.
The first imaging session occurred 1 day prior to her first cy-
cle of chemotherapy (cycle 1) in the circular geometry. Imaging
sessions thereafter were performed within 48 h of chemotherapy
for cycles 2 and 4 and postchemotherapy, prior to surgery. Out
of these four imaging sessions, the plane of the NIR fibers in
session 1 was offset from the lesion sampled in sessions 2 and
3 by 5 mm. The plane of fibers was consistent in sessions 2 and
3, and optical data from these visits (labeled 1 and 2 in results)
were used to reconstruct the IG-NIRS estimates for background

and tumor tissues. In session 4, the tumor was no longer visible
in the MRI and hence is not shown here.

3 Results
3.1 Experimental Validation in a Breast-Shaped

Phantom
A gelatin phantom was created using a breast mold fabricated
from a segmented breast MR volume. Pig blood was added
to the phantom during preparation to cause absorption due to
hemoglobin and titanium dioxide (TiO2) was added to intro-
duce scattering.38 By measuring the hematocrit of the blood and
converting to HbT, the mixture represented a 14-μM concen-
tration. A cylindrical tube of 30 mm diam filled with a 26-μM
solution was inserted into the gelatin to create an inclusion that
presented a total hemoglobin contrast of ∼2 : 1. A photograph
of the phantom is shown in Fig. 3(a). A homogeneous cylindri-
cal phantom was also made from the same gelatin mixture and
utilized for data calibration. The breast phantom with inclusion
was imaged optically using six wavelengths, and MR images of
the phantom were acquired with fiducial markers to denote fiber
locations; a cross section is shown in Fig. 3(b). The MRI was
segmented to create 3-D surfaces of the breast and inclusion as
shown in Fig. 3(c). These surfaces were used along with optical
frequency domain measurements to reconstruct the NIRS pa-
rameters for the background and the inclusion. The recovered
values in the inclusion are compared to the expected values in
Fig. 3(d). The results show that the error in recovered HbT was
<3%, illustrating that quantitative characterization is possible
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Fig. 4 (a) Representative MRI coronal slices are shown for healthy sub-
jects 1–3 and (b) corresponding surfaces for adipose and fibroglandular
(FG) tissues obtained from MR image segmentation. (c) Same as (a) for
healthy subjects 4–6 imaged in the slab-geometry and (d) correspond-
ing surfaces. Reconstructed estimates of adipose and FG are shown in
(e) the bar graph with standard deviation for these six subjects.

with BEM based on experimental measurements. The error in
oxygen saturation was 6.3%.

3.2 Healthy Breast Tissue Characterization
of Adipose and FG Tissue Types

For healthy breast characterization, the MRI of each subject
was segmented into its adipose and FG tissue structures, and
then surface rendered using MimicsTM. These surfaces along
with a representative MR image for these subjects are shown
in Fig. 4. They were input as the geometry for IG-NIRS image
reconstruction. All NIR parameters were updated during the
iterative reconstruction procedure. Using the BEM spectral
reconstruction with starting values obtained from calibration
and the measured data, IG-NIRS estimates were recovered for
adipose and FG tissues of the breast. The reconstructed results
are shown in Fig. 4(b). The data show that the average HbT in
FG tissue is higher than that of adipose tissue. A similar trend
was observed in water content with FG tissue containing higher
water, when compared to adipose tissue. Oxygen saturation was
slightly increased in FG (72% ± 17%) compared to adipose
(66% ± 12%) tissue. Statistical analysis using paired t-test

showed a p-value of 0.062 for difference in HbT, p-value of
0.34 for oxygen saturation and p-value of 0.054 for difference
in water. The p-values for HbT and water are close to being
statistically significant (p-value = 0.05); however due to the
limited sample size and variation in number of wavelengths
used, it is difficult to draw conclusions from this population.
In the individual subjects, every subject showed higher HbT
and water in FG as compared to adipose tissue. Scattering
estimates were also reconstructed, but an insufficient number
of wavelengths were available to determine their accuracy.

The reconstructions converged in four to six iterations, and
convergence was deemed when the change in projection error
(least-squares difference between measured and model data)
was <0.5% between successive iterations. The normalized pro-
jection error did not drop below 0.5 for clinical data, proba-
bly because of increased noise in the measurements and the
greater approximation in the data-model match in vivo. The
experimental projection error in phantoms dropped to 0.25 in
comparison.

3.3 Imaging Subject with Cancer
The T1-weighted MRI from each session was used to segment
the adipose and FG tissues and the corresponding DCE-MRI was
used to segment the lesions in a semi-automatic way with guid-
ance from radiologist. The segmented surfaces are displayed
in Fig. 5 along with the imaging plane denoted by the fiber
locations (in red).

Following data calibration, the IG-NIRS estimates were re-
constructed for adipose, FG, and tumor tissue and are presented
in Fig. 5(b) for HbT. The results show a reduction in the tumor
hemoglobin from visit 1 to visit 2. The tumor HbT was higher
than the HbT of background tissues (adipose and FG) as well as
higher than the averages from the healthy subjects. A reduction
in the adipose and FG HbT was also observed in visit 2 rela-
tive to visit 1, indicating that both the background and tumor
vasculature have undergone change during treatment. Oxygen
saturation was found to decrease in all tissues, and no noticeable
trend was observed in water content.

4 Discussion
The combined MRI-NIR imaging system used in this study has
been optimized for clinical use and previous work in two dimen-
sions has shown that high-resolution image-guided NIRS pro-
vides important functional information related to breast tissue
vasculature and metabolic activity.25 The development of a BEM
numerical model has allowed us to move toward fully automated
3-D image recovery, a major step forward in terms of processing
clinical data in a systematic manner. Use of frequency-domain
measurements at six wavelengths ensured adequate separation
of NIR absorption and scatter and incorporation of priors from
MRI ensured accurate region-based optical property estimates
in the breast volume at the resolution of the segmented MR. Us-
ing this system, we have evaluated BEM results in a 3-D breast
phantom and in 3-D breast volumes consisting of healthy and
diseased tissues.

BEM-based reconstruction using experimental measure-
ments obtained from a breast-shaped phantom with a 30-mm
inclusion used to mimic tumor showed that quantitative values
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Fig. 5 Surface renderings of adipose, FG, and lesions segmented from T1-weighted MRI and DCE-MRI of subject 7 undergoing NACT are shown
for (a) visit 1 corresponding to cycle 2 and (b) visit 2 corresponding to cycle 4. The red markers indicate optical fiber locations. (c) Reconstructed
IG-NIRS values are displayed for HbT in adipose, FG, and tumor tissues for both visits. The subject experienced a pathologic complete response.

for total hemoglobin could be recovered with an accuracy >97%
(Fig. 3). Oxygen saturation was quantified with 93% accuracy,
and water contrast was 100% accurate. Previous experiments
using cylindrical phantoms have shown that increases in HbT
can be tracked successfully, and the oxygen dissociation curve
can be recovered with an accuracy of >93%.39

The results from healthy subjects show consistently higher
total hemoglobin in FG tissue, nearly twice that of adipose
(Fig. 4). This finding agrees with the expectation that more
blood vessels are found in glandular tissue relative to adipose.40

The HbT values for adipose and FG tissue are comparable to
those estimated in a previous study using MRI-guided NIR char-
acterization in a 2-D circular geometry:24 23.6 ± 7.1 μM as
compared to 22.4 ± 7.3 μM (previously) for FG and 11.3 ±
8.3 μM as compared to 17.1 ± 3.2 μM (previously) for fat. The
differences may arise from a combination of factors, such as in-
tersubject variability and 2-D versus 3-D image recovery. It is
well known that NIR imaging in three dimensions is more accu-
rate than two dimensions26 since light propagation is inherently
a 3-D process.

Situations where the 2-D NIR imaging plane does not contain
the regions of interest necessitate the use of a 3-D image forma-
tion procedure. However, even in three dimensions, the location
of the imaging plane has an impact on the recovered contrast
and can result in underestimation of true contrast. Results from
simulations have shown that the accuracy in HbT drops by 2.3%
for every 1 mm of distance the NIR imaging plane is displaced
from the center of the tumor.41 Thus, a fiber array placement
for 10 mm from the center of the tumor would translate into

an error of 23% in HbT, which is a significant underestimation
of contrast. This issue is currently being addressed by adding
the capability of acquiring multiple planes of data to reduce the
dependence on optical fiber placement.

In the subject with cancer, the higher HbT recovered in the
tumor is consistent with the expectation that breast tumors asso-
ciated with IDC are more vascularized than surrounding normal
tissues.40 The tumor HbT was also higher than the average from
the healthy tissues as well as the background values in the same
breast. Indeed, studies examining relationships between HbT
obtained from NIR tomography and histopathology measures
of mean blood vessel density have shown statistically signifi-
cant correlations.21

In this subject undergoing treatment, a significant drop
(∼9 μM)—nearly 25% in tumor HbT—was observed, decreas-
ing from 36.4 μM in visit 1 to 27.8 μM in visit 2 (see Fig. 5). The
background values for adipose and fibroglandular tissues were
reduced as well. Traditionally, imaging modalities are used to
analyze tumor response to chemotherapy, but the response of
surrounding tissue is less clear. Because chemotherapy oper-
ates by killing cancer cells, it is likely to affect the extracellular
matrix of surrounding cells as well, which may account for
the observed changes. Previous studies have shown that breast
tissue composition is affected by hormonal changes during the
course of the menstrual cycle.17, 42 It is possible that NACT may
induce hormonal changes that alter breast composition. For ex-
ample, in a recent study reviewing 420 patients treated from
1982 to 2004 with different NACT combinations,43 23% of the
patients had NACT-induced variations in HR status. Studying
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tissue response in the manner described here will allow us to
identify whole breast composition changes during treatment.

The assumption behind BEM approach to modeling the
breast tissue is that the tissue contains several homogeneous
regions with well-defined boundaries. To address the hetero-
geneity within tissue, a coupled FEM-BEM method may be
more suitable.44 Here, we have focused on quantitative bulk
average values of the different types of tissues.

In summary, we have provided in vivo 3D breast tissue es-
timates using BEM in an IG-NIRS setting with healthy and
disease tissue undergoing NACT. Further pilot and phase 1 clin-
ical trials are ongoing. This paper demonstrates the ability to
combine NIRS with MRI to provide quantitative estimates of
vasculature through measurement of hemoglobin content re-
constructed with a 3-D BEM approach involving only surface
discretization and to supply complementary information through
a multimodal imaging method.
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