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Abstract. An image reconstruction regularization appro-
ach for magnetic resonance imaging-guided near-infrared
spectral tomography has been developed to improve
quantification of total hemoglobin (HbT) and water. By
combining prior information from dynamic contrast
enhanced (DCE) and diffusion weighted (DW) MR images,
the absolute bias errors of HbT and water in the tumor
were reduced by 22% and 18%, 21% and 6%, and 10%
and 11%, compared to that in the no-prior, DCE- or
DW-guided reconstructed images in three-dimensional
simulations, respectively. In addition, the apparent con-
trast values of HbT and water were increased in patient
image reconstruction from 1.4 and 1.4 (DCE) or 1.8 and
1.4 (DW) to 4.6 and 1.6. © The Authors. Published by SPIE under

a Creative Commons Attribution 3.0 Unported License. Distribution or reproduc-

tion of this work in whole or in part requires full attribution of the original pub-

lication, including its DOI. [DOI: 10.1117/1.JBO.21.9.090506]
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Near-infrared spectral tomography (NIRST) has demonstrated
its potential for breast lesion characterization and treatment
monitoring.1,2 However, most studies indicate that NIRST alone
may not be capable of providing the quantitative accuracy
required for clinical applications because of spatial resolution
limitations.3 High-spatial resolution guidance from structural
images, such as x-ray or MRI, has improved the quantitative
accuracy of NIRST.1,2,4,5 MRI-guided NIRST is especially suit-
able for breast cancer imaging because the approach leverages
the high sensitivity of MRI, but improves specificity through
recovery of NIRST parameters.2

To incorporate prior information from MRI into NIRST, pre-
vious approaches have segmented theMRI images into tumor and
nontumor regions, each of which is assumed to be optically
homogeneous. This “hard-prior” strategy reduces the size of

the inversion problem by lumping regions together into a few
super pixels or zones.4,5 An alternative, so called “soft-priors,”
approach incorporates Laplacian- or Helmholtz-type structures
into the regularization to encode spatial information that retains
the inversion parameters at each pixel over the entire domain.6

Both techniques require manual segmentation to identify regions
within the MRI image volume. This segmentation step adds fur-
ther complexity to the processing and reduces objectivity when
combining the image information. Additionally, segmentation
can be time-consuming and requires sufficient experience to
avoid introducing bias or error. To overcome the need for segmen-
tation, a direct regularization method of encoding spatial priors
has been developed.7

To date, spatial information incorporated into the NIRST
image reconstruction has been from a single MRI sequence.
However, T1-weighted (T1W), T2-weighted (T2W), T1-
weighted dynamic contrast enhanced (DCE), and diffusion
weighted (DW) images are often acquired in standard clinical
breast MRI. Predominantly, only DCE images have been used
to improve the accuracy of NIRST; however, the type of MRI
sequences and the way in which it is used influences the result-
ing values.

DCE-guided NIRST image reconstruction is based on vascu-
lar-delivered contrast, but few studies have correlated DCE
images with molecular biomarkers from NIRST.2,8 Among
the NIRST absorber concentrations, total hemoglobin (HbT)
and water have shown the greatest potential to distinguish
malignant from benign breast abnormalities.9 Yet, from a bio-
physical standpoint, water values are not expected to be highly
related to DCE contrast, but rather DW contrast, since the latter
corresponds to the free diffusion of water as measured by MRI.

In this letter, a reconstruction algorithm is presented to
directly encode the spatial information derived from DCE
and DW MRI into multiple regularization matrices for recover-
ing NIRST HbT and water contents. The motivation for pursu-
ing this algorithm is to improve the accuracy of estimating HbT
and water simultaneously. Simulation studies were used to test
the approach, and the first image reconstructions from an patient
case are presented.

Light propagation in breast tissue was modeled by a
diffusion equation solved by the finite element method (FEM)
using the NIRFAST software package.10 Spectral constraints
were directly imposed in the reconstruction.10 The image recon-
struction is posed as a least squares optimization problem,
defined as

EQ-TARGET;temp:intralink-;e001;326;258ĉ ¼ min fðcÞ þ φðcÞ; (1)

where fðcÞ is the data fidelity term, φðcÞ is the regularizer, and c
is the concentrations of oxyhemoglobin (HbO), deoxyhemoglo-
bin (Hb), water, lipids, scatter amplitude (SA), and scatter power
(SP). The conventional regularizer, φðcÞ, used in NIRST is
φðcÞ ¼ λ · kLck22, where L is an identity matrix or a matrix
derived from high-resolution imaging such as MRI, and λ is
the regularization parameter. Generally, a single image volume
is utilized to define φðcÞ and all optical parameters are regular-
ized with the same spatial behavior.7,8 However, in practice, vas-
cular and water perfusions in tissue are independent.

Considering that DCE and HbT are associated with tissue
vasculature and DW images should be correlated with the dis-
tribution of NIRST water content, DCE images were used to
construct the regularization matrix (L1) to constrain total hemo-
globin (HbT ¼ Hbþ HbO), whereas DW images were used to
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construct L2 to constrain water. Thus, the regularizer was for-
mulated as

EQ-TARGET;temp:intralink-;e002;63;730φðcÞ ¼ αkL1cHbTk22 þ βkL2cwaterk22; (2)

where α and β are regularization parameters, Liði ¼ 1;2Þ is the
regularization matrices derived from DCE (L1) and DW (L2)
MRI images, and have the form7

EQ-TARGET;temp:intralink-;e003;63;666Lij ¼
8<
:

1 i ¼ j

− 1
Mi

exp

�
− jγi−γjj

2σ2g

�
θ

�
σd −

jri−rjj
maxðjri−rjjÞ

�
; i ≠ j ;

(3)

where γi is the grayscale value mapped to node i on the FEM
mesh, ri is the position of node i on the FEM mesh, σg is the
characteristic grayscale difference for regularization, andMi is a
normalization factor chosen for each row so that

P
N
i Lij ¼ 0

∀ i ¼ 1; : : : ; N, where N is the number of finite element
nodes. The function θð·Þ is the Heaviside step function,
which determines the local weight assigned to the i’th node of
the finite element mesh.11 σd is a factor corresponding to the
distance of influence of the regularization effect. Generally,
the empirical value of σd is 0.4. The operator Li encodes uni-
formity by penalizing similarly gray locations in the finite
element nodes to have significantly similar optical concentration
update values at each iteration.

For choice of regularization parameters α and β, they are usu-
ally obtained from ρ �maxðJT � JÞ, where ρ is the initial regu-
larization parameter, J is the Jacobin matrix of unknown optical
concentrations, and T is the transpose.

To minimize the above optimization problem with respect to
unknown optical properties, derivatives of Eq. (1) are set to zero.
The reconstruction is stopped when the change between succes-
sive iterations is less than 2% or the maximum iteration number
is reached. The algorithm scheme is shown in Fig. 1.

To validate the performance of the proposed algorithm, an
absolute bias error in the tumor was defined7

EQ-TARGET;temp:intralink-;;63;333bias error ¼
XM
i¼1

jCtrue
i − Crecon

i j∕M;

where Ctrue
i and Crecon

i represent the true and reconstructed
images, respectively, and M is the number of finite element
nodes in the tumor.

Numerical simulations were used to test the performance of
the proposed algorithm. A three-dimensional (3-D) breast sim-
ulation was created from MRI slices of an actual patient with a
tumor size of 22 × 20 × 32 mm3. The corresponding DCE (b)
and DW (c) images used to construct the L1 and L2 matrices
are shown in Fig. 2. The MRI slices were manually segmented
into tumor, adipose, and fibroglandular regions based on the pre-
constrast T1 and DCE images. After segmentation, typical HbT,
water, SA, and SP values for tumor (34.2 μM, 70.5%, 1.23, and
0.26), adipose (17.1 μM, 47%, 1.17, and 0.2), and fibrogandular
(25.4 μM, 60%, 1.2, and 0.23) tissues from Ref. 12 were
assigned to each region, as shown in Fig. 2(d). For simulation,
16 colocated source-detector positions were placed around the
breast. For each source illumination, data were collected at 15
detector locations. Thus, the total number of measurements was
2160 (240 × 9) involving nine wavelengths (from 661 to
948 nm). Amplitude-dependent Gaussian noise with a variance
of 1% was added to the simulated measurements. To obtain the
initial estimates of the optical properties, the simulated data set
was calibrated with a known homogeneous circular phantom.
Images were reconstructed using a pixel basis of 25 × 25 × 25.
The same σg and σd of 0.01 and 0.4 were used to construct L1

and L2, respectively. The initial parameters ρ used in different
methods were same, and their value was 100.

The no-prior images [Fig. 2(e)] yielded very limited tumor
contrast relative to the surrounding normal tissue (contrast val-
ues of HbTand water: 1.17 and 1.07), whereas the reconstructed
images of HbT (μM) and water content (%) using the prior infor-
mation from DCE or/and DW images [Figs. 2(f)–2(h)] produced
much better tumor contrast (contrast values of HbT and water:
1.58 and 1.12, 1.44 and 1.11, 1.34 and 1.14). Cross-section pro-
files of HbT and water through the slice [along white lines in
Fig. 2(d)] are presented in Fig. 3. As shown in Fig. 3(a), the
reconstructed HbT concentrations overestimated the true HbT
in the tumor, especially in the DCE case, while the values
from the DCE-DW guided reconstruction are closer to the
true results. The cross-sectional results [Fig. 3(b)] also show that
the recovered water content by combining DCE and DW images
is more accurate than the results only guided by DCE or DW
images. Table 1 summarizes the bias errors in HbT and water
images in the tumor reconstructed by no-prior, DCE, DW, and
DCE-DW image guided methods. The bias errors of HbT and
water in the DCE-DW guided image reconstruction were
reduced 22% and 18%, 21% and 6%, and 10% and 11%, com-
pared to that in the no-prior, DCE- or DW-guided reconstructed
images, respectively. This is aligned with a recent report on sys-
tematic validation of prior-guided diffuse optical tomography
reconstructions.13

Finally, a patient image volume with actual optical measure-
ments was reconstructed to test the proposed algorithm with in
vivo data. The patient had a pathologically confirmed 25 × 22 ×
26 mm3 invasive ductal carcinoma (IDC) in her right breast.
However, her BIRADS score diagnosed by two experienced
radiologists (J. Xu, 15 years and K. Wang, 6 years) according
to MRI images was 2, which was false-negative. Six wave-
lengths of frequency domain data and three wavelengths of con-
tinuous-wavelength data were collected with an MRI-guided
NIRST system.1,10 Optical data and MR images (T1, T2W, DW,
and DCE) were acquired simultaneously.

A uniform finite element mesh was created from the precon-
trast T1 images without segmentation. Initial estimates of optical
property values were obtained by direct calibration method.

Fig. 1 NIRST image reconstruction scheme when guided by incorpo-
rating DCE and DW MRI information into the regularization matrices,
L1 and L2, which form a multiobjective function that influences the
updates for HbT and water.
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Images were reconstructed based on a pixel basis of
25 × 25 × 25. The same σg and σd of 0.02 and 0.4 were used
to construct L1 and L2, respectively; the initial regularization
parameters used in all methods were the same, and the value
was 10.

Figure 4 shows the MR-T1, MR-DCE, MR-DW, and optical
images overlaid on T1 images in the plane z ¼ −0.25 mm. The
optical images reconstructed by the no-prior approach (d),
guided by DCE (e), DW (f), combined DCE-DW (g) are also
presented. In the no-prior images shown in Fig. 4(d), the
tumor is hard to distinguish from the normal surrounding tissue
in either the HbT or water images while it can be recognized in
the HbT and water images in Figs. 4(e)–4(g). The tumor volume
and location were defined by a radiologist based on the DCE

Fig. 2 Simulation breast study. (a) MRI T1 image, (b) DCE image, and (c) DW image in the plane
z ¼ −9.7 mm from a patient MRI exam. (d) Simulated true HbT (top) and water (bottom) images,
(e–h) reconstructed HbT (μM) and water (%) images guided by no-prior information (e), DCE prior
(f), DW prior (g), and both DCE and DW (DCE-DW) priors (h). Reconstructed images are overlaid
on the MRI T1 images. Red arrows in (b) and (c) indicate the tumor. White lines in (d) denote cross
sections, through the center of the tumor used to display optical properties in Fig. 3.

Fig. 3 Cross-section profiles of (a) HbT and (b) water along the ver-
tical line shown in Fig. 2(d). True and reconstructed profiles using no,
DCE, DW, and combined DCE-DW priors are shown in different
colors.

Table 1 Absolute bias errors in recovered HbT and water in the
tumor.

No prior DCE DW DCE-DW

HbT μm 8.1 8.0 7.0 6.3

Water % 14.1 12.2 13.0 11.5

Fig. 4 Patient images from a 36-year-old woman with a
25 × 22 × 26 mm3 biopsy-confirmed IDC in her right breast. (a) T1
image, (b) DCE image, (c) DW image, and reconstructed HbT (μM)
and water (%) images guided by (d) no-priors, (e) DCE, (f) DW,
and (g) DCE-DW priors, respectively. The reconstructed images
are overlaid on the T1 images. The red arrows in (b) and (c) show
the tumor.
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MRI scan. The contrast values of HbT and water reconstructed
by DCE and DW guided image reconstruction are 1.4 and 1.4,
and 1.8 and 1.4, respectively. Comparing to the above contrast
values, a better contrast in HbT and water are recovered at 4.6
and 1.6 when using DCE-DW guided image reconstruction.
These higher values are more in line with what would be
expected biologically, and match the higher contrasts seen in
the MRI scans. It is not known exactly what the true contrast
is, because of this being a clinical exam, but the benchmarks
of expected biological contrast and obsered MRI contrast can
be taken as a guide. Optical data correctly identified the lesion
as malignant. The contrasts of HbTand water were highest in the
DCE-DW case. The improvement in both parameters together is
consistent with observations from the simulation studies.

The goal of this work has been to develop a reconstruction
algorithm that directly encodes spatial information derived
from both DCE and DWMRI images into separate regularization
matrices to improve the accuracy of NIRST HbT and water con-
tent. The simulated and patient image reconstruction results sug-
gest that the combined approach of DCE-DW priors enhances
tumor contrast in both HbT and water images, relative to
using only DCE or DW data as priors. In addition, the structural
information from DCE and DWMRI is directly encoded without
the need for segmentation prior to reconstruction.

The manual selection of regions-of-interest is always needed
since the DCE and DWMRI are very complicate (especially the
low resolution of MR-DW images), and it is very difficult to
adapt a computer-operable definition for the segmentation. In
contrast, our direct regularization is a method that automatically
combines the structure information from DCE and DW to the
optical reconstruction. By this method, the subjective bias
and error due to the operator’s training and experience during
the segmentation process can be eliminated.5

Comparing to the algorithm reported in Ref. 14, which
focused on using different regularization coefficients for
unknowns from different spatial domains, it is different from
our algorithm. Our multiobjective function is similar to that
used in Ref. 15. However, the novelty of the proposed algorithm
focused on independently regularizing (i) the vascular property
values (HbT ¼ Hbþ HbO) by the DCEMRI images and (ii) the
water values by DW MRI images, in order to recover NIRST
HbT and water contents without a user-defined segmentation
process. Moreover, the weighting factor 0 < w < 1 used in
Ref. 15, which controls the contribution of each individual regu-
larization matrix to the global regularization matrix, was
excluded from our algorithm.

As shown in Fig. 4, the false-negative diagnosis by MRI
(DCE + DW) has been corrected by NIRST imaging outcome.
The malignance has been confirmed by the surgical pathologic
results. In addition, as we reported in our previous paper, the
sensitivity and specificity of using MRI (combining T2W,
DCE, and DW) to differentiate malignant breast tumor to benign
are 95% and 67%, respectively.2 We expect the specificity can
be improved significantly by adding NIRST outcome, espe-
cially, the NIRST outcomes estimated from the images recon-
structed by this new approach.

In our experience, σg plays an important role in determining
the image quality. Smaller σg may overestimate the peak value,

and a larger σg may over-smooth. After numerous tests, we
found that σg usually varied between the interval of [0.001,
0.1], and the default value is 0.01. According to the physiologic
normal range of HbT, we also introduced an automatic σg selec-
tion algorithm. If HbT peak value under certain σg is larger than
1000 μM, σg will be increased by 0.01; if the peak value of
HbT is smaller than 10 μM, the σg will be decreased to
0.001. Additionally, if the breast density is extremely dense,
σg ¼ 0.001 is better to construct L2 based on MR-DW images.
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