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Abstract

The genes encoding the cytochrome P450 2C9 enzyme (CYP2C9) and vitamin K-epoxide

reductase complex unit 1 (VKORC1) are major determinants of anticoagulant response to warfarin.

Together with patient demographics and clinical information, they account for approximately one-

half of the warfarin dose variance in individuals of European descent. Recent prospective and

randomized controlled trial data support pharmacogenetic guidance with their use in warfarin dose

initiation and titration. Benefits from pharmacogenetics-guided warfarin dosing have been
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reported to extend beyond the period of initial dosing, with supportive data indicating benefits to

at least 3 months. The genetic effects of VKORC1 and CYP2C9 in African and Asian populations

are concordant with those in individuals of European ancestry; however, frequency distribution of

allelic variants can vary considerably between major populations. Future randomized controlled

trials in multiethnic settings using population-specific dosing algorithms will allow us to further

ascertain the generalizability and cost-effectiveness of pharmacogenetics-guided warfarin therapy.

Additional genome-wide association studies may help us to improve and refine dosing algorithms

and potentially identify novel biological pathways.

Keywords

Warfarin; pharmacogenetics; polymorphisms; personalized medicine

Warfarin remains one of the most effective anticoagulants indicated for the treatment and

prophylaxis of a range of prothrombotic cardiovascular, cerebrovascular, and hematologic

conditions.1-3 Although the cost-effectiveness and long-term safety of the latest generation

of oral anticoagulants (e.g., dabigatran, rivaroxaban, apixaban) have become a subject of

intense debate recently, warfarin continues to be the mainstay of anticoagulation after over

six decades in clinical use.4,5 Tens of millions of patients use warfarin worldwide, and there

are over two million warfarin users in the United States with over 30 million prescriptions

dispensed in 2004 alone.6,7 Due to the wide interindividual variability and narrow

therapeutic index of warfarin,8-10 there has been considerable interest in identifying genetic

and nongenetic variables that affect warfarin dose requirements.11-14

Initially developed to accelerate the rate with which therapeutic levels of anticoagulation

were achieved, fixed-dose algorithms have successively been superseded by more

sophisticated clinical algorithms based on patient demographics and other clinical

variables15; however, the success in ameliorating variability has been modest. Recently,

pharmacogenetic testing of candidate genes important in warfarin pharmacodynamics (e.g.,

vitamin K-epoxide reductase complex unit 1 [VKORC1]) and pharmacokinetics (e.g., the

cytochrome P450 2C9 enzyme [CYP2C9]) have yielded encouraging results in dose

initiation and titration,16-18 with potential for cost savings and reduction of length of

hospitalization.19 Several pharmacogenetics-guided dosing algorithms incorporate clinical

variables and patient demographics and have compared favorably with clinical data-only

algorithms.17,19-22 These studies have collectively contributed to the construction of a

prototypical framework for translating genetics and physiologic phenotypes into clinical

practice, to our improved understanding of human diversity, and to the advancement of

genetics-guided personalized medicine.

Developed from decades of international collaboration, international normalized ratio (INR)

as a standardized measurement of prothrombin time has served as the cornerstone for

warfarin-related genetic studies and enabled comparisons between laboratories and different

types of studies. Understanding how INR is derived is crucial because it represents the

phenotype with which genes and variants are correlated. Concerted international efforts have

recently revealed the differential contribution of genetic variants and transracial difference
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in warfarin dose requirements across ethnic groups and populations.12,23,24 For instance,

although VKORC1 and CYP2C9 together with clinical variables and patient demographic

information have been estimated to explain 40 to 50% of warfarin variability in individuals

of European descent, their effects are often markedly less in warfarin users of Asian,

African, Latin American, and other ancestry.14,21,23,25,26 These ethnic differences are of

clinical importance with scientific and public health implications, given the increasing

admixture and migration of populations worldwide with globalization.27,28

In this review, we discuss the definition of INR as a phenotypic correlate; the published

evidence for the major genetic determinants, VKORC1 and CYP2C9, in influencing warfarin

dose requirements in Europeans, Africans, Asians, and other ethnic groups; the clinical

science and utility of VKORC1 and CYP2C9; and other genetic variants that affect the

pharmacology of warfarin based on evidence from candidate gene and genome-wide

association studies (GWAS).

International Normalized Ratio

Studies designed to investigate genetic determinants of warfarin dose requirements,

pharmacogenetics-guided dosing of warfarin, and genome-wide quantitative trait mapping

of dose variations have taken advantage of INR as a standardized measurement of the

anticoagulant response to warfarin. INR is the ratio of the prothrombin time of a patient

(test) sample to a normal reference value (the mean of normal values, or Mean Normal PT,

MNPT) raised to the power of the international sensitivity index (ISI): (PTtest/PTreference)ISI.

Prothrombin time is assayed by applying tissue factor-containing thromboplastin to plasma

with the addition of excessive calcium to reverse the chelating effects of citrate in the

sample; the time for a sample to clot is the prothrombin time. The ISI value is supplied by

the manufacturer of an analytical system, and adjusts for reagent batch variability against a

standardized panel of control reagents endorsed by the World Health Organization.29

Periodic calibration of analytical instruments and the use of standardized assaying reagents

are essential for reliable INR testing. Since its introduction in the 1970s, the normalization

process has undergone several revisions.23,30

INR measures the extent of anticoagulation induced by warfarin. As a vitamin K antagonist,

warfarin inhibits the production of functional forms of specific vitamin K-dependent clotting

factors, including factors VII, IX, X, and II/prothrombin. Factor VII in the coagulation

cascade is also the chief clotting factor activated by tissue factor in thromboplastin that

triggers subsequent activation of factor IX, factor X, and prothrombin. Although INR is in

general relatively robust, it represents an artificial surrogate measurement of warfarin

anticoagulation reversible by exogenous tissue factor in vitro.

Warfarin Dosing in the Absence of Genetic Information

Following the development of standardized monitoring of anticoagulation with warfarin, it

became apparent that fixed-dose loading regimens (e.g., 10 mg on each of the first three

consecutive days followed by subsequent dose titration) were unreliable, often resulting in

over-anticoagulation in up to 35% of patients and prolonged hospitalization in those under-

anticoagulated. 31 Continual efforts led to the further refinement of algorithms and tailored
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dosing schedules with later incorporation of patient demographics (e.g., age, weight) and

clinical data (e.g., albumin levels) adaptable for use in inpatient or outpatient settings.15,31-35

Adjusted-dose warfarin therapy was found to be superior to fixed-dose warfarin (plus

aspirin) therapy, particularly evident in prospective, randomized clinical trials for the

prevention of stroke in patients with atrial fibrillation.1,36 Despite these advances, a

considerable degree of uncharacterized variability still existed, and studies aimed at

delineating these variables ensued.13,37

Of variables that affect warfarin dose variance, age accounts for 7% and its effects have

been found consistent in different studies and validated across ethnic groups.13,38-41 Flexible

dosing protocols have been developed that adjust for age.34 Nongenetic, complex

environmental variables including drug and food interactions, serum vitamin K levels, and

clinical factors (e.g., renal and hepatic function, presence of malignancy), among others,

have been correlated in some studies.37,42,43 Depending on the study population, clinical

factors may explain up to 20% of warfarin dose requirements.44 However, the common,

large interindividual dose requirements (e.g., in one study ranging from 7 to 280 mg per

week45) is not explained cumulatively by the majority of these uncommon though plausible

factors with modest effect size. For instance, amiodarone can reduce warfarin dose

requirement by approximately 18%38 but is used by < 10% of warfarin users, and in a

principal component analysis of 245 patients, of whom 21 took amiodarone, it was not

found to be a statistically significant determinant.13 Of 94 predictor variables analyzed in

one study, age and pharmacogenetic variables were found to be the strongest determinants

of warfarin dose requirements.13

Molecular Genetics, Polymorphisms, and Functions of CYP2C9 and

VKORC1

CYP2C9

Warfarin is a coumarin derivative that exists as a racemic mixture of S- and R-enantiomers.

The former has about three times the potency of the latter, and the cytochrome P450

enzyme, CYP2C9, is responsible for metabolism of the S-enantiomer. 6,46,47 CYP2C9 is

considered one of the most important P450 enzymes in the liver responsible for

metabolizing xenobiotics and a host of clinically important drugs, including anti-

inflammatory agents, oral hypoglycemic, oral anticoagulants, and diuretics.48

CYP2C9 is located on chromosome 10q24 spanning approximately 55 kb and contains nine

exons.49 Following reports that multiple cDNA sequences of CYP2C9 were cloned to

suggest a high level of polymorphism in the gene,49 the search for allelic variants was

spurred on. The convention of the nomenclature for CYP2C9 is such that *(number) denotes

the variant allele with reference to CYP2C9*1, the wild-type or major allele with the amino

acid sequences (Arg144/Tyr356/Ile359/Gly417) first identified in Northern Europeans.6,12

In this population, the allele frequency of CYP2C9*2 (R144C; rs1799853) and CYP2C9*3

was 12.5 and 8.5%, respectively.50 Functional significance of the allelic variants CYP2C9*2

in exon 3 and CYP2C9*3 (I359L; rs1057910) in exon 7 was demonstrated in expression

assays in vitro, providing evidence that both reduced-function variants resulted in impaired
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metabolism of S-warfarin.51,52 Respectively, enzymatic activity was reduced by

approximately 30 and 80%,17 and warfarin dose requirement was reduced by 14 to 20% and

21 to 49%.12,53,54 Modeling data from 137 patients suggested that through effects on rates

of drug clearance CYP2C9*2 and CYP2C9*3 predicted 58% of warfarin dose variation

based on the measured plasma S-warfarin concentration after initiation of warfarin

therapy.55 Although both variants were also found to correlate with an increased risk of

bleeding complications,17,53,56-60 neither stability of INR nor likelihood of severe over-

anticoagulation was associated.54

CYP2C9*4 was first reported in the Japanese population and associated also with reduced

warfarin dose requirements.61 Studies on individuals of African descent revealed a host of

other CYP2C9 variants not (commonly) found in individuals of European descent, including

CYP2C9*5 (rs28371686), CYP2C9*6 (rs9332131), CYP2C9*8 (rs7900194), and

CYP2C9*11 (rs28371685), among others, that impact on warfarin dose

requirements.25,62-64CYP2C9*14 through CYP2C9*19 were discovered in a cohort of

Southeast Asians from Singapore.65 There are at least 35 alleles of CYP2C9 documented6;

however, the effects of the majority of these alleles on warfarin metabolism and dose

requirements are yet to be characterized at present.

VKORC1

Vitamin K is an essential lipid-soluble micronutrient required for maintaining the

equilibrium of hemostasis and is available to humans from the gut microflora and dietary

intake of certain plants.66 As such, dietary variation, metabolic factors, and exposure to

certain antibiotics and environmental factors can impact on warfarin anticoagulation.67

Factors VII, IX, X, and prothrombin are vitamin K–dependent clotting factors that play

central roles in the coagulation cascade as discussed earlier. Proper functioning of these

factors requires posttranslational modification of glutamate side chains to γ-

carboxyglutamate catalyzed by γ-glutamyl carboxylase (gene encoded by GGCX).66

Reduced coagulant activity results when these proteins are partially γ-carboxylated or

decarboxylated. 68,69 The process of γ-carboxylation is dependent on vitamin K, a cofactor

that interchanges from the reduced (active) to the epoxide (inactive) state while glutamate is

converted to γ-carboxyglutamate. Recycling of the epoxide (vitamin K-2,3–epoxide) to the

reduced (vitamin K hydroquinone) form is catalyzed by vitamin K–epoxide reductase

(VKOR) and inhibitable by warfarin (or other coumarin derivatives such as

phenprocoumon).70 The VKOR complex unit 1 (VKORC1) is an 18-kDa protein located in

the endoplasmic reticulum70 and is expressed abundantly in hepatocytes.71

Through positional cloning72 and a siRNA gene knockdown approach,73VKORC1 was

localized to chromosome 16p11.2. VKORC1 consists of 5,125 base pairs and comprises

three exons.70 Loss-of-function mutations in VKORC1 can result in bleeding tendency,

whereas warfarin resistance can also stem from mutations in VKORC1.66,70,72,74 In

exploring the functional significance of polymorphisms, studies have found expression of

VKORC1 mRNA in several cell types and tissues, ranging from liver, myocardium, B

lymphocytes to lung cancer cell lines.21,70,71,73 Imbalance in allelic expression of VKORC1

(allelic mRNA:DNA) attributable to a regulatory polymorphism (3730A > G, rs9284) at the
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3′-UTR of VKORC1 was demonstrated in human liver specimens.71 Moreover, both the

common, noncoding VKORC1 single nucleotide polymorphisms (SNPs), – 1639G > A and

1173C > T, exhibited dose-dependent allele-specific effects on VKORC1 mRNA levels,71

and VKORC1 genotype is predictive of plasma S-warfarin concentration required to yield

therapeutic INR55 as well as the maintenance dose before initiation of therapy.75 These

findings extended the graded gene/haplotype-dose effect observed in the DNA transcript

analysis of haplotype groups A (associated with low dose of warfarin) and B (associated

with high dose of warfarin) incorporating the earlier SNPs that Rieder et al constructed in

their study.21 The – 1639G > A and 1173C > T polymorphisms are often tested

interchangeably in pharmacogenetic studies due to their complete linkage disequilibrium

(LD) with one another.6,76 Several SNPs associated with warfarin resistance including the

amino acid–changing (nonsynonymous) 106G > T (Arg36Tyr) variant77 and others have

been reported.74,78,79

CYP2C9 and VKORC1 in Dose Initiation and Titration

The pharmacogenetic utility of CYP2C9 and VKORC1 during warfarin therapy has been

examined in different clinical settings and populations over the last decade. Studies have

established that CYP2C9 and VKORC1 genotypes conjointly influence warfarin dose

requirements with impact on clinically significant endpoints and adverse events such as

bleeding complications.17,21,22,56,58,59,76,80-85 Several metrics have been used to measure

the strength, accuracy, and safety of pharmacogenetic guidance including time to therapeutic

INR, time to stable INR, percentage of time in the therapeutic range (%TTR), and

percentage of out-of-range (%OOR) INR in comparison with fixed-dose (empirical)

regimens.16-18 However, a uniform standard of comparison between studies is lacking.

In a review published in 2009, Moyer et al summarizes well the literature on CYP2C9 and

VKORC1 alleles and haplotypes, their prevalence across the three major races (individuals

of European, Asian, and African descent), the mean dose requirements stratified by race and

allele/haplotype, and the combined effects of CYP2C9 and VKORC1 on mean dose

requirements as a guidance for dose prescription.46 Since that time, tens of studies on

subjects of different ancestry correlating with CYP2C9 and VKORC1 alleles have been

published. The next section of this review article extends that summary and continues the

discussion on multiethnic differences in allele distribution and warfarin dose requirements

(see below).

To date, over a dozen pharmacogenetics-guided warfarin dosing algorithms incorporating

clinical and demographic information have been published, and a host of others specify

various modifications depending on the study objectives and populations examined.42,86,87

Notable examples include the International Warfarin Pharmacogenetics Consortium

(IWPC),20 Warfarin Genetic study in Sweden (WARG),26 CoumaGen,16 http://

www.warfarindosing.org,42 Warfarin Regimen using A Pharmacogenetics-guided Initiation

Dosing (WRAPID),18 and Newcastle22 algorithms. A pharmacogenetics-guided dosing

algorithm consists of a regression equation for calculating the warfarin initiation dose, an

institutional protocol for INR-guided dose adjustment during the maintenance phase, and a

timeline for specifying the dose initiation, maintenance, and follow-up intervals. The
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regression equation typically includes the following component variables: (1) patient

demographics (e.g., age, height, weight), (2) clinical information (e.g., interacting

medications, comorbidities), and (3) genetic information. These variable are factored into

the calculation of the warfarin dose.87

The majority of warfarin dose prediction, algorithm development, modeling, and

comparison studies are retrospective.6,46,86,88-96 Putting algorithms and dose prediction

modeling into practice, prospective studies are still scarce, but the numbers are

increasing.16-18,26,97-102 In the recently published prospective WRAPID study, 167 patients

were initiated on warfarin for atrial fibrillation or venous thromboembolism using a newly

developed pharmacogenetics algorithm incorporating patient demographics and clinical and

genetic information (VKORC1, CYP2C9*2 and *3) for initial dose loading and maintenance

dosing.18 Although the study lacked a control group, it demonstrated the clinical utility and

safety of pharmacogenetics guidance in determining loading and maintenance doses by the

lack of genotype-specific differences in time to first therapeutic INR and risk of over-

anticoagulation (INR > 4) even after adjusting for covariates.

The first prospective, randomized, controlled trial (CoumaGen) by Anderson et al compared

standard empirical dosing versus pharmacogenetic guidance in 206 patients and concluded

that pharmacogenetic-guided warfarin dose initiation more accurately and efficiently

approximated stable doses.16 A statistical significance in the primary end point of %OOR

INR was not observed between the two arms (possibly due to insufficient power), but

significance observed in exploratory analyses comparing wild-type and multiple variant

carriers prompted the launch of the CoumaGen-II study.17 The CoumaGen-II study

comprised comparisons of primary end points at 30 days and up to 3months of %OOR INRs

and %TTR between two groups in two arms. The first arm (n= 504 patients) compared a

modified IWPC pharmacogenetics algorithm (PG-1) against one in which use of CYP2C9

genotype information was deferred until after day 2 (based on the premise of the

pharmacokinetics of warfarin) plus the use of a dose-revision algorithm (PG-2) with the goal

of maximizing approximation of the initiation dose to the stable maintenance dose. The

second arm (n= 2,343 patients) compared PG-1/PG-2 against the standard parallel controls

consisting of patients being initiated on an empirical dose of warfarin (usually, 5 mg/d).

Following initiation (from day 8 onwards), the institutional chronic anticoagulation clinic’s

warfarin maintenance dosing protocol was applied to both arms. The sufficiently powered

study found no statistical difference in end points between PG-1 and PG-2 groups to suggest

superiority of either algorithm, and thus, both were combined as a PG cohort in the second

arm comparison against the standard dosing controls. The latter comparison saw highly

significant differences in the prespecified primary end points (%OOR INRs and %TTR), as

well as some secondary end points including average percent INRs ≥ 4 or ≤ 1.5, and average

percent INRs ≤ 1.5.17 As a metric of anticoagulation clinic quality (US national average of

%TTR is approximately 50 to 60%), patient’s compliance, longitudinal dosing stability, and,

more importantly, a measure of therapeutic benefits (e.g., protection from stroke in patients

with atrial fibrillation) derived from warfarin anticoagulation,103 the %TTR conferring a >

10% (TTR from 58.4 to 68.9% at 30 days, and from 58.6 to 71.2%) improvement with

pharmacogenetic guidance is remarkable. Clinical effectiveness of pharmacogenetic
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guidance in dose initiation and titration has also previously been demonstrated in the

prospective, nonrandomized Medco-Mayo study.19 Intriguingly, there is a growing

consensus that the lasting benefits of pharmacogenetic guidance extend beyond 1 week of

warfarin therapy.17,104 Other relatively small (sample size of around or fewer than 200

patients) prospective studies with or without randomization have reported mixed or negative

results, possibly related to the study design, power, differences in patient populations, or

other factors.105,106 Several large, randomized clinical trials (e.g., COAG, GIFT, EU-PACT)

approaching or exceeding 1,000 patients are ongoing107 that should help to address

questions not answered by available studies.

Interethnic Variability and Distribution of CYP2C9, VKORC1 and Other

Variants

Race and ethnicity are recognized determinants of warfarin dose requirements.108-110

African ancestry generally confers the highest adjusted mean weekly warfarin dose (43 mg,

range: 39 to 47 mg) compared with their European (36 mg, 34 to 39 mg), Latin American

(31 mg, 25 to 37 mg), and Asian (24 mg, 21 to 27 mg) counterparts.38 The African

population is also the most genetically diverse and heterogeneous.111

Dose variability attributable to genetics is less well captured in non-Europeans, especially

Asians and Africans.24 Featuring VKORC1, CYP2C9*2 and CYP2C9*3 variants, and

clinical information, the IWPC algorithm that was developed from an international panel of

approximately 5,000 patients consistently performed well in individuals of European descent

demonstrating approximately 50 to 65% or higher of dose variability with accuracy in the

range of 10 to 20% of maintenance dose.20,24,112 However, only about 30 to 40% (range: 8

to 46%) dose variance is explained in non-European populations depending on the

study,92,112-114 and suggests the inadequacy of VKORC1, CYP2C9*2, and CYP2C9*3, or

missing pharmacogenetic information for non-Europeans.

Warfarin Users of African Descent

An analysis of VKORC1 distribution has shown a haplotype A21 frequency of 10.6% in

African American (n= 273) and 35% in European-Americans (n= 302).115 In general,

VKORC1 and CYP2C9 variants account for upward of 30 to 40% of dose variance, even

with incorporation of clinical information in individuals of African descent,112,114-116 and

depending on the number of CYP2C9 variants included in the analysis.25 In an analysis

using the IWPC dosing algorithm that derived a 29% dose variance in a study population of

African Americans,112 addition of the CYP2C9 variants CYP2C9*6 (rs90449157),

CYP2C9*8 (rs90442184), and CYP2C9*11 (rs90481096) (all rare in Europeans) improved

the variance explained to 41%.112 In a study of warfarin clinic subjects with discrepant

therapeutic and algorithm-predicted doses, Scott et al demonstrated in one African American

patient on a lower-than-expected dose (14.4 mg/wk) the failure of 15 published algorithms

to accurately predict the required dose (a mean recommended dose of 41.8 mg/wk, range:

24.9 to 52.2 mg/wk).25 The study pointed out the potential utility of CYP2C9*8 (rs7900194;

allele frequency of 0.047) in African American and recommended its inclusion in

conjunction with CYP2C9*2, CYP2C9*3, CYP2C9*5, CYP2C9*6, and CYP2C9*11
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(combined allele frequency of 0.133) for improved dose predictability.25 Further support in

using CYP2C9*8 for warfarin dose prediction in Africans has come from a study on 213

South African blacks,117 and another on 226 African American that illustrated improvement

of the percent dose variance explained to approximately 30 to 36% with clinical variables

and VKORC1– 1639G >A.62

Heterogeneity of the African race is evident in a study on 993 Africans that examined 14

SNPs in seven genes previously reported to influence warfarin dosage.118 Comparing the

different native African populations with migrant individuals of Asian and European

ancestry in South Africa, CYP2C9*2 was found to be monomorphic and VKORC1 SNPs had

low variant allele frequencies (0.03 to 0.04) in the Africans, indicating limited utility of

those variants in South African blacks. Nonetheless, differences in allele frequencies of the

panel of SNPs tested have enabled the differentiation of ancestral lineage among the African

subpopulations, including native South Africans, Massai Kenyans, Luhya Kenyans, and

Yoruba Nigerians; close affinity was unexpectedly observed between the latter two

populations.118 In a study of individuals with warfarin resistance, the VKORC1 Asp36Tyr

variant initially identified in Jewish individuals of Ethiopian (allele frequency of 15%) and

Ashkenazi (4%) origins was reportedly common in 154 Ethiopian blacks (also with an allele

frequency of 15%).119 The great level of genetic heterogeneity, extensive population

substructure, and less LD in the African population compared with other races111 explains

the difficulties in analyzing individuals of African descent, and demands close attention to

their characterization.

Warfarin Users of Asian Descent

East Asians typically require on average about 3.0 to 4.0 mg/d, or about 21 to 28 mg/wk, of

warfarin to achieve therapeutic INR.38,120-122 A VKORC1 haplotype analysis comparing

five East Asian populations (Han Chinese from Taiwan and China, individuals from

Indonesia, the Philippines, Thailand, and Vietnam) with a South Asian population (Indians

residing in Taiwan) totaling 553 patients reported relatively close similarities in variant

frequencies among East Asians, but significant differences were observed when compared

with Indians.123 Allele frequencies of the wild-type CYP2C9*1 and the VKORC1 1173C > T

variant found commonly in East Asians (allele frequencies of > 0.90 and 0.8 to 0.9,

respectively) are similar among the Chinese,23 Japanese,120 and Koreans.124 At the

subpopulation level, the Bai, Tibetan, and Han Chinese ethnic groups also displayed similar

VKORC1 3673G > A allele frequencies of 92.8, 90.2, and 90.8%, respectively, for the A

allele.125 An allele-specific, graded dose effect in accordance with the CYP2C9 and

VKORC1 genotypes is seen in Asians as for the well-studied European populations.23,126

Whereas the African populations have in general a repertoire of reduced-function CYP2C9

variants (e.g., CYP2C9*5, CYP2C9*6, CYP2C9*8, CYP2C9*11) that influence warfarin

dose response,25,112,117 the relatively less heterogeneous East Asian populations have allele

frequencies of > 90 to 95% at the wild-type CYP2C*1, and frequencies of 80 to 90% at the

reduced-function VKORC1 variants (e.g., 1173TT, – 1639AA) that could explain their

overall lower warfarin dose requirements compared with their African and European

counterparts. 110,124 By far the single factor that explains the greatest proportion of dose

variation is VKORC1, estimated at 20 to 30% from genotyping studies and GWAS,14 and is,
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hence, a main source for the reduced dose requirement in East Asians. Collectively, patient,

clinical, and genetic information account for 40 to 50% (mean: 48%, range: 33.2 to 76.8%,

from 17 East Asian studies of dose variation explained.86,102,120,124,126-137

Multiethnic studies on Southeast Asians have shown greater similarity between Malaysians,

Indonesians, Thais, and Chinese than with Indians.27,123,138-140 For instance, CYP2C9*2 is

consistently absent in these Southeast Asian populations but present in up to 5.9% of

Indians.141,142 The dose variance explained by CYP2C9 and VKORC1 along with patient

demographics and clinical data varied considerably from 15.4% in an Indonesian study,143

36.5% in a Malaysian study,144 to 61% including CYP4F2 in a multiethnic Singaporean

study.27

Warfarin Users in Latin America, Other Regions, and Heterogeneous Populations

Apart from indigenous individuals native to Central and South America (Native Americans)

in whom a unique frequency distribution of VKORC1 SNPs is observed,145 immigrant

populations such as Brazilians and Argentinians of European descent have allele frequencies

and profiles that follow their native European counterparts.146,147 The direction of gene

effects from allelic variants is congruent between the major populations and Hispanic

Americans, Colombians, and Puerto Ricans.148-151 These effects were also found consistent

in the Turkish,152,153 Lebanese,154,155 Omani,156 Iranian,156 Egyptian,157,158 and

Jewish97,159 populations. Several of these populations exhibit allele frequencies intermediate

between the major races (Africans, Asians, and Europeans), and appear in line with the

human migration patterns and the bottleneck of the founding of non-African populations

some 50,000 to 100,000 years ago as evidenced by lower genetic diversity, a considerably

higher level of LD, and more similar patterns of LD.111

Genomic Basis for CYP2C9 and VKORC1 as Determinants of Dose Variance

and the Remaining Genetic Determinants

Over the past 5 years, advances in high-throughput technologies have made feasible the

agnostic interrogation of SNPs genome-wide. Currently, two GWAS on warfarin dosage

have been published with individuals of European ancestry.11,14 Cooper et al11 genotyped

approximately 500K SNPs in 181 subjects as a discovery phase and then replicated the best

signals with a p value of less than 10−4 in another 374 samples (Table 1). In the discovery

phase, only SNPs in VKORC1 reached the study’s level of genome-wide significance (p<

10−7), whereas polymorphisms in CYP2C9 were genome-wide significant post-replication.

The next best signal was rs2286461 near FGFBP2 on chromosome 4, which had a p value of

6.6 × 10−7 in the discovery set. However, the joint discovery and replication analysis yielded

a p value of 1.8 × 10−5, suggesting that the effect in the discovery and replication sets were

in opposite directions. The same was apparent for almost all the other regions that were

selected for replication. One exception was rs216013 in the intron of CACNA1C on

chromosome 12, which reached a p value of 8.6 × 10−7 in the joint analysis, with a p value

of 9.2 × 10−5 in the discovery set. VKORC1 and CYP2C9 explained 25 and 9% of the

warfarin dose variance, respectively, whereas inclusion of nongenetic information (age,

gender, treatment with amiodarone, treatment with losartan, and weight) increased the
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variance explained to 47%. This study11was underpowered to identify variants with small

contribution to warfarin dose variance; for example, it had 80% power to detect a SNP

association explaining 20% of the variance in warfarin dosing, which is almost the effect of

VKORC1.

VKORC1 and CYP2C9 were also statistically significant in another GWAS of Swedish

individuals.14 Takeuchi et al14 applied a two-stage approach with 1,053 subjects in the

discovery set and 588 in the replication set (Table 1). The study had 80% power to identify a

genetic variant explaining at least 1.5% of the warfarin dose variance. The minor alleles of

both VKORC1 and CYP2C9 reported SNPs had protective effects on warfarin dose (i.e.,

carriers of the minor alleles required less warfarin), and the variance explained was 28.3%

and 7.5%, respectively. In the primary analysis, no other region reached the a priori defined

level of genome-wide significance of 10−7. In a secondary analysis, the authors fitted a

multivariate regression adjusting for the effects of VKORC1, CYP2C9, age, and sex,

identifying rs2108622 in exon 2 of CYP4F2 on chromosome 19 at genome-wide level. The

carriers of the minor allele had an increase of warfarin dose and thus an opposite effect of

VKORC1 and CYP2C9 and explained around 1.5% of overall variance in the discovery set.

The authors also investigated 2,530 copy number variants (CNVs); however, none of these

were found to be associated with the warfarin dose.14 Corroborating those findings, a

focused genotyping study of CNVs in CYP2C9, VKORC1, CYP4F2, GGCX, and CALU

from 178 multiethnic patient samples (Americans of European, African, Latino, and Asian

descent), in addition to 350 additional samples testing for CYP2C9 exon 8, found that all

participants had two copies of the gene.45

Findings from GWAS on warfarin dose in Japanese individuals bore remarkable

resemblance to those of their (European) counterparts.160 Cha et al split their discovery set

into subjects with high and low warfarin dose and treated the phenotype as binary.

VKORC1, CYP2C9, and CYP4F2 affected warfarin dose in the same direction as in the

European samples (Table 1). The effects of these 3 loci reportedly explained approximately

43% of the phenotypic variance in a replication set.

Interestingly, a GWAS of acenocoumarol maintenance dose in Europeans identified culprits

in the same three regions. The strongest signal was in rs10871454 in STX4A gene, which is

in complete linkage disequilibrium (r2= 1 and D′= 1) with rs9923231 in VKORC1 (Table 1).

All three effects had the same direction as per the warfarin GWAS and could explain similar

portions of the variance of acenocoumarol maintenance dose, highlighting the importance of

these loci in anticoagulation therapy using a dicoumarol/coumarin derivative. Furthermore,

this study found rs1998591 in CYP2C18 to have a genome-wide effect (p< 5 × 10−8), while

accounting for ~ 1% of the acenocoumarol dose variance. Although published GWAS on

warfarin dosage report no information on CYP2C18, polymorphisms in the same gene have

been suggested to alter warfarin-related phenotypes in candidate gene studies.130,161

GWAS of warfarin dose have been relatively successful so far. Besides the strong effects in

VKORC1 and CYP2C9, there is evidence that more genes could play a role, although with

small effects. CYP4F2 is a notable example; because of its small contribution to variance

explained (~ 1%), the underpowered GWAS by Cooper et al could not have identified it.
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Evidence from GWAS in other traits suggests that larger discovery sets and meta-analysis of

GWAS can increase power and help identify variants with (very) small effects.162

Furthermore, none of the earlier GWAS has accounted for the effect of population

stratification (differences in allelic frequencies between subpopulations) or reported the

genomic inflation factor (λ).163 Typically, population stratification can cause spurious

associations; however, failure to account for population substructure can also cause loss of

power to detect true effects.164

Conclusions and Implications

VKORC1 and CYP2C9 in conjunction with patient demographics and clinical information

explain about half of the dose variance in patients taking warfarin, particularly in individuals

of European descent. Current evidence and existing pharmacogenetic and genomic data

indicate that another one-half of dose variance is yet to be accounted for by genetic and

nongenetic factors. Due to limitations of the previously performed GWAS, it remains

unclear whether additional common, large-effect size genes similar to VKORC1 and

CYP2C9 exist.

In the era of globalization, entry into health care systems is increasingly made by

multiethnic and admixed populations, as evident in the patient population served by clinics

and hospitals in major urban areas such as New York City,64 Toronto,28 Singapore,123 and

others. The development and advances in warfarin pharmacogenetic testing is already

serving as a prototypical framework for future developments to follow. The priority will

stand with how best to deliver health care and medicines safely and effectively to diverse,

multiethnic populations in an individualized manner, and pharmacogenetics will likely be a

major contributor.

Globalization and the Information Age have accelerated access to technology, and delivered

direct-to-consumer personalized genomic testing.165 Genetic/genomic data are already

integrated with electronic medical record (EMR) system featuring capacity for clinical

use.112 Using warfarin pharmacogenetic testing as an example, one could imagine the one-

off test results becoming available within 1 hour,17,166 ready for use at the time of warfarin

initiation based on a personalized dosing algorithm, and then the pharmacogenetic data

being stored in an EMR until future use when the latest variables (e.g., advancing age, new

current medications, comorbidities) are updated and the warfarin dose calculated and

dispensed automatically at no additional cost. In a cost-effectiveness analysis in 2009, it was

suggested that if warfarin pharmacogenetics guidance could reduce the OOR INR by 5 to

9%, then testing would be beneficial.167 In the latest prospective, randomized, controlled

trial, pharmacogenetic guidance was found to increase the OOR INR by 12%.17
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