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Abstract
In the last two decades, both diffuse optical tomography (DOT) and blood oxygen level dependent
(BOLD)-based functional magnetic resonance imaging (fMRI) methods have been developed as
noninvasive tools for imaging evoked cerebral hemodynamic changes in studies of brain activity.
Although these two technologies measure functional contrast from similar physiological sources,
i.e., changes in hemoglobin levels, these two modalities are based on distinct physical and biophysical
principles leading to both limitations and strengths to each method. In this work, we describe a unified
linear model to combine the complimentary spatial, temporal, and spectroscopic resolutions of
concurrently measured optical tomography and fMRI signals. Using numerical simulations, we
demonstrate that concurrent optical and BOLD measurements can be used to create cross-calibrated
estimates of absolute micromolar deoxyhemoglobin changes. We apply this new analysis tool to
experimental data acquired simultaneously with both DOT and BOLD imaging during a motor task,
demonstrate the ability to more robustly estimate hemoglobin changes in comparison to DOT alone,
and show how this approach can provide cross-calibrated estimates of hemoglobin changes. Using
this multimodal method, we estimate the calibration of the 3 tesla BOLD signal to be −0.55% ±
0.40% signal change per micromolar change of deoxyhemoglobin.

Keywords
functional magnetic resonance imaging; near-infrared spectroscopy; diffuse optical tomography;
multimodality imaging; Bayesian modeling

1 Introduction
In recent years there has been an emergence of an assortment of imaging modalities for
noninvasively studying the brain. Among these, functional magnetic resonance imaging
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(fMRI)1–4 and diffuse optical tomography (DOT)5–8 are two techniques that have been
developed largely in parallel to study cerebral functional hemodynamic responses. While both
of these technologies are being applied successfully to a wide range of similar neuroscience
and clinical topics, there are intrinsic limitations to each method, which are imposed by the
governing physics of each technology (reviewed in Refs. 9 and 10). For example, while fMRI
techniques such as blood oxygen level dependent (BOLD) can provide a measurement of blood
oxygen saturation changes with fairly high spatial resolution (typically 2 to 4 mm for functional
studies), these signals are physiologically ambiguous, owing to the indirect relationship
between changes in the transverse relaxation rate of hydrogen nuclei  and physiological
hemodynamic parameters (i.e., deoxyhemoglobin and blood oxygen saturation) (reviewed in
Ref. 11). Although such ambiguity does not impede the use of BOLD for mapping the spatial
patterns of evoked changes, this does limit the use of BOLD to directly relate physiological
parameters between subjects without additional calibration methods. Calibration of the BOLD
signal is possible by inducing isometabolic changes in cerebral blood flow using hypercapnia
or similar vasoactive agents.12–18 However, these hypercapnic-calibration methods require the
subject to inhale increased levels of carbon dioxide gas for prolonged periods of time (up to
several minutes). This procedure is both technically challenging and subject to several possible
sources of systematic error19 that may render the technique difficult to translate to clinical
applications. While the use of hypercapnia-calibrated fMRI techniques to provide quantitative
measurements of blood oxygen saturation changes has been important in applying MR
techniques to study metabolism, an alternative to hypercapnia calibration is needed to make
the estimation of functional CMRO2 changes more routine. As CMRO2 is more directly related
to neural-metabolic coupling, these measurements could have significant impact in better
understanding the connections between neural and hemodynamic function in health and disease
(reviewed in Ref. 20).

Continuous wave (cw)-based DOT has several complementary features to fMRI methods,
including the ability to record a spectroscopic measurement of both oxygenated
(oxyhemoglobin, HbO2) and deoxygenated (deoxyhemoglobin, HbR) forms of hemoglobin.
In comparison to fMRI, optical methods generally have very high temporal resolutions, with
acquisition rates capable of more than several hundred hertz. This resolution is much faster
than needed to capture the typical slow evoked responses and fast enough to prevent aliasing
of systemic physiological signals, such as cardiac pulsation and other physiology, which can
be a major source of noise in fMRI studies due to undersampling.21,22 A drawback of the DOT
technology is its lower spatial resolution, which is intrinsically limited by the propagation of
photons through highly scattering biological tissue (reviewed in Ref. 23) and by the typically
low number of optical measurement pairs recorded. Although DOT has the theoretical potential
to provide quantitatively accurate measurements of hemoglobin concentration changes in the
brain, in practice this can seldom be achieved because of the partial-volume effects introduced
by the low spatial resolution and depth sensitivity of this method. In addition, the tomographic
reconstruction of hemoglobin changes from optical measurements is generally an
underdetermined and ill-posed inverse problem.7 Tomographic images can be improved with
a greater number of measurement combinations, including overlapping measurements to
provide more uniform sensitivities;24,25 however, regularization schemes must still be used to
constrain the image reconstructions of the underlying absorption changes. In general, the
accuracy of these reconstructions depends on the method and amount of regularization applied.
In recent years, a great deal of attention has been given to this topic (reviewed in Ref. 26);
however, more work is still needed. One promising approach—the incorporation of prior
knowledge of the spatial location of the hemodynamic change by either anatomical-based8,
27–29 or functionally-based priors30— improves the quantitative ability of DOT by
constraining the solutions to the image reconstruction problem, and thus minimizing the errors
introduced by partial-volume effects. With respect to optical imaging of the brain, the use of
functional MRI data as such a statistical prior for the location of brain activation area has been
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suggested to improve DOT reconstructions.31 While it is believed that the introduction of
statistical priors from structural or functional MRI may improve the localization of the optical
signal, the implementation of such methods still has several unresolved issues. In particular,
regularized reconstructions require a choice for the proper weight of the prior, as recently
reviewed in Gibson, Hebden, and Acridge.26 In one extreme, the use of a strict (hard) prior
(e.g., Ref. 32) will produce images with identical spatial resolution as the original prior (e.g.,
the functional MR image). However, this constraint assumes that the value, location, and
boundaries of the prior have negligible uncertainty. Although the signal quality of fMRI images
has greatly improved in recent years due to advancements in pulse-sequence design, RF coil
design, and a move to higher magnetic field strengths, background physiology, intertrial
variability, and other subject-related factors are still non-negligible sources of error in these
measurements and will contribute to uncertainty in a fMRI-based prior. On the other hand, the
use of a statistical prior (e.g., Refs. 30 and 33), while favorable in respect to the inclusion of
the statistical uncertainty about the prior MRI information, requires knowledge of the proper
statistical weight for the constraint. The optimal choice of this weighting depends on the relative
measurement noise in both the fMRI and optical signals, and requires a proper statistical model
of measurement noise. Concurrent multimodal measurements are unique in that physiological
noise (for example, intertrial variability of the evoked response) is simultaneously recorded by
each modality, while measurement noise is usually independent between instruments. This
property of concurrent measurements provides an opportunity to use mutual information within
multimodal measurements to help define the optimal statistical weighting of each modality in
a joint image reconstruction. This concept of a bottom-up data fusion model has been
previously introduced for neural imaging methods such as multimodal electroencephalography
(EEG) and magnetoencephalography (MEG),34,35 but has not yet been demonstrated for
multimodal hemodynamic measurements or optical methods. In this work, we describe a new
analysis method for fusion of simultaneously acquired DOT and BOLD data that provides a
joint estimate of the underlying physiological contrast giving rise to the concurrent
measurements from both modalities. This approach makes use of the statistical properties of
concurrent measurements and the commonality of the underlying physiology and fluctuations
giving rise to these measurements. We use a Bayesian framework to jointly estimate brain
activation changes from MR and optical using a single image reconstruction step. This
approach enables us estimate oxy- and deoxyhemoglobin changes in the brain, with better
spatial accuracy than DOT image reconstructions alone through the incorporation of time-
varying spatial information from BOLD observations. Because the fMRI information
constrains the spatial extent of the reconstruction, this helps to correct partial volume errors
associated with optical reconstructions alone. Likewise, the spectroscopic information of the
optical data defines the deoxyhemoglobin calibration of the BOLD signal. We find that the
resulting fusion images contain quantitative information about micromolar changes in
hemoglobin based on the cross-calibration of these two modalities.

We first present numerical simulations to examine the quantitative accuracy of hemoglobin
estimates by our data fusion methods. Next, we apply the model to experimental data recorded
simultaneously with DOT and BOLD imaging during a 2-s duration finger-walking task in five
subjects.

2 Theory
2.1 Notation

In the following descriptions, we use the notations superscript T for the transpose operator, ⊗
for the Kronecker tensor product, and I for the identity matrix. In addition, for modality specific
operators, a subscript will be used to reference the modality.
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2.2 General Model Description
The functional contrast underlying both the BOLD and DOT signals derives from similar
changes in hemoglobin concentrations and blood oxygen saturation. However, the details of
the relationships between the measurements and underlying physiology are based on vastly
different biophysical principles in the two modalities. These principles must be properly
considered to incorporate both MRI and optical datasets into a single model. In Fig. 1, we
present a schematic outline of our state model, which outlines how the measurement models
for both MRI and optical are connected to a common model of physiological contrast. The
framework for this model is described by three components, which are described in the
following sections: 1. a multidimensional linear model by which a set of spatial-temporal basis
functions is used to describe functional and systemic components of oxy- and
deoxyhemoglobin concentration changes; 2. a set of measurement model equations describing
the measurement biophysics for each modality and connecting the observations and underlying
physiology; and 3. the least-squares minimization routine in which the experimental
observations are fused to create a joint estimate of the underlying physiology.

2.3 Multidimensional Linear Model
To describe the underlying physiological changes within the brain, we assume that changes in
oxy- and deoxyhemoglobin can be described as linear combinations of a set of spatial and
temporal basis functions designated to capture the functional and physiological hemodynamic
fluctuations. In principle, this approach is similar to the general linear model (GLM) which
has been previously introduced for fMRI36,37 and optical38,39 analysis, but has been modified
here to include both spatial and temporal basis supports. Motivated by the anatomy of the brain
and head and physiology of hemodynamic fluctuations, we introduced four distinct pairings
of spatial and temporal basis functions in our model. These groups were; 1. the functional brain
elements (denoted as subscript “functional” or F), 2. a global brain physiology basis (subscript
“brain global” or B), 3. the cerebral spinal fluid (CSF) layer surrounding the brain (subscript
CSF or C), and 4. the superficial skin layer (subscript “skin” or S). These four groups of spatial
basis functions are diagrammed in Fig. 2.

The first group of canonic functions representing the individual functional brain elements was
derived from a spatial basis set composed of overlapping Gaussian spheres positioned on a
hexagonal grid (as shown in Fig. 2). This basis is equivalent to a spatial smoothing kernel and
is used in place of a separate smoothing operation applied to the data, as is usually typical of
fMRI analysis. This basis also serves to reduce the unknown degrees of freedom of the model
and makes the model more computationally tractable. We used a 6-mm standard deviation
Gaussian kernel, which generated between 200 and 250 independent spatial functions
(depending on the exact anatomy of the subject’s brain). These basis functions are restricted
to those voxels that had been identified as either gray or white cortical matter by a tissue
segmentation algorithm using the MRI anatomical images (see Methods in Sec. 3). The
Gaussian spatial kernels were truncated at the anatomical boundaries between the brain and
the CSF layers to impose a cortical constraint on the reconstruction of functional activation.
The basis functions and reconstructions were limited to the contralateral hemisphere (opposite
to hand movement) where optical measurements were recorded. The matrices representing
each of the four types of spatial basis sets (denoted G in our model) have matrix dimensions
of the number of independent basis functions (e.g., 200 to 250 for the functionally associated
regions) by the number of voxels in the volume used for the optical and MRI forward models.
When analyzing the experimental data, there are 28,672 columns in each of these matrixes (the
fMRI images had 64 × 64 in-plane resolution and seven axial slices). To model the temporal
dynamics of evoked functional changes within each of these Gaussian bases, we used a linear
combination of a two-parameter (σ and τ) modified gamma function and its derivative
(dispersion function), as given by the equations
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and

(1)

The canonic temporal support vectors (t1 and t2) are generated from the evaluation of these
respective continuous-time functions [Eq. (1)] at the discrete time points spanning the
hemodynamic response (0 to 20 s at 2 Hz). This basis support is similar to the temporal basis
often used in GLM analysis (e.g., the analysis of functional neuroimages (AFNI)40 or statistical
parametric mapping (SPM)41 software packages). Since the temporal dynamics of the oxy-
and deoxyhemoglobin responses are known to differ, we used separate timing parameters (σ
and τ) for each hemoglobin species and denote these with subscript HbO2 and HbR,
respectively. These timing parameters were empirically estimated by a nonlinear fit to the group
average of the region-of-interest average of the DOT time courses as a preprocessing step of
this analysis. The empirical values of τ and σ used in the model were (0.1 s ± 0.4 s, 6.7 s ± 0.3
s) and (1.8 s ± 0.4 s, 6.7 s ± 0.3 s) for oxy- and deoxyhemoglobin, respectively (standard errors
estimated from the five individual subjects). We note that the inclusion of the second dispersion
support in the linear model allows for sufficient flexibility in the temporal shape of the
estimated response to model each of the individual subject’s data, as demonstrated in previous
MRI studies (e.g., Ref. 42). For example, in this study, we found that a linear combination of
these two temporal functions can account for most of the evoked responses in each of five
subjects (R2|HbO2 = 0.81 ± 0.08 and R2|HbR = 0.86 ± 0.03; p<0.001 for all; for the average
of five subjects ± StdErr).

The overall temporal model of the functional component of the hemodynamic signals can be
expressed as the convolution of the experimental stimulus timing (U) and the functional
impulse response functions [t1 and t2 in Eq. (1) for either oxy- or deoxyhemoglobin]:

(2)

where U is the binary vector describing the experimental paradigm (i.e., the timing of stimulus
presentation) and spans the temporal duration of the experiment. The dimensions of the T
matrix are the number temporal basis functions by the number of measurement time points.

In addition to the first pairing of spatial-temporal basis functions, which is used to model the
evoked functional response, the global brain, CSF, and skin groups of temporal basis functions
are used as systemic regressors of background physiology. These were included to model
nuisance physiological contributions to the BOLD and/or DOT measurements by using larger
(“super-voxel”) representations of the brain, CSF, and skin layers, as described in Fig. 2 and
similar to the methods previously introduced to model systemic contributions to DOT signals.
43 For each of these basis groups, we paired the spatial basis with a series of sine and cosine
functions (1/20 to 1.0 Hz in 1/20-Hz steps) to describe the temporally oscillating systemic
physiology. The skin-confined basis group models the systemic contributions to predominantly

Huppert et al. Page 5

J Biomed Opt. Author manuscript; available in PMC 2009 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the optical signals and the brain-confined nuisance regressor models physiology common to
both modalities.

In total, the set of all spatial-temporal bases is combined into a single convolution operator
(GT), giving a total of eight unique basis groups (four groups for both HbO2 and HbR). This
matrix is formed by the convolution of the individual spatial (G) and temporal (T) basis
functions at each time instance for each of the eight groups. The matrix GT is given by the
equation:

(3)

where the subscripts F, B, C, and S indicate the functional, global brain, CSF, and skin basis
groups. The matrix GT has dimensions of twice the number of image reconstruction voxels
multiplied by the number of discrete measurement time points (rows) by the total number of
model unknowns (columns). The total number of model unknowns is equal to the number of
spatial basis functions times the number of temporal basis functions and summed over the four
tissue classifications and two hemoglobin species. For example, in our 6 min of experimental
data, the GT matrix is approximately 41,000 × 3000 elements, which would be 200 gigabytes
in size for 16-bit numerical precision. Fortunately, in practice, this full matrix never needs to
be stored in memory, because in the inverse problem we only need the inner product of two
such matrices (i.e., GTTGT), and this can be built up on a per time-point basis by making use
of the block structure of this matrix and simple matrix operations. The details of this procedure
are not discussed in this work.

The basis function matrix (GT) describes the spatial-temporal supports for the image
reconstruction. Following the standard notation used previously to describe the general linear
model in fMRI analysis (i.e., Ref. 44), the spatial and temporal dynamics of the underlying
hemoglobin changes are described by a linear sum of the spatial-temporal basis function
weighted by a vector of unknown coefficients denoted β. The vector containing the modeled
hemoglobin changes (both systemic and evoked) at each volume element and time point is thus
given by the equation:

(4)

where k is the total number of imaging parameters in the model and is equal to the number of
time points multiplied by the number of volume elements. This matrix is a vectorized form of
the reconstructed image (including time dimension) and is reshaped to a volumetric matrix in
final analysis before displaying the images/movies.

2.4 Observation Models
The second component of our fusion model (as shown in Fig. 1) incorporates the measurement
processes that relate the underlying physiological changes [oxy- and deoxyhemoglobin given
by Eq. (4)] to the observations of each modality. The measurement equations for DOT and
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fMRI describe the biophysics of each instrument measurement. In this work, we have
approximated this biophysics using linear approximations to these measurement equations.
The validity of these linear simplifications has been discussed by a number of researchers that
have examined the consistency of these DOT and fMRI modalities with these hypothesized
underlying biophysical theories by correlating the temporal (reviewed in Ref. 10) and
spatial45–47 components of measurements. These works have suggested that linearity between
the change in deoxyhemoglobin and the BOLD signal can be justified. Note that although our
current model has been formulated using these linear approximations, nonlinear extensions of
both the optical and fMRI models are theoretically possible using similar methodologies
(although the size of the model and computational memory requirements may currently limit
this implementation in practice).

2.4.1 Blood oxygen level dependent measurement model—The BOLD signal has a
complex origin arising from both intra- and extravascular tissue.4,48,49 These signals depend
on not only the user acquisition parameters, such as echo time, magnetic field strength, and
imaging echo type, but on features of the subject anatomy as well, such as vascular architecture
and the orientation between blood vessels and the imaging fields.50 In this work, we simplify
the BOLD measurement model by considering only the extravascular (EV) signal contribution.
The EV signal is believed to compose the majority component of the BOLD signal at the 3
tesla (T) field strength.49 The EV signal is linear to changes in the concentration of
deoxyhemoglobin per volume tissue and is given by the equation4,48,51

(5)

where Vo is the frequency offset in hertz of water at the outer surface of a magnetized vessel
(=80.6 s−1 at 3 T52). Eo is the resting oxygen extraction fraction, and Vo is the baseline blood
volume to tissue fraction. TE is the echo time used in the MR pulse sequence (30 ms in this
study). [HbR0] is the baseline deoxyhemoglobin concentration. In general, the coefficients of
this equation are not known with the certainty required for quantitative imaging, and moreover,
may vary between subjects according to the baseline state or spatial region.53 For this reason,
empirically calibrated fMRI techniques have been proposed to remove the influences of these
parameters by using ratios of the blood flow and oxygen saturation (i.e., BOLD) signals.12

To account for these unknown calibration parameters in the BOLD measurement equation,
these factors are lumped into a single parameter (α≡−4.3⋅υo⋅Vo⋅Eo⋅TE/[HbR0]). In our method,
we use the information in the optical data to help determine the BOLD calibration factor, as
we describe in Methods in Sec. 3. In our measurement model, the BOLD signal is a projection
of the deoxyhemoglobin component of the model plus an additive noise term (υBOLD) by the
equation

(6)

2.4.2 Diffuse optical tomography measurement model—In the DOT technique, near-
infrared light is introduced into the head and propagates through the dense scattering layers of
the scalp and skull into the brain. A small fraction of the light introduced eventually exits the
head and is recorded a distance away from the source position. Hemodynamic changes in oxy-
and deoxyhemoglobin concentrations affect the absorption properties of the brain and thus
result in changes in the intensity of light as it migrates along a diffuse trajectory through the
head. Using multiple measurements taken by an array of light source and detector positions

Huppert et al. Page 7

J Biomed Opt. Author manuscript; available in PMC 2009 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



spaced several centimeters apart (shown in Fig. 3), the DOT method can be used to spatially
resolve these absorption changes and relate these to changes in oxy- and deoxyhemoglobin.
The DOT measurement equation is described by the spatial profile of the light propagation
through the head, which determines the sensitivity of these measurements. To derive the
distribution of photons in a medium with a complex distribution of absorption and reduced
scattering coefficients [μa(r) and  , respectively], such as the human head, the photon
density must be modeled by empirical means using computerized simulations. In Monte-Carlo-
based modeling, the distribution of these photons is statistically modeled based on the
probability of an absorption or scattering event at each region of space as described by μa(r)
and . 54,55

For brain activation, the changes in the optical properties are generally small (on the order of
a few percent), and thus, a linear approximation is believed to be sufficient for predicting the
changes in optical measurements produced by localized changes in the optical properties
(reviewed in Ref. 23). The spectroscopic forward model for such optical measurements is of
the form56–58

(7)

where Y is the vector of measured optical signal changes for each source-detector pair and
Aλ is a matrix describing the linear projection from absorption changes from within the volume
to optical signal changes between each measurement pair. λ indicates wavelength dependence
(690- and 830-nm wavelengths were used in this study). Each row of the matrix A describes
the light propagation between a particular optical source and detector pair (shown in Fig. 3),
which describes the spatial sensitivity for that measurement. The Aλ matrix is a projection
operator, which integrates absorption changes over the volume to predict the measurements
between sources and detectors. It has been shown that this linear operator is approximated by
the adjunct product between the photon density distributions for each given source and each
given detector involved in each optical measurement.7 In Eq. (6), the projection operators are
combined with the spectral extinction coefficients (ελ) to give a direct forward operator between
the concentration changes in HbO2 and HbR (per volume element) and the measured optical
density changes at multiple wavelengths. In our model, υλ is an additive measurement noise
term specific to each measurement channel and wavelength.

2.5 Data Fusion Model
Rather than treating the DOT and BOLD measurements independently or first computing an
MR-based spatial map to be used as a reconstruction prior, our model tries to preserve the
mutual information in the multimodal data by simultaneously considering measurements from
both instruments. We concatenate the two measurement equations [Eqs. (6) and (7)] into a
single joint-observation operator

(8)

The joint set of multimodal data can be expressed as the multiplication of the underlying model
of oxy- and deoxyhemoglobin changes by the linear observation operator. Combining Eqs.(4)
and (8), the complete model equation can be written as
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(9)

where In is an identity matrix with size equal to the number of measured time points (n). The
total model considers both time and space simultaneously (as defined by the spatial and
temporal basis matrix GT). This final model can be written as a single matrix equation,

(10)

where Y has dimensions of total number of measurements (number of optical plus MRI
measurements for all time points) and can be written by concatenating the set of measurements
for all time points (t ∈ [1 n]) as

(11)

Similarly, the measurement model matrix L must be extended by replicating this matrix along
the diagonal for each of the measurement time points. In our experimental data, both optical
and MRI data have the same sample rate (2 Hz) and thus all discrete observation points use
the same joint measurement equation, which includes both optical and fMRI measurement
models. However, in general, the fMRI acquisition rate will be considerably slower than that
of the DOT, and this can be accounted for in our model by time indexing the measurement
operator (L) to use observations for one or both of the appropriate modalities at each
observation point, depending on the samples acquired at that time. Thus, this model can be
used to interpolate the reconstructed image using the higher temporal resolution DOT data,
while maintaining a solution that is less frequently spatially constrained by fMRI
measurements.

2.6 Bayesian Inversion Routine
To estimate the coefficients for the spatial-temporal basis sets describing changes in HbO2 and
HbR, the linear model Eq. [(10)] is solved using a Bayesian formulation of the linear inverse
operator59

(12)

In Eq. (12), R−1 and Γ2Q−1 represent the inverses of the covariance for the observation noise
and state noise models, respectively. We have chosen this formulation over the Tikhonov
regularization (Moore-Penrose generalized inverse), which is more commonly used in DOT,
because the Bayesian formulation separates the regularization parameters into both an
observation noise (R−1) and a state noise (Γ2Q−1) preconditioning term. A similar regularized
inverse scheme was recently described by Yalavarthy et al.60 This weighted least-squares
method provides a better framework to introduce differential observation noise for each
modality. From a statistical standpoint, Γ2Q−1 is a covariance prior on the states β. This
definition offers some intuitive guidance on how to tune the inversion, since we expect
physiological fluctuations to be approximately on the order of micromolar magnitudes. In
practice, however, the multidimensional linear model is only an approximation of the actual
physical system, and the assumed Gaussian distributed prior on β is imperfect. These
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approximations effectively mean that the Bayesian inverse is a regularization scheme that must
be tuned, and we have introduced a scalar parameter Γ for that purpose. In addition, we define
the variance of the observation (measurement) noise model (υ) as a diagonal matrix formed
from the variance [var()] of each measurement, i.e.,

(13)

Thus, the measurement noise covariance can be estimated from experimental data and is used
to reflect our confidence in the measurements taken from the two different modalities as a
statistical prior, as described in Methods in Sec. 3. In this model, we have assumed that both
the process and the measurement error for each modality are zero-mean random variables.

3 Methods
3.1 Experimental Methods

The experimental protocol used in this study has been previously described.61 The data used
in this analysis have been previously reported in that paper for comparison of the temporal
characteristics of optical methods and fMRI. Five healthy, right-handed subjects (4 male, 1
female) were imaged in this experiment. The task consisted of a two-second duration finger-
walking on the right (dominant) hand. The Institutional Review Board at Massachusetts
General Hospital approved these procedures.

3.2 Diffuse Optical Tomography Acquisition and Preprocessing
We used a multichannel continuous-wave optical imager (CW4, TechEn Incorporated,
Milford, Massachusetts) to obtain the measurements as previously described.62 The DOT
imager has 18 lasers—nine lasers at 690 nm (18 mW) and nine at 830 nm (7 mW)—and 16
detectors of which only four source positions and eight detectors were used here. The laser
wavelengths were 690 and 830 nm (18 and 7 mW, respectively).

The DOT probe was made from flexible plastic strips with plastic caps inserted in it to hold
the ends of the 10-m-source/detector fiber optic bundles. The probe consisted of two rows of
four detector fibers, and one row of four source fibers arranged in a rectangular grid pattern
and spaced 2.9 cm between nearest neighbor source-detector pairs (shown in Fig. 3). This
plastic probe was then secured to the subject’s head centered over the contralateral primary
motor cortex (M1) via Velcro straps and foam padding. The 10-m fibers were run through the
magnet bore to the back of the scanner and through a port into the control room, where they
were connected to the DOT instrument.

Following collection and separation of source-detector pairs, the timing of the DOT data was
synchronized to the MRI images (as described in Ref. 61). The data were down-sampled using
a Nyquist filter to the same 2-Hz sample frequency as the fMRI. The raw light fluence
measurements were converted to changes in optical density by the negative log of the
normalized incident light intensity {ΔODλ(t)=−log[Iλ(t)/Iλ(0)]}.

Monte Carlo methods were used to generate the optical sensitivity profiles describing the DOT
measurement equation [Eq. (6)].45,55,63 Anatomical MP-RAGE images acquired during the
session were segmented into a five-layered head model for each of the subjects,45 which was
used for these Monte Carlo simulations and also to define the spatial basis functions used in
the linear model. From the vitamin E fiducial markers used to mark the optical probe, the
locations of the DOT optodes were located. The photon migration paths were sampled from
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the simulated trajectories of 108 photons at both 690- and 830-nm wavelengths. These
simulations were used to calculate the linear optical forward matrices (Aλ) and substituted into
Eq. (7) (see Fig. 3). To create the spectroscopic forward operator, the hemoglobin extinction
coefficients were used from the Oregon Medical Laser Center (http://omlc.ogi.edu/).

3.3 Functional Magnetic Resonance Imaging Acquisition and Preprocessing
BOLD-fMRI measurements were performed using a 3 tesla Allegra scanner (Siemens Medical
Systems, Erlangen Germany). fMRI data were collected using a gradient echo planar imaging
(EPI) sequence [TR/TE/α=500 ms/30ms/90 deg] with seven 5-mm oblique orientation slices
(1-mm spacing) and 3.75-mm in-plane spatial resolution. Structural scans were performed
using a T1-weighted MPRAGE sequence (1 × 1 × 1.33-mm resolution, TR/TI/TE/α = 2530
ms/1100 ms/3.25 ms/7 deg]. The BOLD time series was preprocessed using a motion-
correction algorithm64 and mean normalized before being used in the model.

3.4 Numerical Simulations
We used simulation studies to test the quantitative accuracy of this method. This enables us to
examine the ability to quantify hemoglobin changes, since no empirical “gold-standard”
method exists that can provide quantitative measurements with which to validate our
experimental results. Simulated inclusions were placed shallow (~18 mm) and deep (~25 mm)
from the surface of the head (shown in Fig. 4). The hemodynamic response was simulated with
a maximum peak value of 8 µM and −2.5 µM for oxy- and deoxyhemoglobin concentration
changes, respectively. Varied levels of measurement noise were added to the simulated
measurements to create varied levels of contrast-to-noise ratios.

3.5 Optical Calibration of the Blood Oxygen Level Dependent Signal
The BOLD measurement model depends on an unknown calibration factor(α), which depicts
the several baseline and structural unknown factors within Eq. (5). This calibration factor is
determined empirically by comparing the spatial and temporal profiles of the DOT and BOLD
data as described in Ref. 45. Using the linear forward operator describing the DOT
measurement model [Eq. (7)], we project the model estimate of the BOLD signal from its
natural volume space representation into the optical measurement (i.e., source-detector) space.
By substituting Eq. (6) into Eq. (7), the expected optical signals due to a change in
deoxyhemoglobin can be modeled from the model estimated BOLD signal, as discussed in
Ref. 45.

(14)

These BOLD derived multiwavelength optical density changes can be used to estimate the
change in deoxyhemoglobin predicted by the spatial location and magnitude of the BOLD
signal (Δ[HbR]BOLD) for each source-detector pair using the modified Beer-Lambert law,65,
66 and compared to the measured optical data to find the calibration factor (α) using the equation
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(15)

In the modified Beer-Lambert equation [top in Eq. (15)], L is the linear distance between the
position of a source and detector, and DPF is the differential path-length factor, which is a
dimensionless coefficient defined as the effective path length through the head divided by the
source-detector separation.63,65,66 This is calculated from the Monte Carlo simulations. Since
this projection uses the optical forward model, it accounts for the DOT partial volume errors
in the calibration of the BOLD signal. A single calibration factor (α) was used, which is
consistent with findings of the spatial correlation of response amplitudes between the two
modalities.45,46 To estimate this parameter in the model, we employ an iteration routine
between state and parameter estimation. Alpha (α) is first estimated via Eq. (15) using the raw
optical and MRI data, and then the states (β) are estimated using Eq. (12). The estimated optical
and BOLD signals are recovered from the forward model using the estimated value of beta,
and the alpha is re-estimated from the modeled BOLD and optical signals using the bottom of
Eq. (15). This beta and alpha estimation process was repeated for 20 iterations. Alpha was
found to converge below a +/−10% variation after a few iterations (approximately five
iterations).

3.6 Estimation of Noise Covariance
To estimate the covariance of the measurement noise (R), we calculated the variance of the
residual for each measurement by iteratively solving the state estimate and estimating R to be
the variance of the residual of the measurements. The initial seed of R was calculated from
linear regression of the data with the temporal basis.

An identity matrix was used for the state covariance matrix Q. The regularization tuning
parameter (Γ) was adjusted in the analysis, as noted in Sec. 4. A single regularization parameter
was used to scale the variance of both the oxy- and deoxyhemoglobin states.

4 Results
4.1 Simulation Studies

To investigate the improvements in the reconstruction accuracy, forward simulations of
synthetic data and inverse reconstructions were first performed as described in Sec. 3. The
simulated observation vectors were reconstructed using the DOT only and the multimodal
fusion (DOT and BOLD) data in the reconstructions. Reconstructed axial slices are shown in
Fig. 4 for the shallow and deep simulated inclusions. Using only the DOT data, the image
reconstruction of both oxy- and deoxyhemoglobin depend strongly on the regularization
parameter used (Γ) In Fig. 4, reconstructions are represented at regularization values of 1/Г=
(1 µM). To examine the dependence of the reconstruction accuracy on the regularization
parameter, we looked at the reconstructed response amplitude and goodness-of-fit of the model
for varied levels of regularization. This was repeated for both the shallow and deep inclusions
and at several levels of simulated instrument noise (5:1, 50:1, or 500:1 contrast-to-noise ratio).
The results, shown in Fig. 4, demonstrate the robustness of the fusion model to the choice of
this regularization for deoxyhemoglobin reconstructions. Since the estimate of
deoxyhemoglobin change is overdetermined in the presence of both optical and BOLD
measurements, accurate estimates of the response are recovered at minimal regularization.
When over-regularization is applied, the response is underestimated, as expected. In contrast,
reconstructions using only the DOT data show high dependence on the regularization amount.
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This result is consistent with prior expectations of the behavior of the DOT inverse problem
with our measurement geometry. The fusion reconstruction of oxyhemoglobin changes is also
dependent on the regularization applied. This is due to the fact that the reconstruction of
oxyhemoglobin changes is only indirectly informed by the fMRI data through the off-diagonal
terms in the spectroscopic optical forward model [Eq. (7)]. Since only the DOT measurements
contain direct information about oxyhemoglobin, this component of the inverse problem is still
ill posed and requires significant regularization. However, the oxyhemoglobin reconstructions
are still modestly improved by the fusion reconstruction over the DOT-only reconstruction.

4.2 Experimental Studies
Images of evoked hemoglobin changes were reconstructed from the BOLD alone, DOT alone,
and multimodal (fusion) experimental datasets for all five subjects, as shown in Fig. 5 and Fig.
6. In Fig. 5, we show an in-depth look at the results for a single subject (subject A), and show
the reconstructions of deoxyhemoglobin (upper rows) and oxyhemoglobin (bottom rows). The
right column of images in Fig. 5 shows the surface rendering of the activation regions with the
central sulcus marked for clarification. In Fig. 6, we show the reconstructed results for the data-
fusion method for subjects B through E and comparison to the BOLD model. In agreement
with previous analysis of this data,61 we found localized functional activation in the motor-
cortex (M1; precentral gyrus) and primary sensory (S1; post-central gyrus) regions for each of
the individual five subjects for the fMRI and fusion reconstructions. The peak amplitudes of
the estimated evoked oxy- and deoxyhemoglobin responses are given in Table 1. In general,
the multimodal fusion and BOLD images were similar, although a few notable differences
were observed. These differences are most likely the result of differences in the regularization
in the two models. A regularization amount (1/Γ) of 10 µM was used in the DOT and fusion
reconstructions, and 10% in the BOLD images, which may account for these differences. In
addition, the fusion images are more sensitive than single modality methods to both temporal
and spatial registration errors between the two modalities, which can include intrinsic
differences due to differential vascular sensitivity. This can introduce disinformation between
modalities, which will result in the loss of confidence of an activation event and lower
functional effects statistics (e.g., more likely to reject a null hypothesis).

In the model reconstructions that only used the DOT data, we found that the amplitudes of the
estimated hemoglobin changes were dependent on the regularization applied, which was
consistent with the simulation results and prior expectations on the behavior of the ill-posed
inversion of the optical forward model and minimum norm estimator. The reconstructions
shown in Fig. 5 and Fig.6 and values given in Table 1 were obtained at a regularization value
of 1/Γ=10 µM, which provided the best reconstruction from the optical data alone when
qualitatively compared to the fusion or BOLD reconstructions. We have chosen to present
images using this regularization point to give the best possible representation of optical-only
reconstructions for comparison to the data fusion method. With this choice of regularization,
the optical-only results were qualitatively close to the fMRI images (as demonstrated in Fig.
5 for subject A), although distinct biases in the spatial locations were notable. Even with the
cortical constraint of our model, we noted that our optical-only reconstructions tended to be
biased toward the locations of optodes, which, in most cases, displaced the location of the DOT
reconstructions relative to the BOLD alone or fusion derived estimates. In contrast to the
deoxyhemoglobin reconstructions, the improvements of the fusion model to estimate of
oxyhemoglobin changes over the DOT alone model were less dramatic. However, we found
that the fusion estimates of oxyhemoglobin were less susceptible to biases toward the optode
positions, although they were still superficially biased toward the head’s surface. The optical
probe used in this study was based on a simple nearest-neighbor geometry. Recent work has
shown that optical-only reconstructions could be further improved using tomographic probe
designs, including the use of overlapping measurements (e.g., Refs. 24 and 25). These methods
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would be expected to further improve the accuracy of the reconstructions performed here for
both optical-only and fusion methods.

In addition to the functionally evoked responses, our model also includes regressors for the
background physiological oscillations modeled as global effects using large spatial basis
supports. The inclusion of these regressors accounted for an average of an additional 8.5%
±4.4% of the total model variance based on partial R2 analysis of the model (average of five
subjects±StdErr; range 3.3%[subject B] to 26.3%[subject E]). As recently demonstrate by
Diamond et al.43 using optical measurements and Glover, Li, and Ress67 using fMRI
measurements, the use of direct measurements of systemic physiology by pulse-oximtery or
noninvasive blood pressure methods as additional model regressors may provide further
reduction of these cerebral physiological signals and should be examined in future work.

4.3 Optical Calibration of Blood Oxygenation Level Dependent
In Table 1, we show the recovered values of the optically calibrated BOLD scaling factor (α)
for each of the five subjects (mean: −0.55%-BOLD/µM±0.40%-BOLD/µM). The high
variance in the group estimate may be the result of differences in the baseline volume or oxygen
extraction levels between subjects (particularly subject C). In addition, the values of the BOLD
model parameters given in Eq. (5) are based on additional assumptions about the size and
orientation of blood vessels (i.e., Ref. 50) and may also contribute to the differences observed
between the five subjects. We can compare our measured values of alpha with theoretical
estimates derived from Eq. (4) and data from previous literature. Assuming a baseline blood
volume fraction of 3 to 5%,68,69 a total hemoglobin concentration of 60 to 100 µM,70 and an
oxygen extraction fraction of 30 to 40%,69,71 the expected value for this calibration factor can
be estimated to be between −0.3 to −0.9%-BOLD/µM--HbR for the MRI acquisition
parameters used in this study. This calibration factor has also been determined experimentally
by the hypercapnia method of BOLD calibration described by Davis et al.12 The hypercapnia
calibration method determines the maximal BOLD change possible if all deoxyhemoglobin
were displaced from the region (reviewed in Ref. 19). Thus, according to our approximation
of a primarily extravascular water contribution to the BOLD signal, as given by Eq. (5), this
hypercapnia calibration factor (usually denoted M) can be related to our alpha parameter by
multiplying by the baseline deoxyhemoglobin levels (i.e., M≈α × [HbR0]). The empirical value
of M has been reported between 7 to 25% as tabulated in Ref. 19, which corresponds to a value
of alpha between −0.4 and −1.4%-BOLD/µM using the ranges of baseline total hemoglobin
and oxygen extraction cited before. Indeed, both the empirical and theoretical estimates of this
calibration factor are consistent with our values calculated for the five subjects, as shown in
Table 1. In future work, it will be necessary to validate the optical-calibration approach against
other calibration methods like the hypercapnic method.

5 Discussion
Concurrent multimodal measurements are observations of common underlying changes in
underlying functional contrast. Our fusion model combines this mutual information from
optical and fMRI modalities into a joint estimate of underlying hemoglobin changes. This
approach provides a framework to combine the advantages of the high spatial and temporal
resolutions contained between both modalities. In this work, we have developed a model that
incorporates the biophysical principles that describe the relationships between the optical and
fMRI measurements and underlying cerebral physiology. Using a single image reconstruction
step, we can obtain direct estimates of hemoglobin changes that are simultaneously consistent
with all sets of observations. This allows us to use the high spatial resolution of fMRI as a
spatial prior to improve the optical reconstruction, while at the same time, to use high temporal
and spectroscopic information from the DOT as priors on the reconstruction of the BOLD
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functional changes. The fusion of the higher spatial information from fMRI measurements and
the spectroscopic information of the optical technique provided cross-calibrated estimates of
hemoglobin changes. The Bayesian framework used in this model allows us to optimally
incorporate data from different sensors based on knowledge of the statistical errors in each
measurement type. In comparison to methods using fMRI as a statistical prior for the optical
reconstruction, our approach incorporates multimodal information based on the statistical
properties of concurrent measurements. We believe that this approach provides a framework
to more efficiently consider concurrent multimodal datasets and to utilize the mutual
information in the signals to improve the accuracy of estimates of the functional response. The
advantages of this approach have been discussed for data fusion of magnetoencephalography
and electroencephalography data using similar mutual information models (e.g., Refs. 34 and
35). We believe that future extensions of our method will offer similar utilities for hemodynamic
imaging.

5.1 Comparison of Reconstruction Methods
In the comparisons between the optical only, BOLD only, and fusion reconstructions of the
simulated data, we found that fusion methods produced the most accurate estimates of
hemoglobin changes both in terms of spatial localization and quantitative accuracy. In
particular, we found that for the fusion reconstructions of deoxyhemoglobin, the amplitude of
these changes was relatively independent of the magnitude of the regularization applied and
were fairly robust to errors in underestimation of the regularization parameter (Γ) as
demonstrated in Fig. 4. In the fusion model, enough information is available to make the
deoxyhemoglobin reconstruction problem overdetermined. Even at a minimal regularization
level, the quantitatively accurate magnitudes of the deoxyhemoglobin responses were still
recovered for both the deep and shallow deoxyhemoglobin inclusions. As expected, an over-
regularization of the linear model resulted in underestimation of the hemodynamic response
in all models. In contrast to deoxyhemoglobin, which is directly informed by the BOLD model,
we found that reconstructions of oxyhemoglobin changes in the fusion were still dependent on
the regularization. This is because oxyhemoglobin is only indirectly informed by the BOLD
signal and still represents an underdetermined problem.

In comparison, we found that our DOT alone model was generally more superficially biased
than the fusion model at recovering the spatial profile of both targets, and that the amplitude
was very sensitive to the amount of regularization applied. This bias will result in an
underestimation of the response amplitudes, since the optical sensitivity profiles fall
exponentially with increasing depth. This finding is consistent with prior expectations
concerning the accuracy of DOT reconstructions. Although the spatial basis functions used in
this work ensured a cortical constraint to functional activations, the reconstructed amplitudes
were underestimated by up to several orders of magnitude, in particular for the deep simulated
inclusion, and the magnitude of the DOT estimated hemoglobin changes were highly dependent
on the regularization parameters used.

The DOT alone and fusion reconstructions of the empirical data were consistent with the
findings from the simulations. The spatial locations of the fusion reconstructions were more
consistent with the profiles from the BOLD alone. Although the magnitudes of the changes
were comparable in our final images, the DOT reconstructions were highly dependent on the
regularization applied, which was chosen here to provide the best possible DOT reconstructions
based on the BOLD result. Thus, this may be misleading to the quality of the reconstructions
that can be obtained routinely by DOT alone.
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5.2 Optically Calibrated Blood Oxygen Level Dependent Signals
In addition to the Bayesian fusion model that we have introduced in this work, we have also
presented a method for using the spectroscopic information of the optical data to provide insight
into the BOLD signal, allowing for optically calibrated BOLD imaging. In this work, we have
assumed that a single calibration factor can be applied to calibrate the BOLD signal. In both
the simulation and experimental results, we found that the estimate of this factor converged
after only a few iterations of the model. In the simulation results, we found that we could
recover this calibration factor. In the experimental results, we found approximate agreement
between our estimates of this factor and the expectation from theoretical work approximated
at 3T and the empirical hypercapnia-based BOLD calibration.

5.3 Model Limitations and Future Extensions
While our data fusion method greatly improves the reconstruction and quantitative accuracy
of deoxyhemoglobin changes, the improvements to oxyhemoglobin quantification were more
modest. In principle, the state covariance matrix (Q) used in the Bayesian pseudoinverse model
[Eq. (12)] can be used to introduce a statistical prior between deoxy- and oxyhemoglobin maps
with the inclusion of off-diagonal elements connecting the two matrix quadrants for oxy- and
deoxyhemoglobin. However, in the work described here, we have purposefully not included
these off-diagonal terms based on recent work that has suggested that underlying vascular
structures may displace the locations of the two chromophores due to differential arterial versus
venous weightings.45–47,72 In support of this, several recent fMRI-based studies have also
shown spatial displacements between the BOLD signal and MR measures of blood volume73

and blood flow,74 which corroborate a spatial displacement of arterial and venous-weighted
measurements. In future studies, we suggest that the incorporation of an MR measure of blood
volume changes73,75,76 into this data fusion model may be more appropriate to constrain total-
hemoglobin changes and consequently the quantification of oxyhemoglobin.

An assumption made in this model was that we only examined the extravascular contribution
to the BOLD signal. This assumption ignores the contribution from the water molecules within
the blood vessels that interact directly with the deoxyhemoglobin heme group.1,4,48,77 This
assumption is supported by recent work by Lu and van Zijl determined that the extravascular
signal composes approximately 67% of the intrinsic relaxation  at 3 tesla.49 Further
evidence of the dominance of the extravascular signal has also been demonstrated in the
empirical comparison of optical and BOLD signals, which have shown a strong temporal
correlation between the BOLD signal and the optical measure of deoxyhemoglobin (reviewed
by Ref. 10). Thus, the source of BOLD functional contrast at 3 tesla is expected to be
predominantly extravascular, which we believe justifies the assumption in this model in this
current work. However, at lower field strengths, alternative MR acquisition protocols, or for
more quantitatively accurate results, the intravascular component may become necessary. The
inclusion of the intervascular component of the fMRI signal creates a nonlinearity in the BOLD
measurement equation, which additionally depends on changes in the venous blood volume
that determine oxygen saturation changes (i.e., Ref. 48). The future extension of this model to
incorporate this term can be achieved by the replacement of the linear (extravascular BOLD)
measurement model in Eq. (5) with a more detailed state-space model of the vascular
physiology (i.e., Refs. 78–81). In future work, vascular models such as the Balloon77 or
Windkessel82 models will enable the incorporation of more modalities into the model, such as
blood flow.83 This nonlinear extension of this bottom-up model could allow the direct
estimation of cerebral metabolism changes and provide a means to fuse multimodal data from
a broader scope of methods. Recent work by Riera et al.79 proposed a similar state-space model
for the time-series analysis of simultaneous BOLD and EEG, which could directly extend the
work preformed here.
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6 Conclusions
Concurrent multimodal measurements have unique statistical properties, and while an
increasing number of publications have implored multimodal acquisition methods, further
advancements need to be made to improve specific analysis techniques optimized for this
unique form of data. In this work, we describe a fusion model that allows the direct
reconstruction of hemoglobin changes from simultaneous optical and fMRI data. This model
combines the advantages of both optical and fMRI methods, and allows the estimation of
hemoglobin changes with improved temporal, spatial, and quantitative accuracy. Using
concurrent optical and fMRI measurements, we estimate the calibration of the 3T BOLD signal
to be −0.55% ± 0.40% signal change per micromolar change of deoxyhemoglobin. This is the
first demonstration of a multimodal-based calibration of the BOLD signal.
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Fig. 1. Schematic outline of model
The multimodal fusion model is based on a state-space approach and consists of three
components. The set of coefficients to be estimated (β) multiplies a convolution kernel of
spatial and temporal basis functions in the multidimensional linear model to model the
volumetric changes in oxy- and deoxyhemoglobin due to evoked activation and systemic
fluctuations. Linear observation models connect the underlying changes in these hemodynamic
variables to expected measurements by both DOT and BOLD technologies. The states are
finally estimated by minimizing the error with respect to the experimental data using a Bayesian
formulation of the linear inversion operation.
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Fig. 2. Basis functions in linear model
A set of spatial and temporal basis functions are used to regularize the model estimates of
evoked and systemic hemodynamic changes. To model the different aspects of the physiology,
four sets of basis sets are used. In the volume corresponding to either gray or white brain matter,
a gamma-variant function (and derivative) was used as a temporal basis (subplot C). These
allow the modeling of the differing temporal dynamics of both oxy- and deoxyhemoglobin
changes. A spatial basis of overlapping Gaussian spheres is used to reduce the dimensionality
of the state space and replace a smoothing operation on the data (subplot B). To model the
systemic contributions, the volume corresponding to skin, skull, and cerebral spinal fluid (CSF)
layers are grouped into basis functions and given sine and cosine temporal functions to model
their dynamics.
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Fig. 3. Diffuse optical tomography
Diffuse optical tomography uses spectroscopic measurements of optical absorption changes to
record hemoglobin concentration changes. (a) The optical probe was placed over the subject’s
primary motor area. (d) The probe contained four source and eight detector positions spaced
2.9 cm apart. (b) and (c) Fiducial markers on the probe were visible in the anatomical MR
images. (e) The position of the probe and a segmented layer model for each subject were used
to generate the optical sensitivity profiles using Monte Carlo methods.
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Fig. 4. Characterization of model quantitative accuracy
The quantitative accuracy of the model was examined with observations simulated from a
shallow (18 mm, toprow) and deep (25 mm, bottomrow) inclusion. The simulated inclusions
are shown contoured (black) in each image (axial projections). The boundaries of the cortex
are outlined in white. Measurement noise was added to achieve a 5:1, 50:1, and 500:1 contrast-
to-noise ratio (CNR). Hemoglobin changes were reconstructed using the fusion model and
DOT data alone for comparison. Reconstructions were performed at various regularization
amounts to examine the dependence of the recovered magnitude of the response on the
regularization parameter. The images are shown for the reconstruction at 1/Γ = 1µM (indicated
by the vertical red line) for the CNR=50:1 case.
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Fig. 5. Direct hemoglobin reconstructions from empirical data
This figure shows (b) the model reconstructions using the DOT alone, BOLD alone, and (a)
fusion datasets for deoxy- and oxyhemoglobin changes. Data are represented for subject A.
All responses have been normalized for comparison. Reconstructions were performed at a
regularization level of 1/Γ = 10µM for the DOT and fusion models and 1/Γ = 10% for the
BOLD model. Functional changes are shown masked below the half-max response amplitude.
In (a) the approximate location of the optical probe is shown in green. The right-most images
show the maximum intensity projections of the activation patterns onto the brain pial surface
[surfaces generated using Freesurfer (The Massachusetts General Hospital; see
http//surfer.nmr.mgh.harvard.edu)] and displayed using NeuroLens [Université de Montréal;
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(see http://www.neurolens.org)]. The central sulcus is outlined (green line) in each surface
image.
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Fig. 6. Comparison of fusion and MRI image reconstructions
In this figure, we show the BOLD (a) and fusion reconstructions (b) for subjects B through E
(left to right). Subject A was presented in Fig. 5. Regularization was applied as described for
Fig. 5. All images are shown normalized to the maximum response and masked below the half-
max amplitude. Axial and coronal projections are shown. The outline of the boundary between
the brain and superficial layers is shown in green. The blue rectangle indicates the location of
the imaging volume from the fMRI.
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