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Fast segmentation and high-quality three-dimensional
volume mesh creation from medical images for diffuse
optical tomography
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Brian W. Poguea
aDartmouth College, Thayer School of Engineering, Hanover, New Hampshire 03755
bKitware Inc., 28 Corporate Park Drive, Clifton Park, New York 12065
cUniversity of Birmingham, School of Computer Science, Edgbaston, Birmingham, B15 2TT, United Kingdom

Abstract. Multimodal approaches that combine near-infrared (NIR) and conventional imaging modalities have
been shown to improve optical parameter estimation dramatically and thus represent a prevailing trend in NIR
imaging. These approaches typically involve applying anatomical templates from magnetic resonance imaging/
computed tomography/ultrasound images to guide the recovery of optical parameters. However, merging these
data sets using current technology requires multiple software packages, substantial expertise, significant time-com-
mitment, and often results in unacceptably poor mesh quality for optical image reconstruction, a reality that rep-
resents a significant roadblock for translational research of multimodal NIR imaging. This work addresses these
challenges directly by introducing automated digital imaging and communications in medicine image stack seg-
mentation and a new one-click three-dimensional mesh generator optimized for multimodal NIR imaging, and
combining these capabilities into a single software package (available for free download) with a streamlined work-
flow. Image processing time and mesh quality benchmarks were examined for four common multimodal NIR use-
cases (breast, brain, pancreas, and small animal) and were compared to a commercial image processing package.
Applying these tools resulted in a fivefold decrease in image processing time and 62% improvement in minimum
mesh quality, in the absence of extra mesh postprocessing. These capabilities represent a significant step toward
enabling translational multimodal NIR research for both expert and nonexpert users in an open-source platform. ©
The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part

requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.18.8.086007]
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1 Introduction
Diffuse optical tomography (DOT) is a volumetric optical im-
aging technique that relies on modeling light transport in tissue
using the diffusion approximation, which is generally applicable
in scatter dominated systems. The spectral measure of the dif-
fuse transport of near-infrared light through soft tissue can pro-
vide the ability to image functional tissue information such as
hemoglobin oxygenation and water fraction, which can be use-
ful as a noninvasive means of identifying cancer.1–3 This method
has also been proven successful by the use of luminescence
probes using, for example, fluorescence markers to allow quan-
titative molecular imaging of functional exogenous reporters.4,5

Light modeling can be done analytically,6 providing high accu-
racy and computational speed, but only on simple and domi-
nantly homogeneous geometries. Numerical approaches allow
solutions to be computed for more complex geometries, but
require more computational time as well as a discrete represen-
tation (volume mesh) of the domain.7,8 Due to the generally poor
spatial resolution of DOT, the prevailing trend in the field is
toward combining it with other imaging modalities and incor-
porating high-resolution tissue structural information in the

image recovery algorithm. Notable examples of this include
computed tomography (CT) or magnetic resonance imaging
(MRI)-guided DOT, and these techniques provide the potential
for increased accuracy.9–12 Although the details of finite-
element-based methods for modeling light transport in tissue
are well covered in literature,13–21 the computational packages
available for such modeling have until now included quite lim-
ited mesh creation tools or no mesh creation tools at all. In this
work, an integrated and freely available software package is out-
lined and tested, which allows users to go all the way from
import of standard digital imaging and communications in medi-
cine (DICOM) images (and other related formats) to segmenta-
tion and meshing, and through to light simulation and property
recovery. Image-guided DOT is very dependent on the ability to
easily produce high-quality three-dimensional (3-D) volume
meshes from medical images, and the process of mesh creation
is a significantly underappreciated but complex issue, which is
directly solved in many cases by software such as this.

The software tool developed at Dartmouth College and
University of Birmingham, United Kingdom, called Nirfast, is
a finite-element-based package for modeling near-infrared
light transport in tissue for medical applications.22,23 It is open
source, free, and cross platform as developed under MATLAB
(Mathworks Inc.), which also allows user-friendly understand-
ing and modifications. Applications of Nirfast are diverse,
including optical modeling for small animal imaging,24–27 breast
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imaging,3 brain imaging,28,29 and light dose verification in pho-
todynamic therapy of the pancreas.

Accurate diffusion modeling in optical tomography requires
a 3-D geometry since the photon scattering is in all directions.20

Since the core finite element method (FEM) code of Nirfast is
based on MATLAB,22 this has in the past hindered its ability to
allow for easy coupling to highly complex 3-D meshing tools.
One issue stems from the inability of MATLAB to efficiently
visualize large 3-D meshes, while another issue is the necessity
for custom image processing tools when dealing with an assort-
ment of different medical image types and formats. Using a
visualization toolkit/insight segmentation and registration tool-
kit-based platform, which itself is an open-source application,
for segmentation and meshing has helped to address these issues
by providing a seamless coupling within Nirfast. Providing the
tools and workflow needed to create an FEM mesh from a vari-
ety of different types of medical images and seamlessly using
this mesh for light transport modeling are essential to making
DOT accessible and useful.

The current version of Nirfast includes full-featured segmen-
tation and mesh creation tools for quickly and easily creating
high-quality 3-D finite-element meshes from medical images.23

The segmentation tools have been developed in collaboration
with Kitware Inc. (Clifton Park, NY). Creating suitable volumet-
ric meshes of complex tissue geometries is a particular challenge
for multimodal DOT, due to the variety of contrast characteris-
tics present in different imaging modalities and tissue types/
models. Manual manipulation of the segmentation and mesh
creation process often requires an overwhelming time invest-
ment, and high mesh element quality is notoriously difficult
to ensure. It is also very important to retain both the outer
and inner region surfaces (internal boundaries) in a mesh to
allow the application of prior knowledge for both the forward
and inverse models. Segmentation is rarely fully automated
because some manual manipulation or input is standard for
many complex problems, but by providing a customized collec-
tion of semiautomated routines, it is possible to substantially
reduce the amount of manual touch-up required. There are vari-
ous mesh creation tools available either commercially or freely,
but each has its own limitations in application to optical tomog-
raphy. For example, MeshLab is an open-source tool for creating
unstructured 3-D triangular meshes, but has no semiautomated
segmentation routines30 and is also lacking some workflow fea-
tures such as the ability to undo the last action. Mimics is a com-
monly used commercial package designed for medical image
processing, but mesh creation requires a great deal of manual
input, and it has difficulty with multiple-region problems.31

Netgen is a freely available 3-D tetrahedral mesh generator,
but has limitations with multiple-region problems.32 Some
other mesh creation tools include DistMesh,33 iso2mesh,34

and quality mesh generation,35 but these are not linked to seg-
mentation tools per se. There is no freely available tool that
incorporates all of the workflow elements needed for segmen-
tation and mesh creation in optical tomography in a seamless
manner. The new tools in Nirfast help to address these issues,
and in this study, their capabilities are tested and quantified in a
series of cases which are representative of key application areas.

2 Materials and Methods
The segmentation and mesh creation tools in Nirfast allow for a
variety of different inputs, including standard DICOM formats
for medical images, general image formats (stacks of bmp, jpg,

png, etc.), and structured geometry formats (vtk, mha, etc.). It
can be used for a variety of different medical imaging modal-
ities, such as CT, MR, ultrasound, and microCT. Both automatic
and manual means of segmenting these images have been pro-
vided, and mesh creation is fully automated with customizable
parameters.

The capability of these tools is demonstrated on four differ-
ent cases that are relevant to the modeling of light propagation in
tissue and optical tomography: small animal imaging, breast im-
aging, brain imaging, and light dose modeling in photodynamic
therapy of the pancreas. The small animal example used a stack
of CT images of the front portion of a mouse, consisting of 30
axial slices of 256 by 256 pixels, with a slice thickness of
0.35 mm. The images were taken on a Phillips MR Achieva
medical system, in the form of a DICOM stack. The breast
example used a stack of T1-weighted MR images, consisting
of 149 coronal slices of 360 by 360 pixels, with a slice thickness
of 0.64 mm. The images were taken on a Phillips MR Achieva
medical system, in the form of a DICOM stack. The brain exam-
ple used a stack of T1-weighted MR images, consisting of 256
axial slices of 256 by 256 pixels, with a slice thickness of 1 mm.
The images were taken on a Siemens Trio 3T scanner and are
stored in .hdr and .img files. The pancreas example used a stack
of arterial phase CT images, consisting of 90 axial slices of 512
by 512 pixels, with a slice thickness of 1 mm. The images were
taken on a Seimens Sensation 64 CT system, in the form of a
DICOM stack. In each case, the appropriate modules were used
to maximize the quality of the resulting mesh and increase the
speed of the entire process.

The general procedure for processing the images follows:
First, the medical images are imported into the segmentation
interface, shown in Fig. 1. Next, automatic segmentation mod-
ules are used to identify different tissue types and regions as
accurately as possible. See Table 1 for the steps used in each
case, as well as parameter values. The modules and their respec-
tive parameters are detailed in Table 2. Explanations of the
major segmentation modules are described below.

The iterative hole-filling algorithm classifies small volumes
within a larger region as part of the outer region. In each iter-
ation, a voting algorithm determines whether each pixel is filled
based on the percentage of surrounding pixels that are filled, a
ratio defined as the majority threshold.36 The number of itera-
tions controls the maximum size of holes and cavities filled.
This is useful as a final step for any segmentation, to ensure
that each tissue type region is homogeneous and lacking unin-
tended holes. The K-means and Markov random field module
performs a classification using a K-means algorithm to cluster
grayscale values and then further refines the classification by
taking spatial coherence into account.37 The refinement is done
with a Markov random field algorithm. The essential minimiza-
tion function governing this module is given below, where x is
the set of grayscale values, S is the k sets of classification
groups, and u is the set of mean values in each S.

arg minS
Xk

i−1

X

xj∈Si

kxj − uik2 (1)

This method is most relevant to situations where the grayscale
values and spatial location of different tissue types show signifi-
cant differences. It is used as a first step in the segmentation
process after any image processing has been applied to the medi-
cal images. The MR bias field correction module removes
the low-frequency gradient often seen in MR images, using
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the nonuniform intensity normalization (N3) approach.38,39 This
bias is largely caused by the spatial dependence of the receiving
coil and can cause other segmentation modules to be ineffective
due to the range of grayscale values produced in each region.
This module is useful for all MRI data, as well as other imaging
modalities that may produce low-frequency gradients in the
images. It is applied before any segmentation modules to ensure
that the gradient does not adversely affect the segmentation
process. The MR breast skin extraction module helps extract the
skin in MR breast images, as it is often lumped in with the glan-
dular region by other automatic modules. It is a specially
designed module that uses several other filters in performing
the skin extraction: cropping, thresholding, dilation, connected
component thresholding, hole filling, and Boolean operations.
This should be used as a first step after medical image process-
ing for MR breast data where the skin is visible. Thresholding is
a fundamental module that identifies a particular range of gray-
scale values as a single region.40 It is most useful when tissue
types have distinct ranges of grayscale values with negligible
overlap and is used at many stages in segmentation to identify
and separate regions. Region dilation and erosion expand or
contract a single region by a specified number of pixels in all
directions.41 This can be useful as an alternate method of hole
filling, by performing a dilation followed by an erosion of the
same magnitude. It can also be used to remove insubstantial
components of a volume by performing an erosion followed by
a dilation of the same magnitude. An example of this would be
removing the ears in a mouse model, due to the extremely small
volume. Finally, dilation and erosion can be used to correct

region sizing in cases where K-means has produced regions
that are too small or large.

After automatic segmentation, the regions are manually
touched up using a paintbrush in order to fix any remaining
issues with the segmentation such as stray pixels or holes.
Finally, the segmentation is provided as an input to the meshing
routine, which creates a 3-D tetrahedral mesh from the stack of
two-dimensional (2-D) masks in a single run. This eliminates
intermediate steps such as creating 3-D surfaces and thus requires
less mesh preprocessing. The resulting mesh is multiregional
and can preserve the structural boundaries of segmented tissues.
The user has control over element size, quality, and approxima-
tion error. For ease of use, these values are set automatically
based on the segmentation and medical image information,
and no prior knowledge of mesh generation is required to use
the tool.

The volume meshing algorithm is unique and based on the
computational geometry algorithms library (CGAL)42 and con-
sists of several new features and implementations that are briefly
outlined. The CGAL mesh generation libraries are based on a
meshing engine utilizing the method of Delaunay refinement.43

It uses the method of restricted Delaunay triangulation to
approximate one-dimensional curved features and curved sur-
face patches from a finite set of point samples on a surface44,45

to achieve accurate representation of boundary and subdividing
surfaces in the mesh. One very important feature that is of
importance is that the domain to be meshed is a region of
3-D space that has to be bounded and the region may be con-
nected or composed of multiple components and/or subdivided

Fig. 1 The interface for segmentation of tissue types in medical images is shown, with 3-D orthogonal views at right and histogram information at left.
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in several subdomains. The flexibility of this volume meshing
algorithm allows the creation of 3-D volumes consisting of sev-
eral nonoverlapping regions, allowing the utilization of structural
prior information in diffuse optical imaging. The output mesh
includes subcomplexes that approximate each input domain fea-
ture as defined in the segmented mask described above. During
the meshing phase, several parameters can be defined to allow
optimization of 3-D meshing, consisting of surface facet settings
and tetrahedron size, which are detailed in Table 3.

Once the volumetric mesh has been created, a new feature
has been added to allow the users to further optimize the 3-D
mesh utilizing the Stellar mesh improvement algorithm.46 This
optimization routine improves tetrahedral meshes so that their
worst tetrahedra have high quality, making them more suitable
for finite element analysis. Stellar employs a broad selection of
improvement operations, including vertex smoothing by non-
smooth optimization, stellar flips and other topological transfor-
mations, vertex insertion, and edge contraction. If the domain
shape has no small angles, Stellar routinely improves meshes so
that the smallest dihedral angle is >30 deg and the largest dihe-
dral angle is <140 deg.

Reconstructions were performed for the small animal case
with meshes created from segmentations in Mimics and Nirfast,
using the optimization tools in each. The nude mouse was
implanted with tumor cells in the animal’s brain, injected with

Table 1 Time benchmarks for the segmentation and mesh creation of
four different imaging cases: brain, pancreas, breast, and small animal,
with the key steps in accurate segmentation identified and the time
required for each step specified.

Brain

Step Time (min) Parameters

Importing DICOMs 0.15

K-means 0.72 6 classes, 0.001 error tol., 1
smoothing factor, 100 iter.

Iterative hole filling 0.17 1 radius, 1 majority threshold,
10 maximum iterations

Manual touch-up 2.20 fixing larger holes that were
not caught by hole filling

Launching mesher 0.12

Mesh creation 2.28 2.00 mm tet/facet size, default
values

Total 5.64

Breast

Step Time (min) Parameters

Importing DICOMs 0.10

Cropping 0.01 Bounding left breast

Bias correction 0.10 4 downsample factor,
100 × 50 × 50 iter.,
200 spline dist.

Skin extraction 0.22 100 thresh., 1 open. rad.,
30 iter., 25 maj. thresh.,
1 dil. rad.

K-means 0.05 3 classes, 0.001 error tol., 1
smoothing factor, 100 iter.

Region dilation 0.08 1 dilation radius

Iterative hole
filling

0.01 1 radius, 1 majority threshold,
10 maximum iterations

Manual touch-up 16.05 Fixing artifacts near chest wall,
and stray pixels

Launching mesher 0.12

Mesh creation 0.50 1.29 mm tet/facet size, default
values

Total 17.24

Small animal

Step Time (min) Parameters

Importing DICOMs 0.15

Cropping 0.01 Bounding the animal

Thresholding 0.03 140 lower threshold, 7023
upper threshold

Table 1 (Continued).

Small animal

Step Time (min) Parameters

Iterative hole
filling

0.01 1 radius, 1 majority threshold,
10 maximum iterations

Manual touch-up 14.13 Creating interior regions,
fixing stray pixels

Launching mesher 0.16

Mesh creation 0.08 0.70 mm tet/facet size,
default values

Total 14.57

Pancreas

Step Time (min) Parameters

Importing DICOMs 0.15

Cropping 0.01 Bounding the pancreas

K-means 0.13 3 classes, 0.001 error tol.,
1 smoothing factor, 100 iter.

Iterative hole
filling

0.43 1 radius, 1 majority threshold,
10 maximum iterations

Manual touch-up 9.88 Fixing misclassified blood
vessels, stray pixels

Launching mesher 0.17

Mesh creation 1.58 1.40 mm tet/facet size,
default values

Total 12.35
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Licor IRDye-800CW EGF, and imaged at Dartmouth College
with an MRI-fluorescence molecular tomography system
using a protocol described in a previous publication.47

Fluorescence optical data from eight source and detector loca-
tions positioned evenly around the mouse head were calibrated
in Nirfast and used in reconstruction.

3 Results
The time of each step in segmentation and meshing was
recorded for all cases, and the results are shown in Table 1.
A visualization of a mesh for each case is shown in Figs. 2–5

for illustration. Using the case of the pancreas, the time taken
for segmenting and creating a mesh using the tools in Nirfast
was compared with that of the commercial package Mimics,
designed for medical image processing.31 As seen in Fig. 6,
Nirfast shows drastic improvements in the speed of both seg-
mentation and meshing. It is worth noting that postprocessing
mesh improvements have not been applied to the Mimics mesh,
other than tools available in Mimics.

The resulting 3-D tetrahedral meshes from both programs
were then analyzed to assess element quality. Also analyzed
was a new mesh optimization feature in Nirfast. This is an
optional procedure that searches the mesh for poor-quality ele-
ments and attempts to fix them to improve quality, as defined
below. It can take a significant amount of time for large mesh
sizes, but can vastly increase the quality. In this case, optimiza-
tion took 15 min. The meshes were made to have a similar num-
ber of nodes: 224,049 for the Mimics mesh, 224,445 for the
Nirfast mesh, and 224,989 for the optimized Nirfast mesh.
The metric used for quality criterion is the sine of minimum
dihedral angle of each tetrahedron. Values close to zero would
indicate an almost flat element. Such elements can cause loss of
numerical accuracy as well as make the stiffness matrix in the
FEM formulation ill-conditioned. The optimal value of this
quality would be sinð70.52 degÞ ¼ 0.942 for an equilateral
tetrahedron; however the upper bound is 1.0. Figure 7 shows
the quality histograms using Mimics, Nirfast, and mesh optimi-
zation in Nirfast. The minimum quality for each case respec-
tively was 0.06, 0.12, and 0.65, with average quality values of
0.71, 0.73, and 0.77.

Figure 8 shows the reconstruction results in the mouse head
using the Mimics mesh and the Nirfast mesh, displaying fluo-
rescence yield overlaid on the MR images. The recovered fluo-
rescence yield for each region in both cases is reported in
Table 4.

4 Discussion
New segmentation and mesh creation tools have been imple-
mented in Nirfast, with the ability to work from the variety
of medical images encountered in optical tomography. The effi-
cacy of these tools has been compared with the commercial
package Mimics in a case study. The minimum and average
tetrahedron element quality values are better using Nirfast (espe-
cially when using mesh optimization). In particular, the mini-
mum quality is 62% higher relative to the optimal value using
Nirfast. Low-quality elements can produce erroneous numerical
solutions by several orders of magnitude, or even prevent a sol-
ution from being computed, so this improvement in the mini-
mum quality threshold is essential for DOT. There is a large
difference in the amount of time spent, with Nirfast being far
more efficient by approximately fivefold. In segmentation,
this is partly affected by the efficiency of the automatic segmen-
tation methods, and also by the availability of many advanced
segmentation tools that are particularly useful for the typical
contrast profiles seen in MR/CT. A good example is breast im-
aging using MR guidance, where low-frequency gradients are
often seen in the images. In the past, this has often hindered
the ability to segment these images, as grayscale values of the
same tissue type will no longer be in the same range.48 These
gradients can be easily removed using MR bias removal, thus
greatly reducing the amount of manual touch-up needed after
automatic segmentation. In meshing, the improved computational
time is in part due to the fact that the new meshing tools are

Table 2 List of automated segmentation modules available for iden-
tifying tissue types, including an explanation of the parameters in each
case.

Segmentation
module User-controlled parameters

Iterative hole
filling

• Desired hole radius

• Majority threshold—number of pixels >50%
required to fill a pixel; this has to do with the
curvature of target holes

• Number of iterations

K-means
classification
and Markov
random field

• Number of classes to identify as different
regions (tissue types)

• Error tolerance for clustering grayscale values
into different classes

• Degree of smoothness on the classified regions

• Number of iterations

MR bias field
correction

• Downsample factor—downsamples the image
to improve computational time of bias correction

• Number of iterations—three values controlling
the computational time of a three-part process in
bias correction

• Spline distance—controls grid resolution,
which will affect computational time

MR breast skin
extraction

• Threshold below which tissue is considered
to be skin/air

• Radius of the morphological opening kernel
for extracting the largest component of the
image (the breast)

• Number of iterations

• Majority threshold—number of pixels >50%
required to fill a pixel; this has to do with the
curvature of the breast

• Dilation radius—thickness of the skin

Thresholding • Lower and upper thresholds—values between
which grayscale values are classified as a region

Region dilation
and erosion

• Dilation or erosion radius—amount by which
to dilate or erode the region
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Table 3 List of parameters controlling the 3-D tetrahedral mesh creation, including description of the function of each parameter.

Meshing parameter Description

Angle This parameter controls the shape of surface facets. It is a lower bound for the angle (in degree) of surface facets.
When boundary surfaces are smooth, the termination of the meshing process is guaranteed if the angular bound is
at most 30 deg.

Size This parameter controls the size of surface facets. Each surface facet has a surface Delaunay ball, which is a ball
circumscribing the surface facet and centered on the surface patch. The parameter facet_size is either a constant
or a spatially variable scalar field, providing an upper bound for the radii of surface Delaunay balls.

Distance This parameter controls the approximation error of boundary and subdivision surfaces. It is either a constant or a
spatially variable scalar field. It provides an upper bound for the distance between the circumcenter of a surface facet
and the center of a surface Delaunay ball of this facet.

Tetrahedron quality This parameter controls the shape of mesh cells. It is an upper bound for the ratio between the circumradius of a mesh
tetrahedron and its shortest edge.

Tetrahedron size This parameter controls the size of mesh tetrahedra. It is set as a scalar (mm) and provides an upper bound on the
circumradii of the mesh tetrahedra.

Fig. 2 Original MRI axial slice of the brain (a), segmentation of different tissue types (b), and the 3-D tetrahedral mesh for the brain (c), showing the
regions as different colors: red is the skin, yellow is the cerebral spinal fluid, green is the skull, blue is the white matter, and orange is the gray matter.

Fig. 3 Original CT slice of the pancreas and surrounding tissue (a), segmentation of different tissue types (b), and the 3-D tetrahedral mesh for the
pancreas (c), showing the regions as different colors: green indicates the blood vessels and red is pancreas and surrounding tissue.
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completely automatic and do not require any fixing after mesh
creation. The metrics used for speed and quality in comparison
with Mimics account for all pre- and post-processing done using
tools available in Mimics to improve mesh quality, but not any
external tools that may be used separate from Mimics. For
example, 3-matic is also a tool marketed by Materialise, capable
of postprocessing mesh quality improvement, which could sig-
nificantly improve the quality of meshes produced by Mimics.

An advantage of the Nirfast package that is not evident from
the time benchmarks is the ease of use in the workflow. Since the
entire package has been designed around seamlessly segment-
ing, creating a mesh, modeling light transport, and then visual-
izing the result, it is much easier to use than a combination of
packages that are not optimized for optical tomography. In
reconstruction results, as seen in Fig. 8, the recovered

Fig. 4 Original MRI slice of the breast (a), segmentation of different tissue types (b), and the 3-D tetrahedral mesh for the breast (c), showing the regions
as different colors: red is the glandular tissue and green is other breast tissue.

Fig. 5 Original CT slice of the mouse (a), segmentation of different tissue types (b), and the 3-D tetrahedral mesh for the mouse (c), showing the regions
as different colors: red is general tissue, green indicates the brain, and yellow is the tumor.

Fig. 6 Time comparison of segmentation and mesh creation from pan-
creas CT between Nirfast and the commercial package Mimics.

Journal of Biomedical Optics 086007-7 August 2013 • Vol. 18(8)

Jermyn et al.: Fast segmentation and high-quality three-dimensional volume mesh creation. . .



fluorescence yield is very similar between Mimics and Nirfast.
In fact, there is a small improvement in the tumor and tumor
boundary to background tissue fluorescence yield contrast
recovered. This indicates that the new tools do not adversely
affect reconstruction, despite saving significant time during seg-
mentation and mesh creation. Furthermore, the higher minimum

element qualities ensure that numerical issues do not arise with
generating forward data on a poor-quality mesh, which can often
cause a reconstruction to fail entirely and terminate before con-
verging upon a solution.

The tools have been presented with a focus on optical tomog-
raphy and the types of medical images often encountered in
image-guided optical tomography. However, these tools could
certainly be used for other applications in which it is useful
to have a 3-D tetrahedral mesh created from 2-D image slices,
such as electrical impedance tomography. One of the advantages
of the meshing tools presented is the fact that interior region
surfaces are maintained in the mesh, as opposed to simply label-
ing interior elements based on region proximity. This is very
important in FEM modeling for optical tomography, as having
the boundary of a surface inaccurately represented can lead to
poor quantification.49

5 Conclusion
Tools have been created to allow for segmentation and 3-D tetra-
hedral mesh creation from a variety of medical images and sys-
tems used in optical tomography applications. These tools show
promising computational time and element quality benchmarks.
The ease and speed of segmentation and meshing is very useful
in promoting the use of optical tomography, which has long

Fig. 7 Histograms comparing mesh element quality between the commercial package Mimics and the tools developed in Nirfast. Also shown is the
quality histogram when using the mesh optimization feature in Nirfast. No subsequent postprocessing improvements were applied to the Mimics mesh
(but are available in the 3-matic package).

Fig. 8 Reconstructed fluorescence yield overlaid on sagittal MR images
of the mouse head, based on reconstructions on a mesh created in
Mimics (a) and in Nirfast (b). The fluorescence tomographic reconstruc-
tions are based on the segmentation of tissue types and region-based
reconstruction on the resulting tetrahedral meshes.

Table 4 Recovered fluorescence yield for each region in
reconstruction using the mouse head. Results are reported on both
the Mimics- and Nirfast-created meshes.

Tissue region

Recovered fluorescence
yield in Mimics mesh

(mm−1)

Recovered fluorescence
yield in Nirfast mesh

(mm−1)

Background tissue 0.0352e − 4 0.0350e − 4

Brain 0.0802e − 4 0.0793e − 4

Tumor boundary 0.2601e − 4 0.2609e − 4

Tumor 0.0865e − 4 0.0870e − 4
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suffered from long, difficult, and nonrobust meshing proce-
dures. Furthermore, the available automatic segmentation mod-
ules provide essential tools for many different types of medical
images, particularly in regard to artifacts often seen in MR
images. The tools are provided as part of a complete package
designed for modeling diffuse light transport in tissue, allowing
for a seamless workflow that has never before been available.
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