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(3+2)-Cycloaddition Reactions of Oxyallyl Cations

Hui Li and Jimmy Wu*

Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA

Abstract

The (3+2)-cycloaddition reaction involving oxyallyl cations has proven to be a versatile and 

efficient approach for the construction of five-membered carbo- and heterocycles, which are 

prevalent frameworks in natural products and pharmaceuticals. The following article will provide 

a brief summary of recent disclosures on this process featuring chemo-, regio- and 

diastereoselective oxyallyl cycloadditions with both electron-rich and electron-deficient 2π 

partners.
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1 Introduction

The chemistry of oxyallyl cations 1 has been a fertile ground for the design and development 

of powerful reaction processes. Cycloaddition reactions, in particular, are highly valued for 

their synthetic utility. This one-step process represents a facile approach to construct a 

variety of ring types and increase molecular complexity.1 Both (4+3)-and (3+2)-

cycloaddition modes of oxyallyl cations are known under thermal conditions and have been 

investigated for decades.2 As shown in Scheme 1, the (4+3) cycloadditions with dienes 

provide access to seven-membered carbocycles 2 and have been incorporated in a number of 

elegant syntheses of natural products.3

The (3+2) cycloaddition of oxyallyl cations 1 with a 2π partner, although less intensively 

investigated compared to the (4+3) counterpart, remains an attractive research topic. In this 

[2π+2π] process (Scheme 1), orbital symmetry considerations indicate that a concerted 

mechanism is not al lowed under thermal conditions. Instead, the reaction can proceed via a 

step-wise pathway, which makes it reasonable to regard this process as a formal 

cycloaddition. Generally, the reaction would start with electrophilic bond formation of the 

oxyallyl cation with one atom of the 2π partner to give a zwitterionic intermediate. The 

cation on the other atom of the 2π partner may then be captured by either the O or C atom 

on the oxyallyl moiety to furnish five-membered rings 4–5 (e.g., cyclopentanones), which 

are ubiquitous in nature as well as useful building blocks.4,5

© Georg Thieme Verlag Stuttgart
*+1(603)6463946 jimmy.wu@dartmouth.edu. 

NIH Public Access
Author Manuscript
Synthesis (Stuttg). Author manuscript; available in PMC 2015 January 16.

Published in final edited form as:
Synthesis (Stuttg). 2015 January ; 47(1): 22–33. doi:10.1055/s-0034-1378918.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The (3+2) cycloaddition possesses several different features relative to the (4+3) process. 

First, the (4+3) cycloaddition typically provides carbocycles with the formation of two C–C 

bonds. In the case of (3+2) annulations, the oxygen atom of oxyallyl intermediates may also 

participate in the reaction to afford oxacyclic species 4. Second, electron-rich 4π partners 

(i.e., dienes) are generally required in the (4+3) cycloaddition reactions since oxyallyl 

cations are electro-philic. However, electron-deficient 2π partners such as carbonyls or 

diethyl azodicarboxylate have been demonstrated by Noyori,6 Hoffmann,7 Fry,8 and 

Cookson9 in 1970s to be compatible with the (3+2) mode. This distinct difference enables 

facile access to a broader range of five-membered heterocycles including furanones, 1,3-

dioxolanes, pyrazolidones, etc. Third, an alkyne may also capture the oxyallyl cations in the 

(3+2) cycloaddition to produce cyclopentenones 5 while a diene is generally used in the 

(4+3) approach.

Recent advances in the oxyallyl (3+2) cycloadditions featured the emergence of highly 

chemo-, regio- and diastereoselective processes, which indicated renewed interest in this 

field. To the best of our knowledge, reviews concerning oxyallyl (3+2) cycloadditions have 

remained relatively scarce since the 1990s. Thus, in this article we focus on some of these 

reactions, developed during the past two decades, that involve the cycloaddition of various 

oxyallyl cations with both electron-rich and -deficient 2π partners. The discussion will be 

divided into sections based on the types of oxyallyl cations and/or precursors.

2 Heteroatom-Substituted Oxyallyl Cations

Heteroatom-substituted oxyallyl cations have been extensively studied to participate in 

dipolar cycloaddtions since the last century.10 Although they are commonly utilized in (4+3) 

cycloadditions, Kuwajima demonstrated a highly regio- and stereoselective (3+2) 

cyclopentannulation by employing sulfur-substituted oxyallyl cations.11,12

As shown in Scheme 2, the 3-(alkylthio)-2-siloxyallyl cation 7, which was generated from 

allyl acetate 6 by the treatment of EtAlCl2 or AlCl3, was able to react with various kinds of 

olefins including enol ethers, vinyl sulfides, stryrenes, and trialkylolefins to afford the 

corresponding cyclopentanones in good yields (e.g., 9–12). Notably, these reactions 

proceeded in almost complete regioselectivity by forming the sterically more hindered 

isomers as the predominant product in every case. Moreover, surprisingly high 

stereoselectivity was observed in the reaction of 6 with vinyl sulfides. As shown in Scheme 

3 (a), both the E-and the Z-isomers of 2-(benzylthio)but-2-ene (13) afforded the same 

diastereomer 14 as the major product. This may be due to the rapid geometric isomerization 

between (E)-13 and (Z)-13 under the influence of EtAlCl2(Scheme 3, b). To further 

rationalize the origin of diastereoselectivity, chair-like six-membered transition-state models 

TS-1 and TS-2 were also proposed, which featured the orbital interaction between the sulfur 

atom of the vinyl sulfide and the α-carbon of the oxyallyl cation (Scheme 3, b). Since TS-2 
contains a 1,3-diaxial steric repulsion between the β-methyl group of (Z)-13 and the siloxy 

group of the oxyallyl cation, this cycloaddition would be slower than that of (E)-13. The 

authors propose that the cycloaddition reactions of both (E)-13 and (Z)-13 proceed through 

TS-1 in a step-wise manner to first form the C–C bond distal to both sulfur atoms. This 
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generates an intermediate that proceeds to forge the second C–C bond without further bond 

rotation to give 14 as the major product.

Due to its wide range of applicability, as well as the high selectivity, the above (3+2)-

cycloaddition strategy was successfully incorporated in the total synthesis of (–)-coriolin in 

a following report by the same group.13,14 As shown in Scheme 4, the ABC triquinane ring 

system of coriolin was constructed via two successive (3+2)-cycloaddition reactions. 

Treatment of benzyl ether 16 with vinyl sulfide 6 in the presence of EtAlCl2 provided a 1:1 

mixture of annulated products 17 and 18 in diastereomerically pure forms. The crude 

mixture was then subjected to a desulfurization-hydrogenation sequence to give bicyclic 

ketone 19 in a yield of 73% for three steps. The use of enthanethiol and 

chlorotrimethylsilane transformed 19 to vinyl sulfide 20. Subsequently, 20 underwent a 

second (3+2) cycloaddition with 21 to install the A-ring unit of (–)-coriolin, which was 

followed by the TBAF-mediated β-elimination of ethanethiol to give enone 23, which was 

eventually taken on to (–)-coriolin.

The heteroaromatic oxidopyrylium species, which are widely used in (5+2) dipolar 

cycloadditions,15 may also act as stabilized oxyallyl cations. For example, Porco and co-

workers demonstrated that the oxidopyrylium betaine 25 or 26 derived from excited-state 

intramolecular proton transfer (ESIPT) of 3-hydroxyflavone 24 could undergo (3+2) 

cycloaddition with electron-deficient methyl cinnamate (27) (Scheme 5, a).16 The resulting 

(3+2)-cycload-duct 28 could be further transformed into methyl rocaglate with an α-ketol 

rearrangement/reduction sequence. The (3+2) photocycloaddition of 24 and 27 may also 

proceed enantioselectively by using functionalized TADDOL derivative 29 as chiral 

Brønsted acids (Scheme 5, b).17 As a result, (–)-methyl rocaglate was obtained in 94% ee 

with a similar strategy as mentioned above. It was proposed that the hydrogen bonding 

interaction between the phenoxide oxygen of oxidopyrylium 25 or 26 and the free hydroxyl 

group of TADDOL derivative 29 may play an important role in stabilizing the oxyallyl 

intermediate, as well as controlling the stereofacial approach of the 2π partner 27. Notably, 

the above (3+2) photocycloaddition involving oxidopyrylium ions allowed facile access to 

several other rocaglate natural products including rocaglaol, rocaglamide, silvestrol, 

episilvestrol, as well as several derivatives (e.g., 30–32) (Figure 1).18

Afterwards, an analogous photocycloaddition involving an oxidoquinolinium variant was 

also disclosed by the same group.19 As shown in Scheme 6 (a), irradiation of 1,2-

dimethyl-3-hydroxylquinolinone (33) could promote the generation of 3-oxidoquinolinium 

species 34, which may then participate in (3+2) cycloadditions with appropriate 2π partners. 

While the reaction of 33 with electron-deficient 2π partners afforded only single 

cycloadducts 36 and 37, respectively, electron-rich olefins such as cyclohexadiene tend to 

afford two regioisomers (e.g., 38 and 39). Notably, attempts to use the electron-deficient 

methyl butynoate 40 as a 2π partner did not give the presumed (3+2) product 42, but a 

rearranged cycloadduct 41. The doubly conjugated enone of 42 is assumed to provide a 

strong, thermodynamic driving force for the α-ketol rearrangement.

In addition to the above heteroatom-substituted oxyallyl cations, Hsung, Houk, Krenske, and 

co-workers recently reported an unexpected (3+2) cycloaddition of nitrogen-stabilized 
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oxyallyl cations with the electron-deficient carbonyl groups of a tethered dienone.20 Despite 

the fact that other oxyallyls like 44 do undergo intramolecular (4+3) cycloadditions (Scheme 

7, a),21 the treatment of allene amide 47 with dimethyldioxirane (DMDO) proceeds only 

through the (3+2) pathway to generate oxabicyclic species 49 (Scheme 7, b). The density 

functional theory calculations (DFT) on current system indicated a transition state that 

features simultaneous interactions of the oxyallyl LUMO with the carbonyl π and lone-pair 

orbitals. They termed this process as ‘hemipseudopericyclic’, which is halfway between 

purely pericyclic and purely pseudopericyclic reactions. Further investigation on (3+2) 

cycloadditions was conducted theoretically and experimentally by employing various 

carbonyl sources including aldehydes, ketones, esters, and amides. Only tethered ketones 

with electron-rich substituents are amenable in this process (e.g., 51–54).

3 Oxyallyl Cations Derived from Substituted Ketones

As mentioned earlier, the use of α,α-dihalo ketones as oxyallyl sources has been well 

established since the 1970s upon the treatment with reducing agents such as Fe2(CO)9, 

Fe(CO)5, and Zn/Cu couple.22 Other disubstituted ketones, in principle, may also produce 

oxyallyl cations under appropriate reductive conditions. For example, Hardinger showed 

that bis(sulfonyl) ketone 55 could generate oxyallyl intermediate 56 upon treatment with 

Fe(CO)5 and TiCl4.23 Subsequent (3+2) trapping of 56 with alkenes would furnish the 

corresponding cyclopentanones (e.g., 59 and 60). Moreover, electron-rich alkynes also 

turned out to be compatible 2π partners (e.g., 61 and 62) (Scheme 8).

In addition to disubstituted ketones, monosubstituted ones may also act as oxyallyl 

precursors. Recently, Wu and Hughes reported a regio- and diastereoselective (3+2) 

annulation of electron-rich 3-substituted indoles 63 with α-halo ketones 64 (Scheme 9).24 

This method provides easy access to highly functionalized cyclopenta- or cyclohexa-fused 

indoline compounds 65, which are common structures of many natural products. Impressive 

regiochemical control was observed in the cycloaddition employing acyclic α-halo ketones 

(e.g., 68, 69).

It is also interesting that the regioisomeric, acyclic α-halo ketones 71 and 72 both afforded 

73 as the major product with high diastereoselectivity (>20:1) (Scheme 10, a). Notably, a 

common O-alkylated intermediate 77 was isolated (Scheme 10, b), suggesting that the 

reactions of α-halo ketones 71 and 72 may proceed via the same hydroxyallyl intermediate 

76. As illustrated in their proposed mechanism (Scheme 10, b), the first C–C bond formation 

between hydroxyallyl 75 and N-benzylskatole (70) generates intermediate 76, which 

possesses a weak C···OH interaction. Removal of the proton with carbonate base at this 

point would furnish the observed intermediate 77. Alternatively, the pronated form 77 could 

re-dissociate and alkylate at carbon to generate the kinetically favored cycloadduct 74, 

which can then isomerize to the thermodynamically favored product 73. The above 

rearrangements, as well as the kinetic and thermodynamic properties of 73 and 74 are in 

accordance with experimental observations and computational studies.

Furthermore, DFT calculations in the above (3+2) cycloaddition did raise the question of 

whether hydroxyallyl cation 75 or its zwitterionic form is the real reactive species. While 
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other cycloaddition reactions are thought to proceed through zwitterionic oxyallyl cations,25 

DFT studies on the current system predicted that a pathway for the formation of product 74 
via hydroxyallyl 75 is a lower-energy route than that emanating from the corresponding 

zwitterionic form. Harmata and Schreiner have also observed similar divergent reactivity 

between oxyallyl and hydroxyallyl cations before.26

The synthetic potential of this (3+2)-cycloaddition process was demonstrated by a concise 

synthesis of the core structures of vincorine, isocorymine, and aspidophylline A. As shown 

in Scheme 11,Baeyer–Villiger oxidation of the (3+2)-cycloadduct 78 afforded tertracyclic 

lactone 80 in 70% yield. Compound 80 was then subject to a debenzylation–oxidation 

sequence to give hemiaminal 82. Cleavage of the phthalimide group with MeNH2 liberated 

the amine, which spontaneously closed to furnish the pyrrolidine ring of pentacycle 84. 

Compound 84 maps well to the cores of vincorine and isocorymine. By employing a similar 

strategy, pentacycle 85 was obtained from (3+2)-cycloadduct 79, which provided a good 

starting point for the synthesis of aspidophylline A.

4 Oxyallyl Cations from Interrupted Nazarov Cyclizations

The Nazarov cyclization entails the 4π-electrocyclic ring closure of a conjugated 

pentadienyl cation 87, which is derived from dienone 86 upon treatment with acids or 

irradiation, to form a cyclopentenyl cation 88 (Scheme 12).27 Conventionally, a β-

elimination of the adjacent proton would furnish cyclopentenone 89. In the interrupted 

Nazarov reaction;28 however, the reactive intermediate 88 may be intercepted by a 2π 

partner (an alkene or alkyne) to undergo a (3+2) cycloaddition at a rate competitive to the 

normal elimination route.

In 1998, West and co-workers reported the first intra-molecular (3+2) cycloaddition of 

olefins and Nazarov-derived oxyallyl cations.29 As shown in Scheme 13, diquinane 94 was 

obtained from achiral trienone 93. It was presumed that activation of trienone 93 generated 

the reactive cyclopentenyl intermediate 95, which underwent intramolecular (3+2) trapping 

by the proximal olefin to afford tricyclic compound 96. It is noteworthy that the oxygen 

atom of the oxyallyl moiety preferentially participated in the annulation with the formation 

of a C–O bond.24 Upon aqueous workup, the structurally strained enol moiety was hydro-

lyzed to give hemiketal 94 with selective protonation from the convex face.

Afterwards, the same group found allylsilanes and vinyl sulfides to be amenable in the 

intermolecular mode of (3+2) cycloaddition involving Nazarov-derived oxyallyls (Figure 

2).30,31 Complete regioselectivity was observed in the reactions employing allylsilanes as 2π 

partners (e.g., 97), since allylsilane selectively attacks the least substituted end of 

unsymmetrically substituted oxyallyl cations. This is in accordance with Noyori's earlier 

observation that regioselectivity is predicated on pathways intercepting the more stabilized 

enolate.

As mentioned earlier, irradiation may also promote the formation of oxyallyl speices. 

Stephenson and Porco recently demonstrated a tandem dienone 

photorearrangementcycloaddition reaction of alkyne-tethered cyclohexadien-ones (Scheme 
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14, a) to produce highly complex architectures.32 It was surmised that photochemical 

rearrangement of substituted dienone 101 would lead to the formation of oxyallyl cation 103 
via the Nazarov-type cyclopentenone 102.33 The reactive 1,3-dipole 103 then underwent 

intra-molecular (3+2) cycloaddition with tethered alkyne to form cycloadduct 104. The 

resulting strained cyclic alkene 104, which turned out to be unstable during purification, 

could be further elaborated by either inter- (Scheme 14, a) or intramolecular cycloaddition 

(Scheme 14, b) with furans or a nitrile oxide (via oxime) to generate polycyclic, bridged 

frameworks. Impressively, in the reaction to yield compound 112 (Scheme 14, b), four rings 

and six stereogenic centers were generated in this single process.

While the reactive cyclic oxyallyl cations 88 have usually been derived from dienones 86 in 

traditional Nazarov reactions, they may also be generated from different sources (Scheme 

15). For example, Burnell and co-workers reported in 2010 that treatment of allenyl vinyl 

ketone 113 with BF3·OEt2 could lead to the cyclic oxyallyl cation 114 through Nazarov 

cyclization.34 In the presence of appropriate ole-fins, the reactive intermediate 114 may be 

captured in the (3+2) cycloadditions. As shown in Scheme 15, electron-rich styrenes reacted 

smoothly to afford bridged (3+2) cycload-ducts 116, 117, and 118 as single diastereomers. 

When aliphatic dienes were employed, the reaction provided a mixture of (3+2) and (4+3) 

products regioselectively and diastereoselctively (e.g., 119–122). It was indicated that the 

proportion of (3+2) to (4+3) products is highly dependent on the diene substituents.

In addition, Yadav and co-workers recently described (3+2) trapping of oxyallyl cations 

generated from homo-Nazarov cyclization of 2-(tert-butyldiphenylsilylmethyl)cyclopropyl 

vinyl ketones 123 with allylsilanes (Scheme 16).35 This reaction was proposed to begin with 

the cleavage of σC–C bond of the cyclopropyl ring on 123 to generate enolate 124. The 

positive charge was proposed to be stabilized by the proximal silyl group. Intermediate 124 
then underwent ring-closure to give oxyallyl cations 125, which was then captured by 

allylsilanes in a (3+2) manner. Although the reaction proceeded with only moderate 

regioselectivity (e.g., 128/129 = 2:1), exclusive exo-cycloaddition was observed.

5 1-Alkylidene-2-oxyallyl Cations

In 2006, Fujita reported that the ring opening of alkylidenecyclopropanone acetal 130 under 

acidic conditions would produce the 1-alkylidene-2-oxyallyl cation 131 as an intermediate, 

which then undergoes (3+2) or (4+3) cycloadditions in the presence of olefins or dienes 

(Scheme 17).36 While the reaction of 131 with excess furan delivered a mixture of (4+3) 

cycloadducts and rearranged products from the (3+2) cycloadducts, the reaction with 2,3-

benzofuran 132 furnished (3+2) cycloadduct 133 as a single regioisomer in 76% yield.

6 Summary and Outlook

The cycloaddition chemistry of oxyallyl cations represents a versatile process in the rapid 

generation of molecular diversity and complexity. The (3+2) cycloaddition, in particular, 

enables efficient construction of five-membered carbo- and heterocycles. As discussed 

above, a variety of oxyallyl cations are able to participate in this [2π+2π] process including 

those stabilized by heteroatoms and those ‘unstablized’ species. Both classes of oxyallyl 
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cations can either be cyclic or acyclic and may be derived from different sources. Due to the 

electrophilic nature of oxyallyl cations, electron-rich alkenes or alkynes are generally 

favorable 2π partners. However, electron-deficient 2π partners including α,β-unsaturated 

ketones (e.g., methyl cinnamate, methyl butynoate), carbonyl groups, and diethyl 

azodicarboxylate are also amenable in some cases.

The past twenty years have witnessed the development of many chemo-, regio- and 

diastereoselective oxyallyl (3+2) cycloadditions. Some of them have also been successfully 

employed in the elegant syntheses of natural products. Despite the impressive progress that 

has been made in the oxyallyl (3+2) cycloadditions, there is still plenty of room for 

improvement and further exploration. For example, the development of catalytic and 

enantioselective processes still remains relatively rare. It is our hope that this article will 

stimulate continued interest in the (3+2) cycloaddition of oxyallyl cations and make it a 

prolonged and prominent research area for developing novel methods used for natural 

product syntheses.
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Scheme 1. 
Generic (4+3)- and (3+2)-cycloaddition reactions of oxyallyl cations
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Scheme 2. 
(3+2) Cycloadducts derived by using various olefins
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Scheme 3. 
(a) Stereoselective cycloaddition using vinyl sulfides (E)-13 and (Z)-13. Reagents and 

conditions: CH2Cl2, –45 °C. (b) Proposed transition-state model resulting in high 

stereoselectivity.
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Scheme 4. 
Construction of the A and B rings of coriolin by (3+2)-cycloaddition reactions
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Scheme 5. 
(a) Synthesis of methyl rocaglate by employing (3+2) photocycloaddition as a key step; 

PMP = p-methoxybenzyl. (b) TADDOL-mediated enantioselective (3+2) 

photocycloaddition and its application towards (–)-methyl rocaglate.
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Figure 1. 
Rocaglate natural products and derivatives synthesized by employing (3+2) 

photocycloaddition as a key step
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Scheme 6. 
(a) (3+2) Photocycloaddition of oxidoquinolinium ions with electron-rich and -deficient 

olefins. (b) (3+2) Photocycloaddition of oxidoquinolinium ions with electron-deficient 

alkyne.
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Scheme 7. 
(a) Intramolecular (4+3) cycloadditions of allene amide-derived oxazolidinone substituted 

oxyallyls with tethered furan; (b) Intra-molecular (3+2) cycloadditions of allene amide-

derived oxazolidinone substituted oxyallyls with tethered carbonyls.
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Scheme 8. 
(3+2) Cycloaddition between bis(sulfonyl) ketone-derived oxyalls with alkenes and alkynes
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Scheme 9. 
(3+2) Cycloaddition between 3-substituted indoles and α-halo ketones
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Scheme 10. 
(a) (3+2) Cycloaddition of N-benzylskatole with α-halo ke-tones. Reagents and conditions: 

Na2CO3, TFE, 40 °C. (b) Proposed mechanism.
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Scheme 11. 
Synthesis of core structures for vincorine, isocorymine, and aspidophylline A (n.b., drawn as 

their enantiomers)
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Scheme 12. 
Conventional versus interrupted Nazarov reaction
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Scheme 13. 
(3+2) Cycloaddition of Nazarov-derived oxyallyl cation with pendant olefin
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Figure 2. 
(3+2) Cycloadducts by using allylsilanes and vinyl sulfides as 2π partners. Reagents and 

conditions: (a) BF3·OEt2; (b) SnCl4.
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Scheme 14. 
Tandem dienone photorearrangement-cyclization to afford polycyclic structures
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Scheme 15. 
(3+2) Cycloaddition of allenyl vinyl ketone-derived oxyallyl cation with olefins
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Scheme 16. 
(3+2) Cycloaddition of cyclopropyl vinyl ketone-derived oxyallyl cation with allylsilanes
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Scheme 17. 
(3+2) Cycloaddition of 1-alkylidene-2-oxyallyl cation with 2,3-benzofuran
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