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Bypassing Iron Storage in Endodermal Vacuoles Rescues
the Iron Mobilization Defect in the natural resistance
associated-macrophage protein3natural resistance
associated-macrophage protein4 Double Mutant1[OPEN]

Viviane Mary, Magali Schnell Ramos, Cynthia Gillet, Amanda L. Socha, Jérôme Giraudat, Astrid Agorio,
Sylvain Merlot, Colin Clairet, Sun A. Kim, Tracy Punshon, Mary Lou Guerinot, and Sébastien Thomine*

Institute for Integrative Biology of the Cell, Saclay Plant Sciences, Université Paris-Saclay, Commissariat à
l’Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, F–91198 Gif-sur-
Yvette, France (V.M., M.S.R., C.G., J.G., A.A., S.M., C.C., S.T.); and Department of Biological Sciences,
Dartmouth College, Hanover, New Hampshire 03755 (A.L.S., S.A.K., T.P., M.L.G.)

ORCID ID: 0000-0001-9603-7710 (A.A.).

To improve seed iron (Fe) content and bioavailability, it is crucial to decipher the mechanisms that control Fe storage during seed
development. In Arabidopsis (Arabidopsis thaliana) seeds, most Fe is concentrated in insoluble precipitates, with phytate in the
vacuoles of cells surrounding the vasculature of the embryo. NATURAL RESISTANCE ASSOCIATED-MACROPHAGE
PROTEIN3 (AtNRAMP3) and AtNRAMP4 function redundantly in Fe retrieval from vacuoles during germination. When
germinated under Fe-deficient conditions, development of the nramp3nramp4 double mutant is arrested as a consequence of
impaired Fe mobilization. To identify novel genes involved in seed Fe homeostasis, we screened an ethyl methanesulfonate-
mutagenized population of nramp3nramp4 seedlings for mutations suppressing their phenotypes on low Fe. Here, we report that,
among the suppressors, two independent mutations in the VACUOLAR IRON TRANSPORTER1 (AtVIT1) gene caused the
suppressor phenotype. The AtVIT1 transporter is involved in Fe influx into vacuoles of endodermal and bundle sheath cells.
This result establishes a functional link between Fe loading in vacuoles by AtVIT1 and its remobilization by AtNRAMP3 and
AtNRAMP4. Moreover, analysis of subcellular Fe localization indicates that simultaneous disruption of AtVIT1, AtNRAMP3,
and AtNRAMP4 limits Fe accumulation in vacuolar globoids.

Iron (Fe) is an essential micronutrient. In cells, this
metal may change between two oxidation states: fer-
rous (Fe2+) and ferric (Fe3+). This property makes Fe an
important metal cofactor for electron transfer in many
biochemical reactions. However, for the same reason,

free Fe generates harmful reactive oxygen species via
the Fenton reaction (Haber and Weiss, 1932; Halliwell,
1978). Cells thus need to tightly control Fe homeostasis
through chelation and compartmentalization. For ex-
ample, in yeast (Saccharomyces cerevisiae), themembrane
transporter yeast Calcium-sensitive Cross-Complementer1
(ScCCC1) is required tomove excess Fe into the vacuole
(Li et al., 2001). The Dccc1 mutant is sensitive to extra-
cellular Fe. In mammalian cells, excess cytosolic Fe is
complexed by ferritins; the assembly of 24 ferritin
monomers forms a hollow complex able to safely store
up to 4,500 Fe(III) atoms (Finazzi and Arosio, 2014).

Fe deficiency is an important public health issue:
2 billion people, corresponding to over 25% of the world
population, are anemic (World Health Organization,
2015). To fight Fe deficiency, it has been proposed to
develop crops with more available Fe according to a
strategy called biofortification (Bouis, 2003). In most
crops, seeds are used as food or feed. Fe stores in seeds
are also important for the germination of seedlings. In
seeds, Fe may be associated with ferritin in plastids,
with phytate in vacuoles, orwith nicotianamine. Although
Fe complexed with ferritin or nicotianamine is considered
highly bioavailable, Fe phytate is insoluble and poorly
bioavailable (Clemens, 2014).

1 This work was supported by the Centre National de la Recherche
Scientifique (grant nos. ANR–07–BLAN–0110 and ANR–2011–BSV6–
00401 to S.T.), by the Université Paris-Sud (doctoral grant to V.M.), by
the National Institute of Environmental Health Services (grant no. P42
ES007373 to M.L.G. and T.P.), and by the National Science Foundation
(grant nos. IOS–0919941 and DBI–0701119 to M.L.G.). GeoSoilEnviro-
CARS is supported by the National Science Foundation (EAR–1128799)
and the Department of Energy-Geosciences (DE–FG02–94ER14466).

* Address correspondence to sebastien.thomine@i2bc.paris-saclay.fr.
The author responsible for distribution of materials integral to the

findings presented in this article in accordance with the policy de-
scribed in the Instructions for Authors (www.plantphysiol.org) is:
Sébastien Thomine (sebastien.thomine@i2bc.paris-saclay.fr).

V.M., M.S.R., C.G., A.L.S., J.G., A.A., and C.C. performed the ex-
periments and analyzed the data; S.M., T.P., M.L.G., and S.T. de-
signed and supervised the experiments and analyzed the data; S.A.K.
and M.L.G. provided unpublished material and critical reading of the
article; V.M. and S.T. wrote the article.

[OPEN] Articles can be viewed without a subscription.
www.plantphysiol.org/cgi/doi/10.1104/pp.15.00380

748 Plant Physiology�, September 2015, Vol. 169, pp. 748–759, www.plantphysiol.org � 2015 American Society of Plant Biologists. All Rights Reserved.
 www.plantphysiol.orgon May 17, 2019 - Published by Downloaded from 

Copyright © 2015 American Society of Plant Biologists. All rights reserved.

http://orcid.org/0000-0001-9603-7710
mailto:sebastien.thomine@i2bc.paris-saclay.fr
http://www.plantphysiol.org
mailto:sebastien.thomine@i2bc.paris-saclay.fr
http://www.plantphysiol.org/cgi/doi/10.1104/pp.15.00380
http://www.plantphysiol.org


In Arabidopsis (Arabidopsis thaliana) seeds, no more
than 5% of the total seed Fe is associated with ferritin
(Ravet et al., 2009). About 50% of seed Fe is concen-
trated in the vacuoles of endodermal and bundle sheath
cells surrounding the vasculature in the radicle and
cotyledons of the embryo, respectively (Lanquar et al.,
2005; Kim et al., 2006; Roschzttardtz et al., 2009; Schnell
Ramos et al., 2013). As endodermal and bundle sheath
cells belong to the same lineage, theywill be collectively
referred to as endodermal cells in this report.VACUOLAR
IRON TRANSPORTER1 (AtVIT1) is responsible for the
loading of Fe in endodermal vacuoles during seed de-
velopment (Kim et al., 2006). VIT1 is homologous to
CCC1, which mediates Fe sequestration in the vacuole
in yeast (Li et al., 2001). In addition toVIT1,which ismostly
expressed during seed development, the Arabidopsis
genome encodes five VIT1-like proteins (VTLs). VTL
gene expression is down-regulated under Fe deficiency
(Gollhofer et al., 2011). At least one of the VTLs also func-
tions in Fe sequestration in the vacuole (Gollhofer et al.,
2014). VIT1 homologs have been identified in most plant
species for which genome sequencing data are available.
In rice (Oryza sativa), OsVIT1 and OsVIT2 sequester Fe
and zinc in the vacuole of the flag leaf (Zhang et al., 2012).
Loss of AtVIT1 function perturbs the cell type-specific
localization of Fe in mature embryos. Accordingly, in the
vit1-1 knockout mutant, Fe is no longer concentrated in
cells surrounding the vasculature of the hypocotyl,
radicle, and cotyledons but instead is accumulated in
cortical cells in the hypocotyl and radicle and in the
subepidermal cells of the abaxial side of cotyledons
(Kim et al., 2006). Loss of AtVIT1 function also has an
impact on germination on alkaline (pH 7.9) soil: vit1-1
mutant seedlings grow poorly compared with the wild
type (Kim et al., 2006).
NATURAL RESISTANCE ASSOCIATED-

MACROPHAGE PROTEIN3 (AtNRAMP3) and
AtNRAMP4 function redundantly in the mobilization
of seed Fe from vacuoles during germination (Lanquar
et al., 2005). They belong to a ubiquitous family of di-
valent cation transporters represented in all kingdoms of
life. NRAMP proteins have well-documented roles in
manganese (Mn) uptake in bacteria, yeast, and Arabidopsis
(Nevo and Nelson, 2006; Cailliatte et al., 2010). In
mammals, NRAMP2/Divalent Cation Transporter1/
Divalent Metal Transporter1 is the major uptake
system involved in dietary Fe absorption (Andrews,
2004). Recently, some members of this family have
been shown to transport other substrates (Xia et al.,
2010; Ishikawa et al., 2012; Shin et al., 2014). The
Arabidopsis genome encodes six NRAMP homologs.
AtNRAMP3 and AtNRAMP4 are targeted to the vac-
uole and play a role in essential metal remobilization
from this organelle, not only during seed germination
but also in adult plants (Lanquar et al., 2005, 2010).
Even though Fe content and localization are unaf-
fected in mature seeds of the nramp3nramp4 (nr3nr4)
double knockout mutant (Schnell Ramos et al., 2013),
seedlings of this mutant display strong defects when
grown on an Fe-deficient medium: they are chlorotic

Figure 1. isv1 (nr3nr4vit1-2), isv2 (nr3nr4vit1-3), and nr3nr4vit1-
1 suppress chlorosis and developmental arrest phenotypes of nr3nr4
on low-Fe medium after germination. A, Seedlings of the wild type
(Columbia-0 [Col-0]), nr3nr4, vit1-1, nr3nr4vit1-1, isv1, and isv2 grown
for 5 d on ABIS medium without Fe (2Fe + 50 mM ferrozine) or with Fe
(+50 mM Fe). Bars = 1 mm. B, Total chlorophyll content in seedlings
grown as in A (mean6 SE; n = 3–6). C, Primary root length (mean6 SE;
n= 16–40) of 12-d-old seedlings grown inABISmediumwithout Fe (2Fe)
or with Fe (+50 mM Fe). Different letters denote statistically significant
differences between samples based on a Kruskal-Wallis test (P , 0.001)
followed by Tukey’s post hoc analysis with P , 0.05.
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and their development is arrested (Lanquar et al.,
2005).

When associated with phytate in vacuolar globoids,
Fe is insoluble and notoriously poorly available for
animal nutrition (Clemens, 2014). To identify mutations
that limit Fe storage in this compartment, we generated
an ethyl methanesulfonate (EMS)-mutagenized popu-
lation of the nr3nr4 mutant and looked for mutations
that restore growth on Fe-deficient medium. We called
these mutants isv (for bypass iron storage in vacuoles).

Here, we report the characterization of two isv mu-
tants displaying Fe distribution patterns similar to the
vit1-1 mutant. These mutants carry mutations in the
AtVIT1 gene. By genetic analysis, we demonstrate that
the mutations in AtVIT1 are loss-of-function alleles that
are responsible for the suppression phenotype. The
vit1-2 allele in isv1 carries an amino acid change in the
AtVIT1 protein leading to a nonfunctional protein, and
the vit1-3 allele in isv2 modifies the first intron-splicing
consensus sequence leading to nonfunctional RNAs or
proteins. Whereas NRAMP3 and NRAMP4 are neces-
sary for retrieving Fe from vacuoles in the wild-type
background, they are not necessary for using Fe in a
VIT1 loss-of-function background. Actually, combining
nramp3, nramp4, and vit1 mutations modifies Fe lo-
calization at the tissue and subcellular levels. These
changes likely account for the ability of vit1 mutations
to rescue Fe mobilization and growth in the nr3nr4
background.

RESULTS

Identification of Mutants Displaying Restored Growth on
Low Fe in a Mutagenized Population of nr3nr4 Seedlings

Following screening of 288,000 M2 seeds represent-
ing the progeny of 18,000 M1 plants, we selected 127
candidates, of which 32 suppressors could be con-
firmed at the M3 generation. To classify the candidates,
the Fe distribution pattern of their embryos was deter-
mined using Perls enhanced by 3,39-diaminobenzidine
(Perls/DAB) staining staining (Roschzttardtz et al.,
2009). On this basis, three classes could be established:
most candidates displayed an Fe distribution pattern
similar to the wild type; in some candidates, no staining
could be observed; and three candidates displayed a
non-wild-type Fe distribution pattern.

Identification of Two Novel vit1 Mutant Alleles on the
Basis of Their Fe Distribution Pattern

Among the candidates, we focused on isv1 and isv2,
which both display perturbed Fe distribution in their
embryos. In both isv1 and isv2, chlorosis and develop-
mental arrest phenotypes of the nr3nr4 double mutant
on low-Fe mediumwere partially suppressed (Fig. 1A).
When germinated on Fe-sufficient medium, wild-type,
nr3nr4, isv1, and isv2 seedlings contained equal
amounts of chlorophyll. In contrast, under Fe-deficient

conditions, chlorophyll could not be detected in nr3nr4,
whereas isv1 and isv2 seedlings contained 20.6 and
18.2 pmol of chlorophyll per plant, respectively, which
corresponds to approximately 13% and 11% of the con-
tent measured in wild-type seedlings (Col-0) grown un-
der the same conditions (Fig. 1B). To quantify the impact
of isv1 and isv2mutations on seedling development after

Figure 2. isv1, isv2, vit1-1, and nr3nr4vit1-1 display similar Fe distri-
bution patterns in embryos. A, Perls/DAB staining of whole embryos
from Col-0, nr3nr4, vit1-1, nr3nr4vit1-1, isv1, and isv2 mature seeds.
Bar = 200 mm. B, Perls/DAB staining on 3-mm-thick transverse sections
through embryos embedded in Epon resin. C, X-ray fluorescence
microtomography of Fe Ka fluorescence collected from intact mature
vit1-1 and nr3nr4vit1-1 seeds. Bars = 100 mm.
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germination, we measured the primary root length of
12-d-old seedlings. As expected, root lengthwas similar
for all the genotypes under Fe sufficiency. On 2Fe
medium, isv1 and isv2 overcame the complete devel-
opmental arrest observed in nr3nr4, allowing root
elongation to 74% and 54% of the wild-type level, re-
spectively (Fig. 1C).
To determine whether isv1 and isv2 mutations are

dominant or recessive, we backcrossed isv1 and isv2
with nr3nr4. On2Fe medium, out of 90 seedlings of the
F2 generation from the isv1 3 nr3nr4 cross, 26.6%
showed a suppressor phenotype, and out of 94 seed-
lings of the F2 generation from the isv2 3 nr3nr4 cross,
20.2% showed a suppressor phenotype. The segrega-
tions observed are compatible with a recessive single
locus based on x2 values of 0.71 for isv1 and 0.28 isv2.
Figure 2A shows that isv1 and isv2 mutant embryos

display Fe distribution patterns very similar to the
pattern reported for the vit1-1 mutant (Roschzttardtz
et al., 2009). We thus tested whether isv1 and isv2 carry
a mutation in the AtVIT1 gene. We amplified and se-
quenced the VIT1 gene in isv1, isv2, and the wild type.
Sequence analysis revealed that isv1 and isv2 carry two
different point mutations consistent with EMS muta-
genesis in the VIT1 genomic sequence (Fig. 3A). In isv1,
a change from G to A at nucleotide 243 led to an amino
acid change in the second predicted transmembrane
domain: Gly-77 was replaced by an Asp (Fig. 3B). In
isv2, a G-to-A conversion at nucleotide 699 affected the
predicted acceptor site for the splicing of the first intron.

The Triple Knockout Mutant nr3nr4vit1-1 Recapitulated
the Phenotype of isv1 and isv2 on Low-Fe Medium

To test whether the loss of VIT1 function could
suppress the nr3nr4 phenotype, we constructed the
nr3nr4vit1-1 triple mutant by combining knockout in-
sertion alleles of the three genes. OnFe-deficientmedium,

the triple knockout mutant displayed a phenotype in-
termediate between the wild-type Col-0 and nr3nr4
(Fig. 1), similar to isv1 and isv2. In agreement with a
previous report showing a growth defect on alkaline
soil (Kim et al., 2006), vit1-1 single mutant growth and
greening were also impaired on Fe-deficient medium.
Its phenotype was intermediate between Col-0 and the
triple mutant nr3nr4vit1-1. On Fe-sufficient medium,
vit1-1was indistinguishable fromwild-type Col-0 (Fig. 1).
The Fe distribution pattern revealed by Perls/DAB
staining of nr3nr4vit1-1 whole embryos was similar to
the Fe pattern in the vit1-1 single mutant, as observed in
isv1 and isv2 (Fig. 2A). Perls/DAB staining and micro
Particle Induced X-ray Emission (mPIXE) spectroscopy
analyses of embryo sections as well as synchrotron x-ray

Figure 3. isv1 and isv2 carry mutations in the VIT1 gene. A, Positions of isv1 and isv2 mutations and transfer DNA (T-DNA)
insertion of the vit1-1mutant on the VIT1 genomic DNA sequence (black bars stand for exons, black lines represent introns, and
mutations are indicated in red). B, Predicted topology of the VIT1 transporter. Gly-77 was localized in the middle of the second
transmembrane domain.

Figure 4. The suppressor phenotype of isv1 (nr3nr4vit1-2) and isv2
(nr3nr4vit1-3) candidates is caused by the mutations in VIT1. Photo-
graphs show the wild type, nr3nr4, and F1 seedlings from crosses be-
tween nr3nr4vit1-1 and isv1, nr3nr4vit1-1 and isv2, or isv1 and isv2
grown for 4 d on ABIS medium without Fe (2Fe + 50 mM ferrozine).
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fluorescence (SXRF) tomography of intact seeds con-
firmed that, in nr3nr4vit1-1 embryos, Fe is concentrated in
cotyledon abaxial subepidermal cells and radicle cortical
cells, as in vit1-1 (Fig. 2, B and C; Supplemental Fig. S1).
These results establish that loss of VIT1 function sup-
presses the defects observed in the nr3nr4 mutant
germinated on low-Fe medium and that nr3nr4vit1-1
has the same Fe distribution pattern in embryo tissues
as vit1-1.

The Mutations in the AtVIT1 Gene Sequence Are
Responsible for the Suppressor Phenotype in isv1 and
isv2 Mutants

To confirm that the EMS mutations found in the
AtVIT1 gene in isv1 and isv2 are responsible for the
suppressor phenotype on low-Fe medium, we per-
formed an allelic complementation test by crossing the
triple knockout mutant nr3nr4vit1-1with isv1 and with
isv2. Allelic complementation tests establish whether
two recessive mutations are in the same or in different
genes. If the recessive mutations are in the same gene,
the F1 generation is expected to display the suppressor
phenotype. We sowed F1 generation seeds from
nr3nr4vit1-13 isv1, nr3nr4vit1-13 isv2, and isv13 isv2
crosses on 2Fe medium (Fig. 4) and observed that all
seedlings displayed an intermediate phenotype remi-
niscent of the nr3nr4vit1 triple knockout or the isv1 and
isv2 mutants (Fig. 4). Taken together, these results es-
tablish a causal link between the isv1 and isv2mutations
found in theVIT1 gene and their suppressor phenotype
in nr3nr4vit1-2 and nr3nr4vit1-3, respectively.

The vit1-3 Mutation Prevents the Production of Functional
AtVIT1 mRNA in isv2

As isv2 (nr3nr4vit1-3) mutants carry amutation in the
acceptor site involved in the splicing of the first intron
ofVIT1, we investigated the effect of the vit1-3mutation
on VIT1 mRNA using reverse transcription (RT)-PCR.
Experiments were carried out using primers that am-
plify a fragment ofVIT1 spanning all three introns, with
ACTIN2 as a reference gene. The results presented in
Figure 5 show an amplicon at the expected size (461 bp)
for the spliced transcript in Col-0 and the nr3nr4 double
mutant (band b) and no amplification at this size in
vit1-1. The high molecular mass band observed in Col-0,
nr3nr4, and nr3nr4vit1-3 (band a) corresponds to the
size of the genomic DNA (1,359 bp) or to an unspliced
version of the mRNA. An amplicon at the expected size
(461 bp) for the spliced transcript (band b) was also
observed in isv1 (nr3nr4vit1-2). In nr3nr4vit1-3, two
amplicons were present in addition to band a, one
matching the size of a modified form of the mRNA
where the first intron is not spliced (band c; 893 bp) and
one at the expected size for the properly spliced RNA
(band d). Sequencing of these amplicons confirmed the
identity of the high molecular mass band (band c) and
revealed that, in the band at the correct size (band d),
eight nucleotides are missing, introducing a frame shift
in the cDNA (Supplemental Fig. S2). In contrast, the
sequence of the amplicon at the same size (band b) in
Col-0, nr3nr4, and nr3nr4vit1-2 corresponds to the
predicted cDNA. Both mRNAs detected in nr3nr4vit1-3
contain premature stop codons and are predicted to
give rise to proteins truncated after Tyr-90 and Ser-108.
The vit1-3 mutation led to the production of two non-
functional mRNAs of VIT1, while the vit1-2 mutation
did not impair VIT1 mRNA production.

The G77D Mutation Impairs the Ability of AtVIT1 to
Transport Fe in Yeast

To examine the Fe transport activity of AtVIT1G77D

(vit1-2), we compared the ability of AtVIT1 and
AtVIT1G77D to complement the Dccc1 yeast mutant on
high-Fe medium. AtVIT1 is a functional homolog of
yeast ScCCC1 (Kim et al., 2006). The Dccc1 mutant is
sensitive to high extracellular Fe concentrations and
fails to grow on medium containing elevated levels of
Fe (Li et al., 2001). In agreement with a previous report
(Kim et al., 2006), Dccc1 growth on 5 or 10 mM FeSO4
could be restored by the expression of AtVIT1 or GFP-
AtVIT1 (Fig. 6A). In contrast, the Dccc1 yeast strain
transformed with AtVIT1G77D or GFP-AtVIT1 G77D was
not able to grow on medium supplemented with high
concentrations of FeSO4 (Fig. 6A). Accordingly, the
expression ofAtVIT1, but not ofAtVIT1G77D, restored Fe
accumulation in Dccc1 (Fig. 6B). Immunoblot analysis
using anti-VIT1 antibody did not reveal any difference
between native VIT1 and VIT1G77D protein levels in
Dccc1 (Fig. 6C). Moreover, examination of GFP-VIT1 by
confocal microscopy did not provide any indication

Figure 5. Effects of vit1-2 and vit1-3 mutations on VIT1 mRNA struc-
ture. RT-PCR was performed on complementary DNA (cDNA) from
siliques of nr3nr4, nr3nr4vit1-1, nr3nr4vit1-2, and nr3nr4vit1-3. Four
different types of amplicons were detected and sequenced: a, residual
genomic DNA or unspliced RNA; b, mature mRNA; c, mRNA with an
unspliced first intron; and d, misspliced mRNA missing eight nucleo-
tides at the beginning of the second exon.
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that the G77D mutation alters VIT1 localization (Fig.
6D). Together, these results suggest that Gly-77 is a
critical residue for VIT1 Fe transport activity.

Subepidermal Fe Stores Are Efficiently Mobilized during
Germination in the Absence of AtNRAMP3
and AtNRAMP4

To understand themechanism bywhichmutations in
AtVIT1 rescue the growth of nr3nr4 mutant seedlings
on low Fe, we examined the concentration and the fate
of seed Fe stores in nr3nr4vit1-1. Measurements of Fe
concentrations in seeds did not reveal any significant
difference between Col-0, nr3nr4, vit1-1, and nr3nr4vit1-1
(Supplemental Table S1). To monitor Fe mobilization, we
performed Perls/DAB staining on seedlings grown on –Fe
medium during the first 7 d after germination (Fig. 7).
As reported previously (Roschzttardtz et al., 2009), in
the wild type, the Perls/DAB staining around vascular
tissues disappeared progressively after germination,
indicating that Fe was mobilized (Fig. 7). In parallel,
cotyledons became green after 4 d. In contrast, the
strong staining surrounding the vasculature remained
even after 7 d in nr3nr4 double mutant seedlings, con-
firming that this mutant is unable to remobilize Fe, which
was associated with extreme chlorosis and developmen-
tal arrest. In vit1-1 and nr3nr4vit1-1 mature embryos, Fe
stores are located in the subepidermal cells on the abaxial
side of the cotyledons and in the cortex of the radicle.
During the first week of seedling development, the cor-
responding Perls/DAB staining disappearedwith similar
kinetics, indicating that Fe is efficiently mobilized in both
single and triple mutants (Fig. 7). Accordingly, vit1-1 and
nr3nr4vit1-1 mutants were able to grow on –Fe medium,
and their cotyledons became green after 4 d. These data
indicate that, in the vit1-1mutant background, Fe may be
mobilized from subepidermal cells of cotyledons and in
the cortex of the radicle even in the absence of NRAMP3
and NRAMP4. This result provides a mechanism for the
suppressor effect ofVIT1 loss-of-functionmutations innr3nr4.

Subcellular Localization of Fe in Cotyledon
Subepidermal Cells

Our results indicated that Fe stored in cotyledon
subepidermal cells is efficiently mobilized during ger-
mination in the absence of AtNRAMP3 and AtNRAMP4.

Figure 6. The VIT1 G77D transporter encoded by the vit1-2 allele does
not rescue the Dccc1 yeast mutant. A, Yeast drop test. AtVIT1,
AtVIT1G77D, and their corresponding GFP fusion proteins were
expressed in the Dccc1 mutant. The complementation was scored by
spotting serial dilutions of yeast transformants on selective medium
(synthetic dextrose [SD]-Ura) supplemented or not with 5 or 10 mM

FeSO4. The wild-type strain (DY150) and the Dccc1mutant transformed
with an empty vector were used as controls. B, Fe and zinc (Zn) con-
centrations (mean 6 SE; n = 3) in the indicated yeast strains grown for
48 h in SD-Ura supplemented with 50 mM FeSO4. DW, Dry weight.
C, Immunoblot analysis with antibody against VIT1 on protein extracts
from strains used for the drop test. As the time for detection of the GFP
fusion protein is longer than for the native version, two exposures are
shown: 7 min (top) and 30 s (bottom). D, Localization of the GFP flu-
orescence signal in Dccc1 yeast mutant cells transformedwith the wild-
type or G77D version of VIT1-GFP (green channel), FM4-64 (red
channel), and overlay.
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This raises the question of the compartment inwhich Fe is
stored in the absence of VIT1. Is Fe localized in vacuolar
globoids and mobilized by distinct vacuolar metal ex-
porters, or is it stored in a different compartment? To
address this question, we examined the subcellular lo-
calization of Fe and Mn in cotyledons from wild-type,
vit1-1, and nr3nr4vit1-1 triple mutant dry seeds using
energy-dispersive x-ray (EDX) analysis coupled to trans-
mission electron microscopy (TEM). No obvious differ-
ence in globoid density or size between genotypes was
noted. Nevertheless, Fe and Mn signals in the globoids
were normalized by the phosphorus Ka signal, as phos-
phorus is the major component of globoids, to correct for
variations in globoid size and number under the electron
beam. As expected from previous work (Lanquar et al.,
2005; Kim et al., 2006; Punshon et al., 2012; Schnell Ramos
et al., 2013), Fe was highly concentrated in vacuolar glo-
boids of endodermal cells in wild-type embryos. Mn
could not be detected by EDX in this cell type and was
concentrated in globoids from subepidermal cells (Figs. 8
and 9). Mn subcellular localization is consistent with a
recent spectroscopic analysis demonstrating Mn associa-
tion with phytate in seeds (Bruch et al., 2015). Fe was also
detected in the cytosol of endodermal and subepidermal

Figure 7. Fe stores are efficiently remobilized during vit1-1 and
nr3nr4vit1-1mutant seedling development. Seedling development and
Fe localization were monitored in parallel during the first 7 d after
sowing. For each section, images at the top show seedlings on low-Fe
medium (ABIS –Fe + 50 mM ferrozine) and images at the bottom show
Perls/DAB staining of Col-0, nr3nr4, vit1-1, and nr3nr4vit1-1 (from left
to right) at 1, 4, or 7 d after transfer to the growth chamber. Bars = 100
mm (day 1), 1 mm (day 4), and 1 mm (day 7).

Figure 8. Less Fe is associated with vacuolar globoids of subepidermal
cells in nr3nr4vit1-1 than in the vit1-1 mutant. Analysis of Fe and Mn
contents was performed in vacuolar globoids in embryos from dry seeds
using TEM-EDX. A, TEM micrograph of a 500-nm-thick transverse
section through a cotyledon of a Col-0 embryo. B, Schematic repre-
sentation of the section. EN, Endodermal/bundle sheath cell (red); SE,
subepidermal cell (orange). C to H, Representative spectra of the en-
ergies of Mn and Fe emissions with beam focused on globoids from
endodermal/bundle sheath cells (C, E, and G) or subepidermal cells
(D, F, and H) in the wild type (C and D), vit1-1 (E and F), or nr3nr4vit1-1
(G and H).
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cells as well as in subepidermal globoids, albeit at much
lower levels than in endodermal cell globoids (Figs. 8 and
9). In vit1-1 mutant embryos, Fe and Mn were both con-
centrated in subepidermal cell globoids. Nevertheless, Fe
could still be detected at much lower levels in vit1-1 en-
dodermal cell globoids as well as in the cytosol of both
subepidermal and endodermal cells. In contrast to the
pattern revealed by Perls/DAB staining, mPIXE, and
SXRF in vit1-1 and nr3nr4vit1-1, Fe was detected at low
levels in globoids from subepidermal and endodermal
cells in the triple mutant (Figs. 8 and 9). Together with the
results of Perls/DAB analysis indicating that Fe is con-
centrated in subepidermal cells, these data suggest

that the subcellular localization of Fe is modified in
nr3nr4vit1-1 triple mutants. However, TEM-EDX did not
detect any increase in Fe in the cytosol of subepidermal
cells in nr3nr4vit1-1 compared with vit1-1 or the wild
type (Supplemental Fig. S3). Mn distribution was not
affected by the mutations. Mn was concentrated in
subepidermal cell globoids in all the genotypes ana-
lyzed (Figs. 8 and 9). Interestingly, Mn was not present
in all subepidermal cells: in about one-third of subepi-
dermal cells, Mnwas not detected in globoids. In contrast
to Fe,Mn could not be detected in the cytosol, irrespective
of the cell type analyzed (Supplemental Fig. S3).

DISCUSSION

In this work, we screened an EMS mutagenized
population of nr3nr4 double mutants looking for mu-
tations that suppress its chlorotic phenotype under Fe
deficiency. We characterized two mutants in which
loss of VIT1 function is responsible for the suppressor
phenotype (Fig. 4).

Novel Mutations Provide Insights into AtVIT1 Protein
Structure-Function Relationships

Two distinct mutations were discovered in the VIT1
gene. In isv1, the vit1-2 mutation led to an amino acid
change: Gly-77, a hydrophobic residue with no lateral
chain, was replaced by Asp, a polar residue with a
bulky lateral chain. The consensus topology for VIT1
provided in the ARAMEMNON membrane protein
database predicts five a-helices forming transmembrane
domains (Gollhofer et al., 2011; Fig. 3B). Gly-77would be
localized in the middle of the second transmembrane
domain. Moreover, sequence alignment reveals that
this transmembrane domain, and specifically Gly-77,
is highly conserved in VIT1 homologs from a range of
species (Supplemental Fig. S4). Previous studies have
shown that the Dccc1 growth defect may be rescued by
transformation with AtVIT1 and its homologs AtVTL1
(Gollhofer et al., 2014), LeVIT1 (Kim et al., 2006), TgVIT1
(Momonoi et al., 2009), and OsVIT1 or OsVIT2 (Zhang
et al., 2012). Expression in yeast indicates that the G77D
mutation prevents Dccc1 rescue by AtVIT1 but does not
alter the AtVIT1 protein level or subcellular localization
(Fig. 6). It is likely that Gly-77might play a critical role in
VIT1 transport function or indirectly in VIT1 interactions
with membrane lipids, other transmembrane domains,
or other proteins. Residues important for the function of
VIT1 protein family proteins have already been identi-
fied (Hakoyama et al., 2012). Stationary Endosymbiont
Nodule1 from Lotus japonicus (LjSEN1), a VIT1 homolog,
is required for symbiotic nitrogen fixation by Lotus
japonicus. Mutations A41V (sen1-1), R111K (sen1-2), and
G191E (sen1-5) were shown to impair LjSEN1 function.
However, whether these mutations affect LjSEN1 stabil-
ity, localization, or transport function was not investi-
gated, andnone of these residues corresponds toGly-77 in
the LjSEN1 sequence (Supplemental Fig. S4).

Figure 9. EDX analysis does not detect high Fe concentrations in
nr3nr4vit1-1 globoids of subepidermal cells. The value shown corre-
sponds to 100 times the ratio Fe/P (or Mn/P). Ratios were calculated
from integrated counts of Fe, Mn, and phosphorus (P) peaks in the
spectra obtained by TEM-EDX in globoids of endodermal or subepi-
dermal cells of cotyledons. Data are presented as medians, boxes show
25th and 75th percentiles, and whiskers show minimal and maximal
values. White boxes, Col-0; light gray boxes, vit1-1; and dark gray
boxes, nr3nr4vit1-1. Different letters denote statistically significant
difference between samples (n = 16–26) based on a Kruskal-Wallis test
(P , 0.001) followed by Tukey’s post hoc analysis with P , 0.05.
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In isv2, the vit1-3 mutation led to a change in the 39
splicing consensus sequence of the first intron (Figs.
3 and 5). TwoformsofRNAcouldbedetected innr3nr4vit1-3.
In thefirst one, thefirst intron is unspliced, and in the other
one, the intron is misspliced. For this second RNA form, a
cryptic acceptor site located eight nucleotides downstream
of themutation in the second exon is used, which causes a
frame shift (Fig. 5; Supplemental Fig. S2). Both RNA forms
introduce premature stop codons and are expected to
produce nonfunctional proteins. Amutation in a splicing
acceptor site in Constitutive Photomorphogenesis1 (COP1;
cop1-11) was previously shown to lead to a similar com-
binationof nonfunctionalmRNAs includingunspliced and
misspliced species (McNellis et al., 1994).

VIT1, AtNRAMP3, and AtNRAMP4 Define a Functional
Module for Fe Storage in Endodermal Cells

To our knowledge, our study provides thefirst genetic
evidence that AtVIT1, AtNRAMP3, and AtNRAMP4
function in the same pathway by demonstrating an ep-
istatic relationship between vit1 and nr3nr4 mutations.
In the wild-type embryo, about 50% of stored Fe is lo-
calized in endodermal cells, where AtVIT1, AtNRAMP3,
and AtNRAMP4 are expressed (Lanquar et al., 2005;
Kim et al., 2006). Our TEM-EDXdata confirm that, in this
cell type, the main site for Fe storage is the vacuole.
Furthermore, this work indicates that the AtVIT1/
AtNRAMP3/AtNRAMP4 functional module is essen-
tial for Fe storage in this specific cell type (Fig. 10). This
module may be conserved in other species. In seeds of
Phaseolus spp., Fe is also concentrated around vascular
tissues, similar to the situation encountered in Arabidopsis
seeds (Cvitanich et al., 2010). In cereals, such as rice or
wheat (Triticum aestivum), a major part of seed Fe is stored
in the aleurone layer (Johnson et al., 2011), and Fe was
found to be associated with globoids in this cell layer in
wheat (Lott and Spitzer, 1980). The molecular players

involved in loading and remobilization have not yet been
identified in species other than Arabidopsis.

A Range of Phenotypes Associated with the Localization of
Fe Stores in Embryos and Their Mobilization

The phenotypes observed on Fe-deficient medium
may be ranked on the basis of their severity: wild
type . . vit1-1 . nr3nr4vit1-1 = nr3nr4vit1-2 =
nr3nr4vit1-3.. nr3nr4. In our conditions, wild-type
seedlings are not chlorotic under Fe-deficient condi-
tions, at least not during the first week after germi-
nation (Fig. 1). This indicates that seed Fe stores are
sufficient for the initial stages of development. At the
other end, nr3nr4 seedlings are highly chlorotic, and
their development is fully arrested under Fe deficiency
(Fig. 1). This confirms that retrieval of vacuolar Fe stores
is essential for seedling development (Lanquar et al.,
2005). As described previously (Kim et al., 2006), vit1
seedlings were also chlorotic when germinated under Fe
deficiency (Fig. 1). However, this phenotype was clearly
milder than that of the nr3nr4doublemutant: despite the
chlorosis, vit1-1 mutant roots reach the same size as the
wild type after 2 weeks (Fig. 1C). Our results indicate
that Fe is readily mobilized from cotyledon subepider-
mal cells and root cortical cells in vit1-1 (Figs. 7 and 10).
Therefore, the vit1phenotype did not result fromadefect
in Fe mobilization but rather from Fe being released in
the wrong location.

Interestingly, nr3nr4vit1-2 (isv1), nr3nr4vit1-3 (isv2),
and nr3nr4vit1-1 triple knockout mutants displayed a
phenotype intermediate between vit1-1 and nr3nr4.
Importantly, seedlings of these mutants contained de-
tectable levels of chlorophyll and had elongated roots,
which is not the case for the nr3nr4 double mutant.
Moreover, their Fe storesweremobilized from cotyledon
subepidermal cells and root cortical cells as efficiently as
in the vit1-1 single mutant (Fig. 7). This indicates that

Figure 10. Working model for VIT1 and
NRAMP3/NRAMP4 during seed development,
maturation, and germination in Arabidopsis
embryo (transverse section). Bundle sheath
and endodermal cells are highlighted in red.
Subepidermal cells are highlighted in orange.
Vacuolar Fe transporters are represented as
green or blue boxes.
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these cell types mobilize Fe independently of AtNRAMP3
and AtNRAMP4 (Fig. 10).
The origin of the difference between the phenotypes

of the vit1-1 single mutant and the nr3nr4vit1-1 triple
mutant might reside in the remobilization of Fe from
pools that are not visualized by Perls/DAB staining.
Schnell Ramos et al. (2013) have reported that only
50% of Fe in the embryo is located in the highly con-
centrated areas of the endodermis in the wild type or
in cotyledon subepidermal cells in vit1-1. However, Fe
is present at lower concentrations in all embryo cell
types. Whereas AtVIT1 expression is restricted to the
vasculature (Kimet al., 2006),AtNRAMP3andAtNRAMP4
expression patterns extend to whole cotyledons (Lanquar
et al., 2005). The inability to remobilize the low-concentration
Fe pool in nr3nr4vit1-2 (isv1), nr3nr4vit1-3 (isv2), and
nr3nr4vit1-1mutants may account for their more severe
phenotypes compared with the vit1-1 single mutant.
Techniques with lower detection limits will be needed
to monitor Fe localization and speciation in dry seeds
and during germination to solve this issue.

Is Storage in Vacuolar Globoids Bypassed in
nr3nr4vit1-1 Cotyledons?

Here, with TEM-EDX imaging, we conclusively
identified the site of Fe storage within cotyledon
subepidermal cells and root cortical cells in vit1-1 as
vacuolar globloids. However, there was a discrepancy
between the Fe pattern revealed by Perls/DAB staining
and the TEM-EDXdata for the nr3nr4vit1-1 triplemutant
(Figs. 2, 8, and 9; Supplemental Fig. S1). The pattern
revealed by Perls/DAB staining mimicked that of the
vit1-1mutant. In contrast, TEM-EDX detected similar Fe
levels in endodermal and subepidermal cells in the triple
mutant (Figs. 8 and 9). This suggests that part of the Fe
visualized by Perls/DAB is not associated with vacuolar
globoids. This Fe pool may be localized in a different
compartment that is too diffuse for detection by TEM-
EDX. Themore severe phenotype observed in nr3nr4vit1-1
compared with vit1-1 during germination might be due to
differences in Fe subcellular localization and/or speciation
in subepidermal cells in these two mutants (Figs. 8 and 9).
In any case, the TEM-EDX data indicate that Fe subcellular
localization and/or speciation is distinct in vit1-1 and
nr3nr4vit1-1. Determining the identity of the Fe pool in
nr3nr4vit1-1 subepidermal cellswill be a challenge for future
studies. The difference between vit1-1 and nr3nr4vit1-1 ob-
served in dry seeds indicates that AtNRAMP3 and
AtNRAMP4 in Fe transport not only during germina-
tion but also during embryogenesis. The finding that
mutations in transporters involved in vacuolar metal
efflux prevent vacuolar Fe storage in subepidermal cells
in the vit1 mutant background is paradoxical. One
possibility would be that AtNRAMP3 and AtNRAMP4
are required for Fe transfer between chloroplasts and
globoids. During embryo development, Fe is first stored
in plastids. Yellow Stripe-Like4 (AtYSL4) and AtYSL6
are involved in Fe efflux from chloroplast. Loss of YSL4

andYSL6 function strongly down-regulatesAtNRAMP3
and AtNRAMP4 expression, leading, paradoxically, to
Fe sequestration in vacuoles (Divol et al., 2013). A recip-
rocal regulation may shut down YSL4 and YSL6 expres-
sion in nr3nr4 and lead, paradoxically, to Fe sequestration
in plastids. Such a process would occur only in the vit1-1
background and not in the wild type, because YSL4 and
YSL6 are not expressed around vascular tissues (Divol
et al., 2013). Testing this hypothesis will require high-
resolution temporal and spatial analysis of Fe localiza-
tion and transport during embryo development.

CONCLUSION

The results reported here demonstrate the functional
link between AtVIT1, AtNRAMP3, and AtNRAMP4.
These three genes define a functional module active in
cells that surround the vasculature in the embryo. The
function of this module is essential for optimal seedling
establishment under Fe-deficient conditions. Moreover,
our data allow a functional dissection of the different Fe
pools present in the Arabidopsis embryo and determine
their relevance for germination in environments where
Fe is poorly available.

MATERIALS AND METHODS

Plant Materials

The generation of Arabidopsis (Arabidopsis thaliana) nr3nr4 and vit1-1 transfer
DNA insertion mutants has been described previously (Kim et al., 2006; Ravet
et al., 2009; Molins et al., 2013). To obtain the nramp3nramp4vit1-1 triple mutant,
the nr3nr4 mutant carrying T-DNA insertions in AtNRAMP3 (At2G23150) and
AtNRAMP4 (At5G67330) genes was crossed with the vit1-1 mutant carrying a
T-DNA insertion in AtVIT1 gene (At2G01770), and the F2 progeny was analyzed
by PCR genotyping to select homozygous plants at the three loci.

Plant Growth Conditions

Arabidopsis seedlings were grown on ABIS medium [containing 2.5 mM

H3PO4, 5 mM KNO3, 2 mM MgSO4, 1 mM Ca(NO3)2, Murashige and Skoog mi-
croelements, 1% (w/v) Suc, 1% (w/v) Phytagel (primary root length experi-
ment) or 0.7% (w/v) Phytoagar (all other experiments), and 1mMMES adjusted
with KOH to pH 6.1]. For Fe-sufficient medium, 50 mM FeHBED was added
after autoclaving. FeHBED was prepared as a 10 mM stock solution from FeCl3
(Sigma) and HBED [N,N9-di(2-hydroxybenzyl)ethylene diamine-N,N9-diacetic
acid monochloride hydrate; Strem Chemicals]. HBED was added with a 10%
excess to ensure that all Fe was chelated. To deplete the medium of Fe, Fe was
omitted (primary root length experiment; 2Fe) or Fe was omitted and 50 mM

ferrozine [3-(2-pyridyl)-5,6-bis(4-phenyl-sulfonic acid)-1,2,4-triazine] was added
to the ABIS medium (all other experiments; 2Fe + 50 mM ferrozine). Plates were
placed vertically (primary root length experiment) or horizontally (all other ex-
periments) in environmental growth chambers (Sanyo MLR-350) at 21°C with a
16-h photoperiod under 120 mmol photons m22 s21.

EMS-Mutagenized nr3nr4 Population Production and
Screening Conditions

An M0 population of 25,000 seeds of the nr3nr4 double knockout mutant was
treated with 0.15% (v/v) EMS for 16 h and rinsed eight times with about 120 mL
and one last timewith 500mLof distilledwater to obtainM1 seeds.M1 seedswere
sown in pools of 50 per pot and grown in a greenhouse to obtain batches of M2
seeds originating fromM1 seed pools. Eight hundred seeds of eachM2 batch were
sown on two 12- 3 12-cm plates (corresponding to a density of five to six seeds
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per cm2) containing 2Fe + 50 mM ferrozine ABIS medium. Seedlings able to grow
on this mediumwere selected after 3, 4, or 7 d of germination and transferred first
to Fe-sufficient ABIS medium for recovery and then to pots and grown in the
greenhouse to obtain M3 seeds. The inheritance of the suppressor phenotype was
then tested by germinating M3 seeds on 2Fe + 50 mM ferrozine ABIS medium.

Fe Staining in Embryos and Seedlings during Germination

To examine Fe localization in mature embryos and seedlings, Perls/DAB
staining was performed according to Roschzttardtz et al. (2009). Mature em-
bryos were obtained by dissection of seeds that were imbibed in water, in the
dark, at 4°C for 1 night. Seedlings used for monitoring Fe mobilization during
germination were sown on –Fe + 50 mM ferrozine ABIS medium.

Chlorophyll Analysis

After grinding the leaves in liquid nitrogen, pigmentswere extracted in 1mL
of ethanol at room temperature for 30 min. After centrifugation at 19,000g for
10 min at room temperature, the supernatant was recovered and stored over-
night at 220°C. The supernatant was then centrifuged at 19,000g for 5 min at
room temperature, and pigment content was determined spectrophotometri-
cally from the absorbance measured at 534, 643, and 661 nm (Porra et al., 1989).

VIT1 PCR Amplification and Sequencing

Genomic DNA was extracted as described (Edwards et al., 1991). Primers
VIT1_for2 (59-ACCACAAGACATGCAACAAAC-39) and VIT1_rev1 (59-TT-
CCCACACACACACTTCACAA-39) were used to amplify the coding sequence
of the AtVIT1 gene. Primers VIT1_for2, VIT1_rev1, VIT1_for3 (59-GAATCT-
CTGCCACTTCAG-39), and VIT1_rev3 (59-CCTGAAACTGGTAAGACC-39)
were used to sequence the PCR amplicon (GATC).

RNA Extraction and RT-PCR Analysis

RNA was extracted from 12 to 15 green siliques using the PowerPlant RNA
Isolation Kit (MO BIO Laboratories) following the manufacturer’s instructions.
DNase treatment was performed by applying 5 mL of RNase-free DNase at
5 units mL21 (MO BIO Laboratories) on the nucleic acid-binding columns. RNA
was eluted with 100 mL of RNase-free water. One microgram of RNA was used
for RT using the SuperScript III First-Strand Kit (Invitrogen, Thermo Fisher
Scientific) with random hexamers. For RT-PCR analysis, VIT1qPCRex1
(59-CGGAGAAATCGTACGTGACA-39) and VIT1qPCRex4 (59-GTAACGG-
TATAAAACCGCCAAG-39) were used to amplify VIT1 transcripts. Actin2_fwq
(59-GGTAACATTGTGCTCAGTGGTGG-39) and Actin2_revq (59-AGCAT-
GAAGATTAAGGTCGTT-39) were used to amplify ACTIN2 as a reference.
After an initial denaturation step of 5min at 94°C, PCR amplification proceeded
with 35 cycles (VIT1) or 25 cycles (ACTIN2) of denaturation (30 s at 94°C),
hybridization (30 s at 60°C), and extension (30 s at 72°C) and a final extension
of 5 min at 72°C.

Functional Expression in Yeast

Saccharomyces cerevisiae strains used in this studywereDccc1 (MATa; ura3-53,
leu2-3,112, trp1-1, his3-11, ade2-1, can1-100, Dccc1::HIS3) and the corresponding
wild type, DY150 (Li et al., 2001). The mutated VIT1 version (VIT1G77D) was
generated using the QuikChange II KL Site-Directed Mutagenesis kit (Stra-
tagene, Agilent Technologies) with mutagenic primers VIT1yeast_3-4-for
(59-CCCATGGAGATAGCATCGGCCGCGACTTCGG-39) and VIT1yeast_
3-4_rev (59-CCGAAGTCGCGGCCGATGCTATCTCCATGGG-39).

Dccc1 cellswere transformedwith either the emptym3838 vector, as a negative
control, or plasmids containingVIT1 cDNA fromArabidopsis native or VIT1G77D

(fused or not to GFP) under the control of the Methionine25 promoter by the
lithium acetate method (Gietz et al., 1992; Kim et al., 2006). Transformed Dccc1
cells were selected on SD-Ura-His medium (Sigma). Complementation of Dccc1
was tested by spotting serial dilutions of each yeast strain on SD-Ura medium
supplemented or not with 5 or 10 mM FeSO4. Plates were placed at 30°C for 2 d.

Metal Analyses

For metal analyses in yeast, yeast strains were diluted to an optical density
of 0.2 in fresh SD-Ura medium supplemented with 50 mM FeSO4 and grown for

48 h. After incubation, yeast cultures were placed on ice. Yeast cells were re-
covered by centrifugation (1,300g, 5 min, and 4°C) and washed first in 50 mL of
10mM ice-cold EDTA and 50mM Tris-HCl, pH 6.5, pelleted, and then in ice-cold
ultrapure water. For metal analyses in seeds, three or four replicates of about
20 mg of dry seeds were used. All samples were digested in 2 mL of 70% (v/v)
nitric acid in a DigiBlock ED36 (LabTech) at 80°C for 1 h, 100°C for 1 h, and
120°C for 2 h. After dilution to 12 mL with ultrapure water, calcium, Fe, magne-
sium,Mn, and zinc contents of the sampleswere determinedbyatomic absorption
spectrometry using an AA240FS flame spectrometer (Agilent Technologies).

SXRF Analysis

SXRF computedmicrotomographydatawere collected at theGSECARSx-ray
microprobe beamline (13-ID-E; Sutton et al., 2002) at the Advanced Photon
Source, Argonne National Laboratory. Individual Arabidopsis seeds were glued
to 100-mm-diameter quartz capillaries for analysis and mounted vertically and
hanging down from the rotational stage above the sample. An incident beam
energy of 12 keV from a Si(111) double crystal monochromator (LN2 cryocooled)
was focused to approximately 1 3 2 mm (vertical 3 horizontal) with reflective
rhodium-coated silicon mirrors in a Kirkpatrick-Baez geometry. A four-element
silicon-drift diode detector array was used (Hitachi ME-4), coupled to a high-speed
digital spectrometer system (XIAXMap), tomeasure the x-raym-fluorescence signal.
To collect the x-ray fluorescence sinogram, the seeds were rotated in the fo-
cused beam through 363° at an angular speed of 33.333° s21, saving spectra
accumulated through 0.5° every 20 ms. After each full rotation, the seed was
stepped horizontally across the beam by 1 mm and then rotated 363° in the
opposite direction, generating sinograms consisting of 2,048 energy bins, 727
angles, 501 horizontal steps, and four detector elements (Gürsoy et al., 2015).
Tomographic slices of the x-ray fluorescence emission intensities through
each seed were computationally reconstructed using filtered back-projection
algorithms using procedures written in Interactive Data Language (Exelis VIS).

High-Pressure Freezing, Freeze Substitution,
and Embedding

After mechanical removal of the seed integument, the embryos were high-
pressure frozenwithhexadecane as cryoprotectant in 200-mm-deepcarrierswith
EMPACT2 (Leica Microsystems). Freeze substitution was performed in AFS2
(LeicaMicrosystems) in 2% (w/v) glutaraldehyde in anhydrous acetone for 4 d,
as adapted from Otegui et al. (2002). Samples were infiltrated in Epon at room
temperature as follows: 5% (v/v) resin in acetone (4 h), 10% resin (4 h), 25%
resin (16 h), and 50%, 75%, and 100% resin (24 h at each concentration).
Polymerization was performed at 60°C for 18 h.

Sectioning and EDX Studies

Cotyledons were sectioned along the transverse plane with a 45° HISTO dia-
mond knife (Diatome). Five-hundred-nanometer sections were collected on For-
mvar carbon-coated 75-mesh copper grids. EDX studies were performed with a
JEOL JEM-1400 transmission electron microscope operating at 120 kV and equip-
ped with SAMx silicon drift detector (10 mm2; resolution, 128 eV) with a Peltier
cooling system and IDFix software. Spectra were acquired for 120 s at 12,000
magnification at spot size 2 (2-mm beam diameter), with the section tilted 10° to-
ward the detector. Fe data represent the integrated sum of net counts between 6.34
and 6.47 keV (Fe Ka 6.4), and Mn data represent those between 5.83 and 5.96 keV
(Mn Ka 5.9). Nets counts were obtained by subtracting the background from the
peaks. Two samples per genotypewere analyzed. For each section, we analyzed at
least five endodermal cells and five subepidermal cells of the abaxial side of cot-
yledons. For each cell, spectra was obtained on globoids and in the cytosol.

Sequence data from this article can be found in the GenBank/EMBL data
libraries under accession numbers NM_127879.3 (AtNRAMP3), NM_126133.3
(AtNRAMP4), and NM_126238.2 (AtVIT1).

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. mPIXE analysis of metal distribution in an
nr3nr4vit1-1 embryo.

Supplemental Figure S2. Alignments of VIT1 RT-PCR amplicon sequences
from the wild type and isv2.
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Supplemental Figure S3. Raw EDX measurements for Fe and Mn in glo-
boids and cytosol.

Supplemental Figure S4. Protein alignment of VIT1 homologs.

Supplemental Table S1. Metal concentrations in seeds measured by
atomic absorption spectrometry.
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