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Dual-channel red/blue fluorescence dosimetry with
broadband reflectance spectroscopic correction
measures protoporphyrin IX production during
photodynamic therapy of actinic keratosis

Stephen Chad Kanick,a,*,† Scott C. Davis,a,† Yan Zhao,a Tayyaba Hasan,b Edward V. Maytin,c
Brian W. Pogue,a,b,d and M. Shane Chapmand
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Abstract. Dosimetry for aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) photodynamic therapy of
actinic keratosis was examined with an optimized fluorescence dosimeter to measure PpIX during treatment.
While insufficient PpIX generation may be an indicator of incomplete response, there exists no standardized
method to quantitate PpIX production at depths in the skin during clinical treatments. In this study, a spectrom-
eter-based point probe dosimeter system was used to sample PpIX fluorescence from superficial (blue wave-
length excitation) and deeper (red wavelength excitation) tissue layers. Broadband white light spectroscopy
(WLS) was used to monitor aspects of vascular physiology and inform a correction of fluorescence for the back-
ground optical properties. Measurements in tissue phantoms showed accurate recovery of blood volume fraction
and reduced scattering coefficient from WLS, and a linear response of PpIX fluorescence versus concentration
down to 1.95 and 250 nM for blue and red excitations, respectively. A pilot clinical study of 19 patients receiving
1-h ALA incubation before treatment showed high intrinsic variance in PpIX fluorescence with a standard
deviation/mean ratio of > 0.9. PpIX fluorescence was significantly higher in patients reporting higher pain levels
on a visual analog scale. These pilot data suggest that patient-specific PpIX quantitation may predict outcome
response. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in

whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.19.7.075002]
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1 Introduction
Aminolevulinic acid (ALA)-based photodynamic therapy
(PDT) is an FDA-approved treatment for actinic keratosis
(AK),1 which starts as benign lesions from sun damage but
can progress to squamous cell carcinoma if left untreated.2

Multiple clinical investigations have found ALA-protopor-
phyrin IX (PpIX)-based PDT treatments to be an effective
option for clearance of AK,3–5 with 75 to 89% of patients
reporting complete response. ALA-PpIX PDT is generally well
tolerated and is not associated with scarring, which makes the
treatment suitable for treating wide areas, especially given the
high distribution of AK lesions on the sensitive skin of the face
and scalp. The FDA-approved ALA-PpIX treatment protocol
involves topical administration of ALA to the affected skin
and incubation for 14 to 18 h. During incubation, the ALA pen-
etrates into the tissue and disrupts the feedback mechanism of
the porphyrin-synthetic pathway, resulting in excess generation
of PpIX.6 This process has been shown to result in increased

production of PpIX in AK lesions compared with surrounding
normal skin.7 The subsequent administration of light results in
photoactivation of PpIX, generating reactive oxygen species and
leading to targeted tissue damage. However, incomplete treat-
ment responses are often associated with thicker lesions8,9

and are generally attributed to a combination of poor ALA pen-
etration, insufficient PpIX generation, or inadequate light dose.
A recent trend in the clinic toward the use of shorter ALA incu-
bation times, administering the light dose at 1 to 3 h after topical
ALA,10–13 exacerbates the potential problem of incomplete
responses. Shorter treatment protocols are now favored because
of reduced time commitments for patients and clinic personnel
and a more tolerable side-effect profile for patients. However,
the pharmacokinetics of PpIX generation at very short contact
times is not well characterized, and considering that ALA-incu-
bation in skin has been reported to generate peak PpIX values
between 6 and 24 h after ALA administration,14,15 times shorter
than this may increase the likelihood of insufficient PpIX gen-
eration, especially at deeper levels within lesions. The ability to
identify potentially nonresponsive lesions before treatment
could enable the physician to modify the protocol to improve
outcomes, for example, by lengthening the incubation time or
by adding an adjuvant16,17 to improve PpIX production. The
hurdle to achieving such customized therapy, however, is the

*Address all correspondence to: Stephen Chad Kanick, E-mail: stephen.c
.kanick@dartmouth.edu

†These authors contributed equally to this work.

Journal of Biomedical Optics 075002-1 July 2014 • Vol. 19(7)

Journal of Biomedical Optics 19(7), 075002 (July 2014)

http://dx.doi.org/10.1117/1.JBO.19.7.075002
http://dx.doi.org/10.1117/1.JBO.19.7.075002
http://dx.doi.org/10.1117/1.JBO.19.7.075002
http://dx.doi.org/10.1117/1.JBO.19.7.075002
http://dx.doi.org/10.1117/1.JBO.19.7.075002
http://dx.doi.org/10.1117/1.JBO.19.7.075002


current lack of widely accepted and standardized methods to
monitor depth-dependent PpIX generation in the skin. We
have attempted to address this issue in the current paper.

Optical spectroscopy is one method that provides the
capability to monitor PDT therapies. Measurements of PpIX
fluorescence can inform an implicit metric18 of the delivered
therapeutic dose19 if measurements are integrated throughout
the treatment time. Several investigators have proposed ways
to monitor ALA-induced PpIX levels during PDT (reviewed
in Ref. 20), with many studies using fluorescence measure-
ments to characterize the pharmacokinetics of PpIX produc-
tion7,14,15,21–24 and to monitor treatments.24,25 However, classical
approaches that use diffuse imaging of PpIX fluorescence pro-
vide assessments that are only qualitative, because diffuse sig-
nals must be averaged over large volumes, and the absolute
values can be perturbed by background optical properties.
One experimental approach to addressing this limitation has
involved the design of custom fiber optic probes that localize
the signal and mitigate the distortive influence of scattering
and absorption. Probes have been designed to sample fluores-
cence with single fibers, which detect superficial fluorescence,
thereby limiting the effect of absorption in the signal.24,26

Model-based analysis can extract quantitative fluorescence
from these measurements,27,28 but this approach may not be suit-
able for sampling PpIX from beneath the epidermis (the outer
layer of skin, which is highly scattering). Another approach is to
use probes that sample remittance of multiple source-detector
distances (from 200 to 1000 μm);29 these have been used to
return a localized and quantitative estimate of PpIX fluores-
cence. However, the algorithms utilized in this approach are
only valid for conditions such as absorption dominated light
transport, which is not sufficiently met in most skin studies.30

Other investigators have developed a quantitative imaging
approach that uses spectral imaging31 or spatially modulated
light32,33 to provide images of quantitative PpIX fluorescence.
However, spectral resolution of these approaches is not adequate
to decouple the contribution of multiple fluorophores, including
PpIX, photoproducts, and background tissue autofluorescence.
While most probe- and imaging-based approaches estimate
superficial fluorescence, algorithms have been designed to esti-
mate depth-dependent PpIX production by coupling optical sig-
nals with an assessment of tissue structure (e.g., ultrasound).34

However, these approaches sample a diffuse signal and provide
a complex parametric representation of the sampled tissue
volume. In addition to fluorescence, measurements of white
light reflectance spectra have been used to monitor changes in
the vasculature (e.g., blood flow, microvascular saturation).
That information can be used to monitor patient-specific
responses to PDT.35,36

In this paper, we report on a new multichannel, spectroscopic
dosimeter developed to quantify PpIX fluorescence in skin. This
probe-based system uses red and blue light excitation sources to
distinguish PpIX fluorescence signals originating from different
depths in tissue, which could prove to be an important capability
for predicting responses in vivo and for customizing treatment
parameters. The device also samples white light reflectance to
inform an empirical correction factor that mitigates the distortive
effects of background tissue optical properties on the collected
PpIX fluorescence. Finally, the device also allows one to
quantify parameters that describe the local vascular physiology,
which could provide additional biomarkers predictive of
response. Extensive phantom-based studies are presented that

establish (1) the linearity of response and detection limits of
the system; (2) the accuracy of the optical property estimation;
and (3) the effect of white light correction on the fluorescence
measurements. Finally, a 19-patient clinical pilot study is pre-
sented, which provides initial observations in dosimetry as
related to initial estimates of treatment response.

2 Methods

2.1 Dosimeter System

A diagram and photographs of the probe-based experimental
dosimeter are provided in Fig. 1. The system housed five illu-
mination sources: four temperature-controlled laser diodes (405,
639, 735, and 785 nm, WorldStarTech, Toronto, Ontario) and an
Ocean Optics HL-2000 Tungsten Halogen white light source
(Ocean Optics, Dunedin, Florida). These sources were coupled
to a motorized 6 × 1 fiber switch (DiConFiberoptics Inc.,
Richmond, California) through 200-μm fibers to enable rapid
switching between channels. The output of the fiber switch
was coupled to the patient’s skin through an Ocean Optics
R200-7-UV/VIS optical fiber probe that consisted of seven
200-μm fibers in the arrangement shown in Fig. 1(b). During
measurements, the probe was held in contact with the patient’s
skin and light was delivered to the tissue through the central
channel, shown in blue in Fig. 1(b). The six fibers surrounding
the illumination fiber transmitted the remitted light through
a motorized six-position filter wheel (ThorLabs FW102C,
Newtown, New Jersey) and into an Ocean Optics USB4000
spectrometer with a spectral range between 346 and 1038 nm.
The lasers, filter wheel, and spectrometer were USB-ready
devices, while the DiCon fiber switch and white light source’s
internal shutter were controlled with an NI USB-6501 DAQ
board. All control connections were consolidated in a powered
USB hub connected to a laptop. The system was operated
using a simple software interface written in Labview (National
Instruments, Austin, Texas).

The PDT dosimetry measurements in this study were
acquired with the white light source, 405 nm (blue channel)
and 639 nm (red channel) laser diodes, and thus, the 735- and
785-nm laser diode channels were not used. Excitation filter-
ing for fluorescence measurements was accomplished using a
1-mm-thick 435-nm color glass long-pass filter (Schott, Mainz)
for blue channel excitation and a 650-nm long-pass interference
filter (ThorLabs) for red excitation. The filters were selected to
reduce, but not eliminate, the excitation signal to facilitate
simultaneous measurement of the excitation and emission inten-
sities in the same spectrum. While this was readily achievable
with red channel excitation, the high attenuation of blue light in
the presence of blood often reduced the blue light excitation sig-
nal to undetectable levels, even with low filtering efficiency.

Low-cost 635-nm laser diodes typically operate 2 to 4 nm
above 635 nm, as was the case with the laser diode used in
this system, so this was actually at 639 nm. Since the absorbance
peak of PpIX falls off precipitously within this range, these
lasers are rather inefficient at exciting PpIX fluorescence, a real-
ity that results in relatively high minimum detectable PpIX
concentrations. This is addressable by integrating 635-nm
laser diodes with higher-wavelength tolerances at significantly
higher cost.

Measurements were automatically acquired in the following
sequence: (1) white light reflectance with no filtering, (2) red
channel fluorescence, (3) blue channel fluorescence. To ensure
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that measured spectra were within the dynamic range of the
spectrometer, measurement exposure times were optimized
automatically during the acquisition. This was achieved by
acquiring a spectrum at an initial exposure time of 200 ms,
checking that the measured signal was within a specified
range and then either confirming the measurement was valid
or automatically adjusting the acquisition time and repeating
the measurement. The minimum and maximum times allowed
were typically set at 10 and 1000 ms, respectively. Most
fluorescence measurements were made at 300 or 50 ms, respec-
tively, for blue and red channels, while white light measure-
ments usually required 1 s. After each measurement, the fiber
switch was positioned to a dark channel and a second spectrum
acquired to allow real-time background subtraction of the ambi-
ent room light. Thus, a total of six spectra were recorded for an
acquisition sequence of all three channels. The total acquisition
time for this sequence was typically 25 s, limited primarily by
the overhead in changing filter wheels and the long exposure
time for the white light reflectance measurements. All measured
spectra were background subtracted and corrected for exposure
time before being analyzed using the protocols described below.

2.2 White Light Reflectance Spectroscopy
Data Processing

Analyses of white light spectra were used for two purposes: (1) to
correct the fluorescence measurements for the effects of
optical propagation in tissue and (2) to estimate endogenous
physiological parameters, such as whole blood volume fraction,
oxygen saturation, and blood vessel density. The analysis was
accomplished by applying a Monte Carlo–based look-up-table
(LUT) approach similar to what has been reported previously28,29

to relate measured light intensity to the wavelength-dependent
optical properties within the sampled volume, including the
absorption coefficient (μa) and the reduced scattering coefficient
(μ 0

s). In this study, LUT was generated for broadband light using

validated Monte Carlo code37 with the geometry configured to
mimic the six discrete detector fibers interspaced around a central
source fiber, as in Fig. 1(b). All fiber diameters were 0.2 mm and
the source to detector spacing was set to 0.25 mm. Simulations
assumed a homogenous medium with 20 values for μ 0

s, covering
the range [0.1 to 50] mm−1, and 13 values for μa, over the range
of [0 to 10] mm−1, resulting in 260 unique optical property com-
binations. Other simulation parameters include a Henyey-
Greenstein phase function with anisotropy of g ¼ 0.9, index
of refraction of the medium ¼ 1.37 and fibers ¼ 1.45, and the
numerical aperture of source and collection fibers ¼ 0.22.
Each simulation was initialized with 107 photons and returned
the collected reflectance intensity.

Measured spectra were calibrated by relating the wavelength-
dependent collected light intensity measured in a reference
phantom composed of 2% Intralipid (Imeas

ref ) to the LUT-based
intensity returned for the known optical properties38 of the phan-
tom (RLUT

calib). Thus, the calibration was given as

Rmeas
sample ¼

RLUT
calib

Imeas
ref

Imeas
sample: (1)

This calibration converts collected light intensity measured
in a sample (Imeas

sample) in units of counts/millisecond to reflectance
(Rmeas

sample) expressed in units of the percentage of launched pho-
tons that were collected from the Monte Carlo LUT.

After calibrating using Eq. (1), reflectance spectra were fit
to an empirical relationship describing the effects of optical
absorption and scatter on the remitted spectrum, a process
that facilitated estimation of these parameters in the measured
volume. Background scattering was estimated with a power-
law function as

μ 0
s ¼ a

�
λ

λo

�ð−bÞ
; (2)

Fig. 1 (a) Schematic of the multichannel dosimeter setup showing system components. (b) Fiber
arrangement of the patient-interface (probe tip), which is used in light compression contact-mode.
The source fiber is represented in blue. The surrounding six fibers transmit light remitted from the tissue
through the filter wheel and into the spectrometer. Photographs of the internal optical assembly and
the chassis are shown in (c) and (d), respectively.
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where a and b are the scatter amplitude and power, respectively.
The background absorption coefficient, μtotala , was estimated
from the sum of the product of chromophore concentrations
and specific absorption coefficients within the sampled tissue
volume. In skin, the dominant basis set of chromophores was
specified to be hemoglobin and deoxygenated hemoglobin
within whole blood, and melanin within the epidermis30

μtotala ¼
X

ðμaiciÞ ¼ μblooda þ μmelanin
a : (3)

Here, the absorption coefficients of blood and melanin are
given by μblooda and μmelanin

a , respectively. The absorption due
to whole blood can be described by

μblooda ¼ CvesBVF½Satμ̂HBO2a þ ð1 − SatÞμ̂HBa �; (4)

where the volume fraction of blood is given by BVF, the specific
absorption coefficients of oxygenated hemoglobin and deoxy-
genated hemoglobin are given as μ̂HBO2a and μ̂HBa , and the
contribution of each to the total absorption is given by the
hemoglobin saturation (Sat). Cves is a correction factor to
account for the influence that the distribution of blood into
discrete vessels has on the effective absorption.39 Cves ¼
f½1 − eð−2μblooda rvÞ�∕½2μblooda rv�g, where rv is the effective mean
vessel radius.

For measurements performed on skin in the presence of
melanin (Rskin;mel

sample ), the attenuation attributable to the absorption
of melanin was estimated using a Beer-Lambert based factor as

Rskin
sample ¼ Rskin;mel

sample eμ̂
mel
a cmelLepi ; (5)

where the exponential term containing the product of the spe-
cific absorption coefficient and concentration of melanin and the
photon path length in the epidermis (μ̂mel

a cmelLepi) acts as a filter

on Rskin;mel
sample to yield an estimate of reflectance in the absence of

melanin absorption (Rskin
sample). This study assumed that Lepi ¼

24 μm, approximating the path length of collected light within
epidermis.40 The melanin-free spectra from Eq. (5) was used
within the fitting algorithm to estimate background optical prop-
erties (μ 0

s, μblooda ) in the tissue as described by Eqs. (2) to (4).
Prior to fitting, spectra were smoothed into discrete bins 5

pixels in width (equal to 1.5 nm), with a mean and standard
deviation calculated within each bin. The smoothed reflectance
spectra were fit over the [480 to 800] nm wavelength range, with
light intensity <480 nm not included due to poor system trans-
mission and sensitivity at those wavelengths. For measurements
of skin, the algorithm estimated BVF, Sat, a, b, and cMEL; rv
was unable to be fit as a free parameter, but was instead assumed
to be 20 μm. For measurements of optical phantoms, the algo-
rithm estimated BVF, Sat, a, and b, and did not include either
melanin or Cves. The spectral fitting algorithm was coded in
MATLAB® using the lsqnonlin subroutine and the standard
deviation of each binned pixel was used as a weighting factor.
The algorithm also returned confidence intervals for fitted
parameters as previously described41 using nlparci subroutine.
The qualities of spectral fits were quantified using a reduced chi-
squared metric, χ2 ¼ 1

v

P½ðRdata − RmodelÞ2∕σ2�.

2.3 Fluorescence Spectral Analysis

Quantifying fluorescence activity from the measured spectra
generally followed a three-step process: (1) the raw spectra

(after background subtraction and exposure time correction)
were calibrated to the reference phantom, (2) these spectra
were then corrected for the influence of optical properties
using results from the white light spectroscopy measurements,
and (3) a linear least squares spectral fitting routine decoupled
the specific PpIX fluorescence from other fluorescent signals,
such as autofluorescence and photoproducts. The details of
this process are described here.

Collected fluorescence intensities Jmeas
sampleðλxÞ were initially

calibrated using

FLmeas
sampleðλxÞ ¼

Jmeas
sampleðλxÞ

Jmeas
ref ðλcalibÞ

; (6)

where Jmeas
ref ðλcalibÞ is the collected fluorescence intensity mea-

sured in a reference phantom composed of 2% Intralipid.
Jmeas
ref ðλcalibÞ is evaluated at a single wavelength in the spectrum,

with λcalib ¼ ½630; 680� nm for the source lasers [405, 639] nm,
respectively. Both Jmeas

sampleðλxÞ and Jmeas
ref ðλcalibÞ are proportional

to the product of the transmission efficiency of the system
(Tsys), the intensity of the laser source (Psource), and the specific

absorption coefficient (μ̂fa), concentration (cf), and quantum
efficiency (Qf) of the sampled fluorophore. Equation (6)

assumes that the product μ̂facfQf is standardized by the refer-
ence phantom, such that daily variations in coupling efficiency
of the probe setup or fluctuations in laser intensity ðTsysPsourceÞ
will be reflected in both Jmeas

sampleðλxÞ and Jmeas
ref ðλcalibÞ, and allow

these factors to cancel out in the resulting FLmeas
sampleðλxÞ spectra,

which is given in dimensionless units.
Next, the calibrated fluorescence spectrum, FLmeas

sampleðλxÞ, is
corrected for the influence of background optical properties
by using an empirical correction factor based on sampled
reflectance intensities, which is an approach described exten-
sively,31,42–44 and is given as

FLcorr
sampleðλxÞ ¼

FLmeas
sampleðλxÞ
Rκ
xRα

m
; (7)

where FLcorr
sampleðλxÞ is the corrected fluorescence spectrum, and

Rx and Rm represent reflectance intensity in the excitation and
emission wavebands. Here, Rx and Rm were evaluated by aver-
aging model fitted estimates of reflectance within specified
wavebands. For blue excitation, Rx was evaluated over [400
to 410] nm, Rm over [630 to 640] nm, and [κ; α] was found
to be [0.7, −0.7]. For red excitation, Rx was evaluated over
[634 to 641] nm, Rm over [695 to 705] nm, and [κ; α] was
found to be [1.0, −0.7]. Values for exponents were evaluated
by minimizing the error from PpIX fluorescence recovered
between measurements of FLcorr

sampleðλxÞ in optical phantoms
with a wide range of absorption and scattering properties.

Once corrected for optical properties, FLcorr
sampleðλxÞ spectra

were analyzed as a linear combination of basis spectra repre-
senting tissue autofluorescence, PpIX fluorescence, and PpIX
photoproduct (PP) fluorescence. For blue excitation, the emis-
sion was fit by

FLcorr
sampleðλblueÞ ¼ cblueautoζauto þ cblueppIXζPpIX þ cbluePP1 ζPP1

þ cbluePP2 ζPP2; (8)

where [ζauto; ζPpIX; ζPP1; ζPP2] are the basis spectra and
[cblueauto; cbluePpIX; c

blue
PP1 ; c

blue
PP2 ] are the contribution of fluorescence
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of the tissue autofluorescence, PpIX, and PpIX photoproducts
PP1 and PP2. The photoproducts included here were previ-
ously defined45 and are constructed using a Gaussian centered
at [652, 671] nm with width [15, 27] nm for [PP1, PP2],
respectively. For red excitation, the emission waveband was
not sensitive enough to photoproducts to characterize them
individually, and thus, Eq. (8) was simplified to

FLcorr
sampleðλredÞ ¼ credautoζauto þ credppIXζPpIX þ credbackground; (9)

where a third-order polynomial, credbackground¼credb1 λþcredb2 λ
2þ

credb3 λ
3, was included to characterize photoproduct fluorescence

and mismatch in the spectral features of the background auto-
fluorescence and the sampled autofluorescence basis spectrum;
incorporation of credbackground substantially improved fit quality.

Prior to fitting, the calibrated fluorescence spectra were
reduced into discrete bins 5 pixels in width (equal to 1.5 nm),
with a mean and standard deviation calculated within each bin.
The fitted waveband for FLcorr

sampleðλblueÞ was [600 to 800] nm and
that for FLcorr

sampleðλredÞ was [675 to 800] nm. The fitting algorithm
was coded in a MATLAB® script and used the lsqnonlin
subroutine to perform a Levenberg-Marquardt least squares
fitting regime that minimized the error between model predic-
tions and measured data, with each pixel weighted by the
standard deviation. The fitting procedure returned estimates
and confidence intervals of [cblueauto; cbluePpIX; c

blue
PP1 ; c

blue
PP2 ] for blue and

[credauto; c
red
PpIX; c

red
b1 ; c

red
b2 ; c

red
b3 ] for red excitation.

To show the increased accuracy enabled by spectral fitting,
we also examined the simple integral of the corrected fluores-
cence spectra AreasourcePpIX over a waveband of the remission spec-
tra, essentially bypassing the spectral fitting algorithm (the final
step in the analysis process). The trapz subroutine in MATLAB®

was used to numerically integrate FLcorr
sampleðλblueÞ over [620 to

720] nm, and FLcorr
sampleðλredÞ over [680 to 720] nm, providing

estimates of AreabluePpIX and ArearedPpIX, respectively.

2.4 System Validation Using Tissue-Simulating
Phantoms

Phantom experiments were used to achieve four objectives: (1)
characterize the linearity of response to PpIX concentration for
both fluorescence channels, (2) determine the minimum detect-
able concentration of PpIX for both fluorescence channels, (3)
determine the accuracy of the white light reflectance analysis in
estimating scattering parameters and chromophore concentra-
tions, and (4) examine the stability of the fluorescence measure-
ments to background optical properties with and without
correction. Phantoms were constructed using Intralipid (20%
Frenius-Kabi, Bad Homburg, Germany), bovine whole blood
(7200811 Lampire Biological Inc., Pipersville, Pennsylvania),
and PpIX (P8293, Sigma-Aldrich, St. Louis, Missouri). All
phantoms were composed of 5% Tween20 (P1379, Sigma-
Aldrich) to mitigate aggregation. To explore linearity of
response and minimum detection limits of PpIX fluorescence,
measurements were acquired in phantoms composed of 1%
Intralipid, and 1% BVF, and over a range of ½PpIX� ¼
½0.122;0.244;0.488;0.977;1.95;3.90;7.80;15.6;31.3;62.5;125;
250;500;1000;2000;4000� nM. To examine accuracy of white
light reflectance analysis and stability to changes in optical
properties, measurements were acquired in phantoms prepared
using volume fractions of Intralipid [1, 2, 3] % and whole blood
[0.5, 1, 2, 3] %. This resulted in 12 phantom combinations, each

of which was sampled using serial dilutions of PpIX to achieve
½PpIX� ¼ ½15.6; 62.5; 250; 1000; 4000� nM. For each phantom
composition, white light reflectance, and blue- and red-excited
fluorescence measurements were acquired, and measurements
were repeated three times. To determine the lower limit of
detection for each fluorescence metric (cbluePpIX; c

red
PpIX;Area

blue
PpIX;

ArearedPpIX), the data were fit to a line forced through zero, and
the lower limit was identified as the highest [PpIX] at which
the metric deviated>25% from the fit. Estimated optical param-
eters were compared with known phantom properties (i.e., BVF
and μ 0

s) using the Pearson correlation coefficient (r) to show
linearity, and the mean residual was calculated as resid ¼
100½ðestimated − knownÞ∕estimated�.

2.5 Pilot clinical Study

A clinical feasibility study was conducted to establish the feasibil-
ity of using the device, to determine initial metrics of system
performance, and to acquire information about interpatient vari-
ability. The study was approved by the institutional review board,
and 19 patients with AK, identified in a standard clinical derma-
tology practice (MS Chapman, Dartmouth Hitchcock Medical
Center), were enrolled. Informed consent was obtained in writing
from patients prior to initiation of treatment. PDT procedure
began with topical application of ALA (Levulan Kerastick,
DUSA Pharmaceuticals, Wilmington, Massachusetts) to the
lesion area. Patients were instructed to wait for 1 h in the
outpatient waiting room, with care taken to avoid exposure to
direct sunlight. Patients were treated with a noncoherent blue
light source (BLU-U Blue Light Photodynamnic Therapy
Illuminator, DUSA Pharmaceuticals) with the prescribed expo-
sure of 10 J/cm2 (8 to 15 min) for each patient. Immediately
following treatment, patients were asked to assess their maximal
pain level experienced during treatment using the visual analog
scale (VAS) from 0 to 10; this was recorded as an assessment of
treatment response in this study. Optical measurements were
performed at three time points during the treatment protocol:
(1) prior to administration of ALA, (2) following 1-h incubation
with ALA and before light illumination, and (3) immediately
following administration of the treatment light dose. All mea-
surements were recorded with the probe tip in gentle contact
with the surface of the AK lesion. Fluorescence measurements
prior to ALA administration were used to record patient-specific
basis spectra for the tissue autofluorescence and were used in
the spectral fitting algorithms described in Eqs. (8) and (9).

Optical spectra recorded were checked for integrity using
the fit quality metric χ2. Fluorescence measurements from
patients prior to ALA administration were used to determine
a patient-specific basis spectra for the tissue autofluorescence.
Analysis of optical spectra from patients provided information
about PpIX generation and PDT dose as well as vascular
changes in response to PDT.

2.6 PDT Dose Metrics for Pilot Clinical Data

Optical measurements of PpIX fluorescence were used to
estimate metrics of the therapeutic dose delivered during treat-
ment. Assuming that the dose can be characterized by observed
changes to PpIX fluorescence (and that adequate oxygen was
either supplied by perfusion or diffusion through the skin),
the dose is proportional to the amount of PpIX consumed
through photobleaching during treatment, as shown previously.25

The absolute photodynamic dose was calculated as
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DosesourcePpIX ¼ csourcePpIX ðPreTxÞ − csourcePpIX ðPostTxÞ; (10)

where the superscript source represents both the blue and red
excitation channels. The amount of photobleaching, PBPpIX,
was calculated as a percent change from the pretreatment meas-
urement as

PBsource
PpIX ¼ 100

�
csourcePpIX ðPreTxÞ − csourcePpIX ðPostTxÞ

csourcePpIX ðPreTxÞ
�
; (11)

which again was calculated for excitation using both blue,
PBblue

PpIX, and red, PBred
PpIX, channels.

The relationship between the two fluorescence channels was
also examined by calculating a ratio-based metric of PpIX fluo-
rescence intensity sampled by the red and blue channels as

RatioRB ¼ credPpIX

cbluePpIX

; (12)

where RatioRB is given as the ratio of PpIX fluorescence
sampled from deep to shallow depths (red to blue) within the
optically sampled skin volume that qualitatively characterizes
PpIX distribution.

Patient-reported pain was used as a preliminary response
metric in this pilot study. Metrics of PDT dose and patient-
reported pain were compared statistically using a Kruskal–
Wallis one-way analysis of variance, with significance associ-
ated with p < 0.05.

2.7 Depth Sensitivity Analysis Using
Monte Carlo Simulations

In order to characterize the origin depth of PpIX fluorescence
sampled using the blue and red channels, we performed a
set of Monte Carlo simulations. The simulation geometry
approximated the optical property distribution in the skin as a
seven-layer structure, as described previously in Ref. 40, and
considered three cases with varying spatial distributions of
PpIX within the tissue. Case 1 included homogenous PpIX
throughout all of the tissue volume with μPpIXaf selected to
approximate ½PpIX� ¼ 1000 nM. Case 2 considered superficially
distributed PpIX, with the absorption of PpIX at deeper depths
(Z < 300 μm) decreased by a factor of 7, while the PpIX at
shallow depths was unchanged. Case 3 considered deeply
distributed PpIX, with the absorption of PpIX at shallow depths
(Z > 300 μm) decreased by a factor of 7, while the PpIX at
deeper depths was unchanged. The simulations were performed
using validated Monte Carlo code;46 each simulation initialized
107 photons. The collected fluorescence intensity for the meas-
urement and depth of origin for each collected fluorescence
photon were recorded and used to estimate the 80% sampling
depth (Z80%

FL ) using the quantile subroutine in MATLAB®.

3 Results

3.1 Tissue Phantom Measurements

3.1.1 Linearity of fluorescence response

To characterize the response of the dosimeter system to changes
in PpIX concentration ([PpIX]) and to establish the limits of
detection, measurements were acquired in tissue phantoms com-
posed of Intralipid 1% and whole blood 1% and [PpIX] ∈ [0.1 to

4000] nM. Figure 2(a) shows a representative fluorescence spec-
trum resulting from blue light excitation for a phantom contain-
ing ½PpIX� ¼ 500 nM, and the corresponding model fit. The
plot shows the fitted contributions of background tissue auto-
fluorescence, PpIX, and the very small contributions from pho-
toproducts to the total fluorescence. cbluePpIX versus [PpIX] data are
shown on linear [Fig. 2(b)] and log [Fig. 2(c)] scales to illustrate
the quality of the linear relationship over a wide range of [PpIX]
values. The log-scale plot in Fig. 2(c) allows identification of
the lower limit of detection of cbluePpIX at 1.95 nM, below which
the cbluePpIX versus [PpIX] relationship deviates from linearity.
For comparison, Fig. 2(d) shows the integrated metric of fluo-
rescence (AreabluePpIX), which does not utilize spectral fitting and
results in an elevated lower limit of detection of 250 nM. This
substantial difference in sensitivity is due to the fitting algorithm
adequately decoupling fluorescence from PpIX and background
fluorophores, while the integrated metric is confounded by these
factors at low [PpIX] values.

The data in Fig. 3 show the fluorescence response of the
same phantom set as in Fig. 2 measured with the red excitation
laser. Figure 3(a) shows representative measured and fitted spec-
tra for ½PpIX� ¼ 1000 nM. The data in Figs. 3(b) and 3(c) show
a linear response for credPpIX versus [PpIX] from [250 to 4000] nM
and Fig. 3(d) shows the ArearedPpIX versus [PpIX]. Lower limits of
PpIX detection for the red channel were identified for both spec-
tral fitting (250 nM) and integrated fluorescence (1000 nM).
The sensitivity of the system to red channel fluorescence is
far lower than for blue light excitation, which is attributable to
the absorption coefficient of PpIX being ∼30-fold higher at
405 nm than at 639 nm.

3.1.2 White light spectroscopy

Optical measurements were performed in 12 sets of tissue-sim-
ulating phantoms with different amounts of Intralipid (volume
fraction¼ [1 to 3]%) and whole blood (BVF¼ [0.5 to 3]%) to
yield biologically relevant scattering and absorption properties.
Figure 4(a) shows an example of a measured white light spec-
trum sampled in phantom with 1% Intralipid and 1% BVF. The
black circles indicate measured data points and the correspond-
ing model fit is shown in the red line. Differences between data
and model fits are shown in the residual displayed below the
spectrum. Figure 4(b) shows the estimated versus known μ 0

s
at two wavelengths [440, 639] nm. The scattering estimates
showed a linear relationship versus known values in all phan-
toms (slope ¼ 1.00, r ¼ 0.99), with a mean residual between
model estimates and the linear fit of residðμ 0

sÞ < 3%. Figure 4
(c) shows the estimated versus known BVF with a linear rela-
tionship (slope ¼ 0.98, r ¼ 0.98) over the range BVF¼ [0.5 to
3]% and mean residual residðBVFÞ < 15%.

3.1.3 Fluorescence correction for optical property
distortion

Optical measurements of the 12 different combinations of
absorption and scattering were used to examine the influence
of optical properties on estimates of PpIX fluorescence and
the capacity to correct for these effects. Figure 5(a) shows
the variation of raw PpIX fluorescence estimated from
FLuncorr

sampleðλblueÞ among the 12 phantoms. Here residual error is
expressed as the percentage difference between the PpIX fluo-
rescence estimated in each phantom and the average of all phan-
toms; each phantom contains the same amount of [PpIX], i.e.,
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Fig. 2 Fluorescence measurements in protoporphyrin IX (PpIX) dilution series as measured with
blue excitation light. Phantoms were constructed with Intralipid 1%, whole blood 1%, and Tween 5%.
(a) A representative spectral fit is shown for ½PpIX� ¼ 500 nM. Sixteen dilutions were sampled between
4000 nm and 0.1 nM. The fitted PpIX fluorescence versus known PpIX concentration is shown (b) on a
linear scale and (c) on a log scale with the lower limit of detection identified at 1.95 nM. The integrated
fluorescence area versus PpIX concentration is shown in (d) with the lower limit of detection identified at
250 nM.

Fig. 3 Fluorescence measurements in PpIX dilution series as measured with red excitation light.
Phantoms were constructed with Intralipid 1%, whole blood 1%, and Tween 5%. (a) A representative
spectral fit is shown for ½PpIX� ¼ 1000 nM. Sixteen dilutions were sampled between 4000 nm and
0.1 nM. The fitted PpIX fluorescence versus known PpIX concentration is shown (b) on a linear scale
and (c) on a log scale with the lower limit of detection identified at 250 nM. The integrated fluorescence
area versus PpIX concentration is shown in (d) with the lower limit of detection identified at 1000 nM.
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1000 nM. These data show that the raw fluorescence is substan-
tially distorted by variations in background scattering and
absorption, with resid < 37%. Figure 5(b) shows residual
error for corrected PpIX fluorescence, estimated from
FLcorr

sampleðλblueÞ as given in Eq. (5). Comparison of Figs. 5(a)
and 5(b) shows a reduction in error, with resid dropping to
<9% for the corrected estimates of PpIX. Figures 5(c) and 5(d)
show uncorrected and corrected PpIX fluorescence estimated
from the red channel, with an improvement in resid values
from <20 to <8% provided by the optical property correction
factor. Inspection of the error plots do not show a trend with
either Intralipid or whole blood, indicating that the resulting cor-
rected estimates of PpIX are insensitive to variations in both
scattering and absorption.

3.2 Pilot Clinical Data

3.2.1 Clinical PDT observations

Of the 19 patients enrolled in the study, 15 were used in this
analysis; two were excluded due to an instrument error (IDs
10 and 11), and one patient was excluded due to a sampled
BVF that exceeded the absorption bounds of the LUT (ID 2).
Additionally, data from one patient showed erroneous features
in the spectra (ID 8), which were identified by a metric of
fit quality (χ2 > 3) and are likely due to confounding environ-
mental influences (e.g., sufficient coupling to skin surface,
influence of room lights, movement artifacts, etc.). Figure 6
shows pain assessed on the VAS immediately following
PDT treatment, with 12 of 15 patients reporting nonzero

Fig. 4 (a) Representative white light spectra sampled in tissue phantoms for Intralipid 1% and blood
volume of 1%. Estimated versus known values for (b) reduced scattering coefficient at blue and red
excitation wavelengths and (c) blood volume fraction. Error bars on (b) and (c) represent variation
between phantoms.

Fig. 5 (a) and (b) The residual error between fitted PpIX fluorescence emission spectra excited by
blue excitation light for uncorrected and corrected spectra, respectively. (c) and (d) The residual
error between fitted PpIX fluorescence emission spectra excited by red excitation light. Residual is
calculated as the percentage deviation for fitted PpIX fluorescence normalized to average of estimates
from all phantoms.
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pain; pain ¼ 4.8þ ∕ − 2.3, range ¼ [0 to 9]. While the number
of patients is small, the reported pain approximates a normal
distribution and spans the full VAS range.

Figure 7 shows representative fluorescence and white light
spectra measured from the AK lesion on patient ID 1.
Fluorescence spectra sampled from the lesion using both blue
and red excitation sources show strong PpIX fluorescence
emission prior to treatment light delivery [Figs. 7(a) and 7(c),
respectively], while post-treatment fluorescence activity was
much reduced [Figs. 7(b) and 7(d)]. The associated photo-
bleaching rates were PBblue

PpIX ¼ 97% and PBred
PpIX ¼ 100%. White

light reflectance spectra presented in Figs. 7(e) and 7(f) show
differences in vascular physiology between pre- and post-Tx,
with increases in BVF and Sat observed. The analysis presented
in Fig. 7 is representative of the spectral fits performed on most
of the patients enrolled in the study.

Figure 8(a) shows PpIX fluorescence excited by blue light
measured before and after light treatment for each patient.
These data show substantial interpatient variability in the
accumulation of PpIX after the 1-h incubation time; c̄bluePpIX ¼
3.4þ ∕ − 3.1, range ¼ [0 to 9.3]. For patients with nonzero
PpIX fluorescence, the majority of PpIX was consumed during
treatment with high observed photobleaching rates PBblue

PpIX ¼
89þ ∕ − 11%, range ¼ [62 to 100] %, and thus, the absolute
dose (DosebluePpIX) closely followed the pre-Tx PpIX fluorescence,

with DosebluePpIX ¼ 24.7þ ∕ − 22.5. When patient-reported pain
after treatment was grouped into high (VAS >¼ 5) and low
(VAS < 5) pain, both cbluePpIX and DosebluePpIX were predictive of
treatment-induced pain (with p < 0.01 for both), with the latter
shown in Fig. 8(b). Figure 8(c) shows that the photobleaching
expressed as a percentage of pre-Tx (PBblue

PpIX) did not show a
significant indication for patient-reported pain (p < 0.24); it
should be noted that this analysis of photobleaching included
zero values for undetectable PpIX.

A similar analysis was completed for the red channel fluo-
rescence measurements, as shown in Fig. 9. These data also
show substantial interpatient variability in pre-Tx PpIX accumu-
lation of PpIX(c̄redPpIX ¼ 2.9þ ∕ − 2.8, range ¼ [0 to 9.1]) and

substantial photobleaching (PBblue
PpIX ¼ 8.9þ ∕ − 17%, range ¼

[46 to 100] %). While less significant than for the blue channel
measurements, both credPpIX and DoseredPpIX showed a significant
difference for patients reporting low and high pain (p < 0.03

and p < 0.04), which was also not observed for the calculated
photobleaching values, PBred

PpIX (p < 0.09).
Analysis of white light spectra returned quantitative descrip-

tions of tissue composition and vascular physiology. Figure 10
shows optical tissue parameters for all patients before and after
light treatment. The observed average values of these parameters
for pretreatment measurements and the change in values after
treatment are blood volume fraction BVF ¼ 0.9þ ∕ − 1.1 (%)
and ΔBVF ¼ 0.0þ ∕ − 1.0 (%) [Fig. 10(a)]; microvascular sat-
uration SAT ¼ 42þ ∕ − 36 (%) and ΔSAT ¼ 16þ ∕ − 48 (%)
[Fig. 10(b)]; reduced scattering coefficient μ̄ 0

sð639 nmÞ¼2.1þ∕
−0.3mm−1 and Δμ̄ 0

sð639 nmÞ¼0.1þ∕−0.3mm−1 [Fig. 10(c)];
and melanin fraction in epidermis c̄MEL ¼ 14þ ∕ − 3 (%) and
ΔcMEL ¼ 1.6þ ∕ − 4.6 (%) [Fig. 10(d)]. Comparing changes
in physiological parameters with PDT dose metrics showed a
moderate inverse correlation between the change in BVF and
pain (r ¼ −0.55 m, p < 0.08), and a moderate positive correla-
tion between DosebluePpIX and the change in hemoglobin saturation
(r ¼ 0.44, p < 0.08); those correlations were not significant in
this small study.

3.2.2 Depth sensitivity of analysis of two-color PpIX
measurement

PpIX fluorescence intensities sampled by both blue and red
excitation on each lesion were highly correlated (r ¼ 0.90,
p < 0.001). A ratiometric comparison of red to blue PpIX
fluorescence (RatioRB) showed substantial interpatient vari-
ability (RatioRB ¼ 0.92þ ∕ − 0.51, range ¼ [0.23 to 2.23]), as
shown in Fig. 11(a). It should be noted that RatioRB was calcu-
lated only for patients showing detectable PpIX before treat-
ment, excluding three additional patients from this analysis.
In principle, RatioRB should reveal coarse information on the
depth of the PpIX distribution, with larger RatioRB values
associated with PpIX fluorescence originating from deeper
depths within the skin tissue; however, this has not been shown
explicitly. Interestingly, RatioRB was an indicator of pain, with
elevated RatioRB values significantly higher for patients report-
ing lower pain; this is shown in Fig. 11(b).

A series of simulations were performed to characterize the
sensitivity of two-color fluorescence measurements of PpIX
to the depth-dependent distribution of PpIX in the skin. The sim-
ulation results are summarized in Fig. 12. Case 1 simulates
homogenously distributed PpIX, with red channel sampling
PpIX from 3þ-fold deeper than the blue and the ratio of red
to blue fluorescence intensities normalized to 1. Case 2 consid-
ers superficially distributed PpIX; here, both channels sample
superficial PpIX. The decrease in deeper PpIX resulted in a dis-
proportionate decrease in intensity sampled with red compared
with blue (with 74 and 10% reductions in red and blue inten-
sities), such that the resulting RatioRB decreased to 0.3. Case
3 considers deeply distributed PpIX; here, the signal sampled
from both channels now originates from deeper layers. The
decrease in superficial PpIX saw intensity sampled with blue
decreased much more than with red (with 80 and 15% reduc-
tions in blue and red intensities), yielding an increase of
RatioRB to 4.4. These data indicate that the ratiometric analysis
of PpIX fluorescence sampled by red and blue channels can
provide a qualitative description of the PpIX distribution,
with larger values of RatioRB associated with more deeply dis-
tributed PpIX and, conversely, smaller values of RatioRB asso-
ciated with superficially distributed PpIX.

Fig. 6 Visual analog scale (VAS) pain as reported by patients
immediately after photodynamic therapy (PDT) treatment. # indicates
that pain was not assessed on ID1.
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4 Discussion
This study introduced a novel spectrometer-based optical
dosimetry system designed to monitor and ultimately improve
response rates of short-contact ALA-PpIX PDT treatments of
AK. The fiber switching capabilities of the instrument allow
sequential measurements with a variety of illumination sources,
including a white light source for reflectance spectroscopy and a
variety of laser sources to excite fluorophores in the tissue. In
this study, the instrument was configured to acquire PpIX fluo-
rescence using blue (405 nm) and red (639 nm) excitation
sources, a novel approach for PDT dosimetry, which facilitates
estimation of PpIX activity at different depths. Measurements
acquired in optical phantoms revealed an extremely linear
response to changes in PpIX concentration down to the mini-
mum detectable concentrations of 1.95 nM (for blue excitation)

and 250 nM (for red excitation). Achieving these detection lim-
its required the use of spectral fitting algorithms to extract PpIX
fluorescence from the contaminating effects of autofluorescence
and photoproducts. Without spectral fitting, detectable limits
rose to 250 and 1000 nM for the blue and red channels, respec-
tively. The difference in sensitivity between these channels is
primarily due to the difference in the molar extinction coefficient
of PpIX at the two wavelengths and the fact that only a portion
of the emission spectrum is measureable with red light excita-
tion. This reality was exacerbated by the poor tolerances often
found in budget 635-nm laser diodes, which often operate at
laser peaks in the 637- to 640-nm range. A laser diode emitting
closer to 633 nm could reduce the red channel detectable limit
by more than a factor of 4.

Phantom measurements also showed that the PpIX fluores-
cence estimates were insensitive to changes in optical properties,

Fig. 7 Representative optical measurements of fluorescence emission with excitation with (top) blue,
(middle) red, and (bottom) white light reflectance from patient ID1. Left-hand panels showmeasurements
1 h following aminolevulinic acid administration (pre-Tx). Right-hand panels show measurements
immediately after administration of treatment light (post-Tx).
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provided a white-light-based correction was applied. Raw fluo-
rescence remission measured with either blue or red light exci-
tation was sensitive to background properties, with observed
errors topping 60 and 30%, respectively, over a biologically rel-
evant range of optical properties. Applying an empirical correc-
tion approach reduced these errors substantially, with remaining
errors of <10%. It is important to note that the empirical optical
property correction applied to these measurements was valid
only for the fiber geometry and range of optical properties inves-
tigated, and was not directly generalizable to other geometries or
sets of properties. A key consideration when interpreting the
clinical data set was whether the remitted spectra were sensitive
to the form of the scattering phase function for our small source
detector separation (SD). Inspection of the μ 0

s estimates in
Fig. 10 showed that μ 0

sSD > 0.5 at 639 nm for the majority
of patients, which has been defined37 as a threshold value for

sensitivity to phase function effects. Therefore, the high scatter-
ing regime of skin allowed accurate analysis of reflectance
without independent estimation of μ 0

s and moments of the
phase function. These factors support the use of the correction
factor validated in phantoms to correct clinical measurements.
Importantly, this correction allows direct comparison of PpIX
fluorescence measurements between patients.

The pilot clinical study was performed to establish the fea-
sibility of integrating the device into the clinical workflow of
a dermatology practice and to report initial correlates between
measurements and patient-reported pain. Standard of care ALA-
incubation times varied widely among clinics and a short ALA
incubation schedule was used in this study, which is 1 h between
ALA and light administration. An important clinical observation
was the interpatient variability in PpIX production, with some
patients showing undetectable levels of PpIX while others

Fig. 8 PpIX fluorescence measured in response to blue excitation. (a) Patient-specific fitted PpIX
fluorescence pre- and post-Tx. Box-plots show comparison of (b) absolute PDT dose and (c) percent
PpIX photobleaching with patient reporting low pain (VAS < 5) and high pain (VAS >¼ 5).

Fig. 9 PpIX fluorescence measured in response to red excitation. (a) Patient-specific fitted PpIX
fluorescence pre- and post-Tx. Box-plots show comparison of (b) absolute PDT dose and (c) percent
PpIX photobleaching with patient reporting low pain (VAS < 5) and high pain (VAS >¼ 5).
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produced an extremely robust response. Long-term clinical out-
come response data were not part of this initial data set, and thus,
we used patient-reported pain as a surrogate correlation param-
eter, which has been shown to be roughly proportional to PpIX
fluorescence prior to illumination47 and proportional to eryth-
ema following treatment.48 Using this metric, the PpIX fluores-
cence after 1-h ALA incubation was significantly higher (in the
aggregate) in patients reporting high pain than those reporting
low pain. This relationship was also observed for total absolute
change in fluorescence before and after light dose delivery,
though not for relative percent change. These results were con-
sistent for both blue and red light excitation. It should be noted
that VAS pain was only an implicit metric for therapeutic dose
and is also dependent on the nerve density within the treated
tissue, which was not evaluated in this study. But overall,
these data suggest that the dosimeter measurements may have
the potential to stratify patients who produced high and low
levels of PpIX after a short incubation time.

The core aspect of our new two-channel excitation fluores-
cence dosimeter that is unique within the field of ALA-PpIX
PDT monitoring is the ability to quantify PpIX originating
from different depths. A series of Monte Carlo simulations
were performed to characterize the sensitivity of red and blue
fluorescence measurements to depth distribution of PpIX in
the skin. Simulation results showed the red channel samples
PpIX from deeper locations than the blue. This result is
expected, given the increased absorption and scattering experi-
enced by blue light compared with red light in skin. The sim-
ulations also showed that the ratio of the red to blue fluorescence
was sensitive to the depth-dependent distribution of PpIX.
The ratio data from simulations normalized the red and blue
collected intensities for the case of homogenously distributed
PpIX, and changes in the normalized ratio resulted from

changing the spatial distribution of PpIX within the modeled
tissue volume. An increased ratio of red to blue indicated
an increased contribution of PpIX from relatively deeper
locations, while a decreased ratio indicated more PpIX in the
superficial layers of the skin. The ratio of red to blue fluores-
cence signals observed in vivo was [0.23 to 2.2]. While slight
variations in this ratio may be caused by imperfect correction for
optical property effects, the data in Fig. 5 suggest that optical
property based error is likely to be ∼20% and is unlikely to
explain the 10-fold range of ratio values observed in patients.
Thus, the differences in the observed ratio suggest differences
in the depth-dependent distribution of PpIX among patients.
Interestingly, the clinical data showed that lower RatioRB values,
indicating more superficial PpIX, were associated with higher
amounts of reported pain. It is important to note that patients
in this study were treated with blue light, hypothetically increas-
ing the product of PpIX concentration and light fluence in the
superficial layers of tissue. It should be noted that the number of
patients included in the ratio analysis in Fig. 10 is limited, and
robust conclusions on this topic require an expanded patient
population. Future studies will consider the potential use of
RatioRB as a dosimetric parameter.

The white light measurements provided quantitative descrip-
tion of local vascular physiology and the changes that occur
during treatment. Comparison of the range of tissue parameters
estimated in Fig. 11 are consistent with previous descriptions of
skin tissue.30 While there were some trends observed between
changes in BVF, Sat, pain, and the PDT dose, patients showed
a large amount of variability both in pretreatment parameters
and the changes experienced during treatment. It is well under-
stood that changes in perfusion may occur dynamically during
treatment,35 and sampling at discrete times before and after
treatment may, in fact, miss tissue response that occurs during

Fig. 10 Patient-specific optical parameters measured before and after PpIX PDT treatment: (a) blood
volume fraction, (b) microvascular saturation, (c) reduced scattering coefficient at 637 nm, and (d) volume
fraction of melanocytes in the epidermis.
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illumination. More informative descriptions of tissue response
may be found by sampling either at times during the illumina-
tion, or sampling over a window following treatment to better
characterize the regional changes to perfusion and/or edema.

The results reported here are encouraging, but require further
validation in a prospective clinical study. Assuming the dosim-
eter measurements prove to be predictive of response, additional
interventions may be applied to improve outcome, such as
extending ALA-incubation time or administering an adjuvant
to increase PpIX production. However, the initial development
and validation of the multifunction dosimeter, described in this
report, is a first step toward making clinical PDT treatments of
skin precancers (i.e., AKs) more predictable and hopefully more
controllable.
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