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Abstract

The genetic diversity within an 11 kb segment of the MTMR8 gene in a sample of 111 sub-Saharan and 49 non-African X
chromosomes was investigated to assess the early evolutionary history of sub-Saharan Africans and the out-of-Africa
expansion. The analyses revealed a complex genetic structure of the Africans that contributed to the emergence of modern
humans. We observed partitioning of two thirds of old lineages among southern, west/central and east African populations
indicating ancient population stratification predating the out of Africa migration. Age estimates of these lineages, older
than coalescence times of uniparentally inherited markers, raise the question whether contemporary humans originated
from a single population or as an amalgamation of different populations separated by years of independent evolution, thus
suggesting a greater antiquity of our species than generally assumed. While the oldest sub-Saharan lineages, ,500
thousand years, are found among Khoe-San from southern-Africa, a distinct haplotype found among Biaka is likely due to
admixture from an even older population. An East African population that gave rise to non-Africans underwent a selective
sweep affecting the subcentromeric region where MTMR8 is located. This and similar sweeps in four other regions of the X
chromosome, documented in the literature, effectively reduced genetic diversity of non-African chromosomes and
therefore may have exacerbated the effect of the demographic bottleneck usually ascribed to the out of Africa migration.
Our data is suggestive, however, that a bottleneck, occurred in Africa before range expansion.
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Introduction

In light of recent data, human evolutionary history looks much

more complex than what geneticists postulated only a decade ago

[1]. For example, in addition to new evidence of archaic

admixture outside Africa [2–4], the time scale of human evolution

needs to be extended. The generation span of humans and their

ancestors appears longer than was previously estimated, and an

older age of independent human lineages that collectively

contributed to the modern genome was documented [5–10].

Nevertheless, the greatest genetic diversity among human popu-

lations is observed in sub-Saharan Africa, which leads to revisiting

the old question [11,12]:

Is greater genetic diversity in Africa due only to older and larger

ancestral African population sizes as compared to those outside of

Africa, or does it reflect the impact primarily of the out of Africa

population bottleneck(s) in reducing the genetic diversity outside

Africa? If at the time of out-of-Africa migration Africans and

migrant populations did not differ in their genetic structure, but

African populations stayed larger than non-Africans, greater

African diversity would be expected to result from an accumula-

tion of new low frequency local variants. In contrast, a restricted

sampling of alleles due to a stringent out-of-Africa bottleneck [13]

would cause a relative paucity of the genetic diversity in non-

Africans [14]. Both above scenarios turned out to be too simplistic.

New findings have provided support for the idea that genetic

diversity of non-Africans was additionally enriched by admixture

with Neandertals [2,4] and Denisovans [3]. In Africa, low

frequency derived alleles in the dys44 segment are spread on

different haplotypes, which implies substantial number of recom-

binations and gene conversions, and thus long evolutionary time

since the corresponding mutations have occurred [10]. Such alleles

are necessarily ancient and their limited occurrence suggested

archaic admixture within Africa itself, supported by additional

evidence [9,15–18]. Although extensive gene flow shaped the

diversity of sub-Saharan Africans over various periods [19–22],

traces of the ancestral subdivisions can still be recognized in the

genetic record [6,20,23–26]; the homogenizing effect of gene flow

that in general will partially conceal the record of the ancestral

population structure, is expected to be less obvious in areas of low

recombination and strong linkage disequilibrium [27]. Studying

loci with such characteristics is therefore of great significance in

terms of unravelling human population histories. In depth analyses

of single autosomal and X-linked loci complement studies of

uniparentally inherited mitogenomes and Y-chromosomes with

their well resolved genealogies. However, the time depth of
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autosomal or X-linked genealogies is roughly four and three-times

deeper, respectively, than that of the genealogies of the uniparen-

tally inherited loci. The ‘‘whole genome studies’’ amalgamate

information from individual loci to provide a synthetic overall view

of the human genome history. In contrast, single locus oriented

studies, can reveal particular and sometimes unusually important

historical events, such as that of archaic admixture within Africa,

and/or that of Neandertal admixture outside Africa, as docu-

mented in our earlier studies focusing on specific DNA segments

[4,6,10,28,29].

Here we studied an 11 kb DNA segment with low-recombina-

tion frequencies [30] located in the Xq11.1 genomic region. This

segment is located within the myotubularin related protein 8 gene

(MTMR8), in the centromeric portion of the X chromosome,

earlier found to have reduced sequence diversity in non-African

populations [31–33]. Our study showed that MTMR8 diversity in

sub-Saharan Africans can reveal much about the evolutionary

history of these populations. Specifically, ancient population

structure in the geographic partitioning reflects separate evolu-

tionary histories of the southern, western/central and the eastern

African clades. Our results are consistent with the enrichment of

the African diversity through fragmentation of its populations over

long periods of their history as well as by admixture among archaic

populations. They also support the hypothesis of an early

bottleneck in out of Africa migrants, prior to their range expansion

outside of Africa.

Materials and Methods

DNA samples
A total of 160 X chromosomes were analyzed, 73 drawn from

DNA samples of the Human Genome Diversity Panel of Centre

d’Étude du Polymorphisme Humain, CEPH-HGDP [34]: Bantu

speakers NE, Kenya (n = 10); Biaka Pygmy, Central African

Republic (n = 13); San, Namibia (n = 7); Mandenka, Senegal

(n = 13); M’Buti Pygmy, Democratic Republic of Congo (n = 13);

Yoruba, Nigeria (n = 17). The remaining samples were from

earlier studies (see [4,6,35,36]), and included Gabonese (n = 12);

Khoe-San, collected in Smithdrift, South Africa (n = 11); Ethiopi-

ans (n = 15); Europeans (n = 13; 2 Bulgarians, 3 French, 2 French-

Canadians, 2 Germans, 4 Italians), South East Asians (n = 14; 6

Chinese, 4 Vietnamese, 2 Filipinos, 2 Indians); Near East/North

Africa (n = 12; 2 Iran, 4 Lebanon, 4 Egypt, 2 Morocco); Native

Americans (n = 10; 6 Chipewyans, 4 Maya) (see table S1). They

were obtained from the collaborating academic institutions or

were collected by us, following a protocol approved by the

Institutional Ethics Committee at the Centre Hospitalier Uni-

versitaire Sainte-Justine. Common chimpanzee DNA was extract-

ed from a peripheral blood sample provided by Clément Lanthier

from Granby Zoo (Québec), taken during the course of routine

veterinary care. All Sub-Saharan African chromosomes (n = 111;

107 male and 2 female samples) and 7 non-African chromosomes

(3 females and 1 male sample) were analyzed directly by

resequencing; the remaining 42 non-African chromosomes were

screened for additional polymorphisms by heteroduplex analysis

followed by direct sequencing of the fragments of interest. Note

that samples from Egypt and Morocco are counted among non-

Africans. In addition, we used the genomic diversity data available

online for HGDP and HapMap3 DNA populations [34,37–39].

Detection of sequence polymorphism
PCR-primers were designed to amplify 21 overlapping

fragments covering an 11024 bp-long segment of MTMR8

(NT011669), starting in intron 3 and ending in intron 5 (table

S2). Amplifications were carried out in 20 ml using 5 ng DNA,

0.75 U of PlatinumH Taq DNA polymerase (Invitrogen Canada

Inc.) in the PlatinumH PCR buffer containing 1.5 mM MgCl2,

0.2 mM each dNTP, and 2 mM each primer. Reaction started

with 5 min incubation at 94uC followed by 35 cycles of 30 s at

94uC, 30 s at 55uC (except for fragment 9 at 61u) and 30 s at

72uC, to end in 10 min incubation at 72uC. Both strands of the

products were sequenced on ABI 3730 DNA sequencer. In

addition to 118 chromosomes analyzed in this way we screened 21

female non-African samples (Asia, Europe, and Native America - 5

from each group, and 6 from Near East/North Africa) for the

presence of polymorphisms by DNA temperature-melting hetero-

duplex-detecting analysis [40]. It was carried out in HR-1 High

Resolution Melter, Idaho Technology, using LCGreen I Melting

Dye in standard Roche LightCyclerH glass capillary tubes. We

used previously detected polymorphisms to create heterozygous

samples serving as positive controls for heteroduplex detection in

the analyzed DNA fragments. Two heteroduplexes were detected

in non-African samples, adding two new haplotypes. By sequenc-

ing they were found to be due to a C.T transition in position

1890874 (mutation 32) and to a T.C polymorphism at position

1887715 (mutation 19), already known from resequencing of the

African samples (table 1).

Haplotypes and network
The ancestral alleles of the MTMR8 polymorphisms were

inferred by comparison with the primate outgroup sequences of

chimpanzee, orangutan and macaque. The human allele identical

by state with a chimpanzee or at least two other outgroup

sequences was considered ancestral. All distinct haplotypes could

have been derived from the data without any ambiguity because

all but two African samples represented hemizygous males and all

females were either homozygous or when heterozygous it was only

in a single haplotype position (table 1). The haplotype tree reduces

to a ‘‘perfect phylogeny’’ tree after excluding derived allele A at

the site 1889557 (mutation 25) in haplotype 5 (seen in two copies

in Khoe-San), and derived allele A at the site 1890711 (mutation

31) in haplotype 2 (a single copy in M’Buti). These two particular

polymorphisms are due to G.A transitions within hypermutable

CpG-dinucleotides [41] thereby providing limited phylogenetic

information. We assumed that haplotypes 2 and 5 were due to

independent recurrent transitions (coded as mutation 25* and 31*,

respectively) rather than resulting from an unlikely sequence of

recombination events in this genomic region of particularly low

recombination activity [30].

Statistical analysis
Coalescence analysis was carried out according to the method of

Griffiths and Tavaré [42] using genetree, version 9.0, on the full data

set (n = 160), on all Sub-Saharan Africans together (n = 111), their

eight subpopulations, and Sub-Saharan Africans +1 (n = 112) by

addition of haplotype 23, found in a single copy in Lebanon but

possibly of African origin given its position in the network.

Maximum likelihood estimates of H (i.e. HML; see list of

abbreviations in Material S1), the time to the most recent

common ancestor (TMRCA) and the age of mutations were

obtained conditional on the haplotype tree, assuming an infinite-

sites model, random mating and constant population size or

exponential growth. The number of iterations per run was

sufficiently large for the results to remain constant over repeated

runs differing only in the random seed number. Estimates of HML

made with a model of exponential growth concurrently yielded an

estimate of the growth rate b. Particularly, in this model the

population size exponentially declines backward in time at rate b

African Population History
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from a current size N(0) (or 1.5 N(0) chromosomes), such that the

size of the population at time t is N(t) = N(0) e2bt (note that t = g/

1.5N(0), where g is the number of generations ago). Using genetree we

jointly estimated HML and the growth parameter b. First, we

explored different values of b at fixed HML (the starting values

were those obtained under a constant population size scenario).

Subsequently, for the selected b, we explored the likelihood density

of H, to finally obtain the maximum likelihood estimates of both

parameters after few rounds of such simulations. The r-statistics

[43] that evaluates the average number of mutations till

coalescence was calculated using Network 4.5.0.2 software [44].

This statistic [45,46] is equivalent to Thomson approach [47,48].

The substitution rate in the 11024 bp MTMR8 segment was

estimated at 1.4961024 per generation (or 1.3561028 per bp per

generation) from the human-chimpanzee divergence of 0.0081

(60.0009) per bp, assuming a separation time of 7.5 million years

(My) and an average generation time along both lineages of 25

years [7,49]. The corresponding autosomal rate can be evaluated

by multiplying by 3(a+1)/2(a+2), where a is the ratio of male to

female mutation rate [50,51].

ARLEQUIN software, v. 3.1 [52] was employed to compute

different population statistics (haplotype count k and diversity G,

count of segregating sites S and nucleotide diversity as well as

different estimates of the scaled mutation parameter H, global and

pairwise FST) and to carry out neutrality tests such as Tajima’s D

[53] and Fu’s FS [54], as well as tests according to Ewens and

Watterson [55,56], Slatkin [57], and Chakraborty’s population

amalgamation test [58]. For detailed description of the parameters

and tests please refer to the Arlequin manual [52]. We also used

DnaSP software v.5 [59] to estimate HH and carry out the Fay &

Wu H test [60].

Coalescence simulations
Simulations were performed using the msHot software [61], a

modification of the ms program [62]. They were used to evaluate

the effect of demography on the estimates of HML [42], HS [63]

and HP [53] under a simple version of the standard neutral model

at constant population size, at population growth, demographic

bottleneck and at population subdivision.

Results

Table 1 presents sequence diversity of the MTMR8 segment in a

worldwide sample of 160 X chromosomes. Out of 24 haplotypes,

21 are observed in sub-Saharan Africa and only 4 are found

outside of Africa (table 2). Furthermore, three of the non-African

haplotypes are singletons. This dearth of diversity in non-Africans

is also reflected in their very low nucleotide diversity

(p= 0.011x1023) and all other summary statistics (table 2 and

table S3). In contrast, the nucleotide diversity of sub-Saharan

Africans (p= 0.4661023) falls within the range observed at other

X-linked segments [11,28,64,65]. Neutrality tests [53–56,60] are

consistent with neutrality of MTMR8 in sub-Saharan Africa (Table

S3). Therefore, this locus is well suited to infer population history

of sub-Saharan Africans. In non-African populations the situation

is opposite, tests indicate a non-neutral evolution (Table S3) and

the virtual absence of common sequence polymorphisms (table 1

and [32,33]) what renders MTMR8 uninformative for population

history inferences. Therefore, there was no reason to extend the

sample size of non-Africans and we have focused our analysis on

sub-Saharan populations.

The MTMR8 haplotypes (table 1), considering haplotype 22

apart, form a simple network with the oldest branches separating

Southern, Western/Central and Eastern African lineages (fig. 1).
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The TMRCA was obtained by genetree [42] under a modest

demographic growth in Africa (b = 0.8) with HML = 8.7

(N(0)ML = 19,500) (see Materials and Methods). Non-African

samples were excluded from this analysis except for a single

Lebanese chromosome carrying haplotype H23 because of its

proximity to Africa and likely sub-Saharan origin (figs. 1 and 2).

TMRCA was estimated at 29 80067 000 generations corre-

sponding to 7456175 thousand years (Ky) (fig. 2 and table 3). It

falls within the time range of sequence divergence of Neandertals,

Denisovans and modern humans [7,66] consistent with the

derived allele A at the site 1884167 (mutation 6) being shared

with Neandertals [2]. Interestingly, Denisova genome still carry

the ancestral G, but the derived A shows up again in the newest

high coverage Altai Neandertal sequence (http://www.eva.mpg.

de/neandertal/index.html). In Biaka Pygmies from the Central

African Republic we find a structurally distinct, ancient haplotype

H22, whose lineage originates directly from the root of the tree

(fig. 1). Given its characteristics we propose it as a plausible

candidate to represent an archaic lineage within Sub-Saharan

Africa [9,10] (see Discussion). The other very old haplotypes H19-

H21 and H17 are principally Khoe-San, from southern Africa,

representing 61% of their chromosomes. Their age can be

estimated from the age of mutations marking the corresponding

lineages (fig. 2 and table 3; note, however, that when a single

branch carries two or more mutations, they are placed in arbitrary

order; any of these mutations could be the oldest or the youngest

since we cannot determine their relative arrival times, and by

convention only the top mutation is considered to be the oldest).

The H19-H21 and H17 lineages are separated from the root by

mutation 6 timed by genetree at 6586163 Ky. They are separated

from all other haplotypes that share mutations 1–2 and 3, timed at

503691 Ky and 464686 Ky ago, respectively (fig. 2, table 3; note

that the order of mutations that occur on the same branch is

arbitrary). In turn, more than 75% of Central and Western

African chromosomes carry structurally related haplotypes H1

through H11, with the two most frequent sub-Saharan haplotypes,

H1 at 34% and H9 at 18%. They occur on two distinct branches

H1 and H9, which are split between mutation 3 above and

mutations 7, 14 and 21 below, indicating a time of divergence

between 300 and 450 Ky ago (table 3). The third separate Eastern

clade marked by the haplotype H12 is the most frequent

worldwide. H12 and its derived haplotypes account for 73% of

the Ethiopian chromosomes, one Kenyan (North East Bantu), one

chromosome from Southern Africa (Khoe-San) and all non-

African chromosomes. The age of the oldest mutation on this

branch (arbitrarily assigned as mutation 7) is also estimated at

about 350 Ky (table 3), suggesting divergence time similar to H1

and H9 lineages. The star-like form of H1 and H12 clades points

to expansion of the populations carrying these haplotypes, well

after the arrival of mutations at sites 25 and 19, i.e. after 151640

and 85631 Ky ago, respectively, according to genetree age

estimates (table 3). Using r-statistics [43,45], equivalent to the

approach described by Thomson et al. [47,48], we obtained values

in general similar to those obtained by genetree. The exceptions

were mutations 7 and 25 (table 3), ‘‘defining’’ branches leading to

haplotypes H1 and H12. This can be explained by the fact that

genetree takes into account full data [42], whereas r-statistics only

considers the tree information from branches below the mutation

in question [45,62]. Therefore, r-statistics estimates may be

influenced by local ‘‘branch-specific’’ effects, such as demographic

expansions (around H1 and H12) and large differences in branch

lengths separating lineages (e.g. ages of mutations 25 and 7). In

turn, the r-statistics estimate of the age of the mutation 7 is much

older than that obtained by genetree, reflecting a relative excess of

mutations observed along the H12 branch.

The geographic partition of distinct MTMR8 lineages between

southern, western/central and eastern African populations (fig. 1),

with two thirds of the corresponding haplotypes remaining

population and region specific, is reminiscent of an ancient

stratification of sub-Saharan populations, captured in our data by

the population amalgamation test [58] (p = 0.025; table 2). One

third of these haplotypes are regionally shared, reflecting within

Africa gene flow at different historical periods [19–22,67,68]. Non-

standard population demography (i.e. other than non-subdivided

constant size population), such as a demographic bottleneck,

population subdivision with limited migration and/or population

growth, are known to differentially affect estimates of the

population mutation parameter H. Three distinct estimates of H
differ in the MTMR8 data from sub-Saharan Africans: HP = 5.03,

from the average number of pairwise differences, HS = 6.45, from

the number of segregating sites (table 2; table S3) and HML = 7.19,

a maximum likelihood estimate assuming constant population size

model. By computer simulations we explored the effect of different

demographic scenarios on the relative values of these estimates.

Population bottlenecks reduced all three estimates of mutation rate

Table 2. Sub-Saharan African and non-African Diversity and
Neutrality Tests (all abbreviations are listed in Material S1).

Sub Saharan
Africa Non-Africans Total

Summary Statistics

n 111 49 160

k 21 4 24

S 34 3 36

HP 5.04 0.12 5.82

HH 6.13 1.96 7.50

Hs 6.45 0.67 6.37

Hom = (1-G)obs 0.16 0.88 0.19

Ewens-Watterson

Hom = (1-G)exp 0.12 0.52 0.12

Watterson’s p 0.914 1.000 0.964

Slatkin’s p 0.936 1.000 0.996

Chakraborty’s

kexp 16.29 1.52 19.99

P (k or more
haplotypes)

0.025 0.008 0.001

Tajima’s

D 20.66 21.70 20.26

p 0.264 0.012 0.415

Fu’s

kexp 16.29 1.52 19.99

Fs 22.15 24.26 21.58

p 0.292 0.000 0.381

Fay & Wu’s H

H 22.24 21.84* 23.08

Normalized H 20.492 22.51 20.680

p 0.174 0.005 0.144

*the H statistics of 29.44 (p,0.001) is obtained for a combined population of
non-Africans and Ethiopians (Hp = 1.24; HH = 10.6.
doi:10.1371/journal.pone.0080710.t002
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parameters similarly with respect to the input values. When

populations are subdivided and the gene flow becomes increas-

ingly restricted, down to the migration rate 4Nm = 0.04, it is the

HP that increases the most followed by HS, both characterized by

a large variance between individual simulations, whereas HML

increases only slightly. This is in contrast to what we observe here,

i.e. HP,HS,HML. However, the differential effect of population

subdivision on the three estimates of H disappears, even if the

populations were previously kept subdivided, after 500 generations

of panmixia; in this scenario, all estimates tend to converge to the

input value. Interestingly, a five-fold increase in population size

1500 generations ago has no marked effect on HP, but it doubles

HS and triples HML. In a simulation experiment combining

population subdivision with moderate gene flow (4Nm = 2) and

population growth from 7 000 to 20 000 over the last 15 000

generations and assuming (input) H-value of 7.5, we reproduced

the three observed H estimates:

HP = 5.39,HS = 6.33,HML = 7.20 (i.e. HML was estimated

assuming constant population size). While the simulations do not

provide true proof, they do show that both population subdivision

and subsequent population growth can shape MTMR8 diversity in

ways consistent with the data, thereby offering a plausible

explanation. A moderate increase in population size in Africa is

suggested by the shape of the western/central and eastern

branches of the network (fig. 1), by the coalescent analysis (fig. 2)

and is also consistent with a slightly negative Tajima’s D (table 2).

Discussion

Oldest tree branches belong to Khoe-San
Excluding H22, the oldest lineages H19–H21 and H17 belong

to Khoe-San from South-Africa and Namibia, consistent with

Khoe-San representing the oldest of all extant populations [68-73].

Our results are in line with earlier evidence from uniparentally

transmitted markers [24,74–77] and from microsatellite data [20].

Yet, while mtDNA and Y-chromosome studies estimate the oldest

Khoe-San lineages at 140 Ky ago [24,74,78], our analysis finds

the MTMR8 Khoe-San lineages much older, originating before

300 Ky, possibly around 500 Ky ago and presumably even earlier.

This is consistent with observations from a simple inspection of the

data: the network structure, branch lengths as well as contrasting

age estimates of the mutation 7 (fig. 2 and table 3). The estimates

of Khoe-San population divergence, at around 150 Ky ago [71]

(calibrated based on human chimpanzee separation at 7.6 My

ago), are indeed expected to be much younger than the sequence

divergence of the contributing lineages. On the other hand, the

same authors approximated African-Eurasian divergence at 55-

62 Ky ago, i.e. at almost half the 100 – 120 Ky ago estimated by

Li and Durbin [72]. The latter dates are consistent with the

archeological evidence of the presence of modern humans in the

Near East at around 100 Ky ago [79–81] and raise the possibility

that Khoe-San divergence estimated to have occurred ,2.5 times

earlier [71] could thus be much older than 150 Ky, closer to the

age of their lineages reported here (see however [67,82]).

Population bottleneck and sub-Saharan population
structure preceding out-of-Africa migration

The intriguing feature of the MTMR8 tree is the presence of the

long lineage of haplotype H12 shared by most Ethiopians, one

Kenyan, one Khoe-San and all non-Africans (figs. 1 and 2). Such

patterns have been seen before. In the tree derived from PDHA1

there is a long branch separating the bulk of sub-Saharan-African

haplotypes from non-Africans and a small subset of Africans [65].

As in the case of MTMR8, this suggests that non-Africans emerged

from a subset of Africans living in relative isolation for a substantial

length of time consistent with the idea that the out-of-Africa

bottleneck started in Africa before the exodus [6,10]. Note that

what we observe is not a local MTMR8 effect. However, the effect

Figure 1. Network of MTMR8 haplotypes. Haplotype frequencies are proportional to the surface of the circle (or to its single colored segment
within a population group). Numbering of mutations and haplotypes is the same as in table 1. Asterisks indicate two mutations in the CpG-sites 25
and 31 that presumably represent independent substitutions leading to separate haplotypes 5 and 2, respectively (both found among Khoe-San).
When a series of mutation occurs on a single branch their order of appearance is arbitrary as we cannot know which one was first or last based on the
presented data.
doi:10.1371/journal.pone.0080710.g001
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of this bottleneck may be enhanced in this locus due to a selection

sweep that seems to have affected 5.4 Mb of the subcentromeric

region, including MTMR8 and 13 other genes [32,33]. Indeed, our

results of the neutrality tests (table 2) are significant in non-

Africans and thus consistent with a selection sweep hypothesis.

The outcome of the H test of Fay & Wu [60] is of special interest,

with H = 21.84 (p = 0.005) for non-Africans, which increased to

H = 29.44 (p,0.001) when non-Africans and Ethiopians were

analyzed (fig. 2 and table 3). Outside sub-Saharan Africa we find

46 H12 chromosomes, two differing by single mutations in Europe

(H14 and H24) and one chromosome from Lebanon, H23. In

Africans the H12 derived lineages are also characterized by low

diversity, nine H12 and four H12–derived chromosomes, but the

haplotype diversity of H12 branch haplotypes in Africa is

significantly higher than all other continental samples taken

together (p = 0.03 Fisher exact test). And this, in spite of the fact

that our Ethiopian sample partly represents non-African chromo-

somes due to effects of the Eurasian gene-flow on Ethiopian

diversity, thus diluting its African component [20,35,83,84]. In

Africans we find a haplotype H16 derived from H12 by two

mutations. Specifically, H16 is found both in Ethiopians and

Khoe-San, two populations known to share deep paternal lineages

[67,68,85]. Our resulting hypothesis is that a population

Figure 2. Coalesecent analysis of the MTMR8 tree in Sub-Saharan Africa. The time scale in thousands of years is calculated using 7.5 My
(internal left scale) or 6 My (external left scale) of sequence divergence between human and chimpanzee lineages. Numbering of mutations and
haplotypes is the same as in fig. 1 and table 1. Note that a Levantine chromosome carrying haplotype 23 was included in this analysis.
doi:10.1371/journal.pone.0080710.g002

Table 3. Genetree and r-statistics time estimates of mutations
marking MTMRC8 segment history (figs. 1 and 2) based on
111 sub-Saharan African chromosomes and a Lebanese
haplotype 23 chromosome.

Time estimates in Ky (± S.D.)

Method genetree r-statistics

TMRCA 7456180 9316290

mut 6 6566145 7846249

mut 3 464685 5326163

mut 7 336682 8996373

mut 14 299685 5036291

mut 21 243664 2006147

mut 25 151640 47624

mut 36 155655 2286162

mut 19 85631 78648

doi:10.1371/journal.pone.0080710.t003
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bottleneck preceded the out of Africa migration and subsequent

range expansion, because, at that time, sub-Saharan Africans were

stratified and different populations evolved in isolation for an

extended period of time. This is plausible, especially through part

of the Middle and Late Pleistocene [86], when climatic conditions

were conducive or even forced geographic isolation [87–89].

Interestingly, all non-African descendants, for both mtDNA and

Y-chromosome uniparentally transmitted lines, each share one

and the same close African ancestor [90]. This alone provides

evidence of a period of isolation in a small single founding group,

during which all other founding lineages were lost by genetic drift

[82]. If so, the geographic partitioning of genetic diversity we

observe should be essentially due to the partitioning of old

variants, rather than to the accumulation of novel, population-

specific variation, which would reflect recent population history. In

MTMR8, about two thirds of the haplotypes from each of the three

geographic poles (south, west/central or east) represent distinct old

lineages (table 1, fig. 1). A similar situation was observed at other

X-linked loci and uniparentally inherited markers

[6,10,23,24,75,82], in spite of recent gene flow affecting several

loci to a different extent. To confirm that our observations are not

due to a stochastic fluke, limited to a short 11 Kb DNA fragment,

we also analysed haplotypes of a 380 Kb segment spanning

MTMR8 locus using the data of HapMap3 populations. The

resulting haplotypes’ network (fig. S1) is consistent with our earlier

findings. It shows a tripartite split between two separate African

clusters (only two, in the absence of Central and South-African

populations in HapMap3 collection) and one non-African as in the

figure 1. Li and Durbin [72] observed an increase in the effective

population size in Africa between 200 and 60 Ky ago, which they

interpreted as the effect of population fragmentation with reduced

migration. Our simulation experiments, while unable to prove this

scenario of a complex African population structure before range

expansion outside Africa, support its plausibility.

Nevertheless, it is important to note that historical inferences

from studies of the X-linked loci may differ from these based on

autosomal record. The effective population size of the X-

chromosomes is smaller than that of the autosomes and X-

chromosomes spend only one third of the time in males and two

third in females, where they recombine. Male and female

demography may differ, due to different migration patterns of

males and females, to patrilocality or matrilocality, to polygamy,

and other phenomena changing the female-to-male ratio. As a

result, X-chromosomes diversity, as compared to autosomal loci,

cannot be simply accounted for by a three-to-four ratio between

X-chromosomes and autosomes population sizes [51,91,92].

Interestingly, during the out-of-Africa bottleneck, the X-chromo-

some diversity appears to have been disproportionally reduced

relative to the rest of the nuclear genome [93]. Whether this was

due to natural selection or to demographic effects as revealed here,

it shows how important studies of the X-chromosome diversity

(often excluded from genome-wide diversity analyses) are to

understand human evolutionary history.

Archaic admixture
The Biaka haplotype H22 does not share any derived alleles

with the remaining haplotypes and is absent outside Africa. Only

this haplotype has the alternative allele at our mutation 6 (fig. 1

and table 1) thus driving the MTMR8 TMRCA back in time prior

to the divergence of human and Neandertal lineages. Similar,

structurally distinct haplotypes, representing African-only lineages

were observed by others. For example, haplotype P in the CMAH

locus on chromosome 6p21.32 is seen in two copies in Biaka

Pygmies out of 132 analyzed chromosomes. It carries 16 derived

alleles that are not shared with all other haplotypes carrying a

different subset of 39 derived sites. Out of the 56 CMAH

polymorphisms only one derived allele is shared between P and

another haplotype C3 found in the same Biaka population [16]. In

the left portion of the CD209 locus with its 57 segregating sites, 17

derived alleles are exclusive to three rare African haplotypes while

the remaining 40 alleles occur on other chromosomes. These three

distinct haplotypes are found in San from Namibia (2 copies), in

Bantu speakers from Gabon and from South Africa (5), in

Yoruba’s from Nigeria (3) and Mandenka from Senegal (2) [94]. In

turn, in a DNA segment from Xp21.1 haplotype A carries again 6

derived alleles that are exclusive to this haplotype found in only

two copies in Mbuti Pygmies and absent on other haplotypes

found on the majority of chromosomes [15]. In CMAH, CDC209

and Xp21.1 segment gene trees these rare ancient haplotypes have

driven the corresponding TMRCAs above 2 My ago, artificially

elongating tree branches due to the presence of derived alleles not

shared with all remaining worldwide haplotypes. Other examples

of similarly distinct African haplotypes were also found in the

4qMB179, 13qMG107 and 18qMB60 regions on chromosomes 4q,

13q and 18q, respectively [9]. In the light of our results and

examples above, our earlier interpretation of the greater genetic

diversity in Africa being partly due to the introgression from an

archaic population [6,10,36] is gaining more support recently

[15,17,18,95]. There is the possibility that these haplotypes are not

archaic and have been kept intact for such great amounts of time

simply due to the stochastic process. Interestingly, based on

HGDP polymorphisms [38] H22 extends over 800 Kb before

‘‘joining’’ new alleles common to other sub-Saharan samples

(HT16 in Table S5). It is noteworthy that H19 haplotype (HT17 in

Table S5) does not differ from Neandertal and Denisova haplotype

over the whole length of the extended haplotype (1971 Kb),

confirming its greater antiquity and also consistent with its age

estimates.

Uncertainty in time estimates
Age estimates play an important role in our analysis by

providing a temporal framework that allows the integration of

results of other genetic studies as well as evolutionary events

inferred from the genetic analysis with the paleontological,

archaeological and palaeoclimatic context. The r-statistic used

here is equivalent to the one in Thompson et al. (2000) which is

considered as a good estimator [48]. Yet, simulations indicated

that, albeit infrequently, it has a tendency to underestimate the

true value [46,48]. Uncertainty also comes from genetic estimates

such as the substitution rates and the generation times. In present-

day hunter-gatherer societies generation time is estimated to be

approximately 32 and 26 years for males and females, respectively

[96,97], which leads to an average generation interval of ,28

years for chromosome X. Here we used 25 years per generation as

a phylogenetic average [7] and the same 25 years generation span

to convert time into years in the MTMRC8 tree (table 3). As a

consequence of using the same generation estimate (,25 years) in

both calculations, we end up with a homogenous clock with

respect to substitutions per year along the entire length of human

and chimpanzee branches. This clock not only ignores any

changes in generation time but also the possibility of a relative rate

slowdown on the human branch [98]. While using 25 rather than

28 years per generation may be justified because of the long

evolutionary depth of the human chromosome X lineages [99], it

means that our times in fig. 2 and table 3 are possibly

underestimates. This effect will be even more pronounced if our

phylogenetic substitution rate were overestimated [7,100], as

suggested by recent determinations of the substitution rate directly

African Population History

PLOS ONE | www.plosone.org 8 November 2013 | Volume 8 | Issue 11 | e80710



in human pedigrees [101-103]. On the other hand, there are good

reasons to believe that these recent pedigree estimates may be too

low [104]. Our substitution rate, recalculated from its autosomal

equivalent assuming a= 3.3 [102,104] is ,1.6561028 per bp per

generation. This figure is very close to the estimates of 1.361028

and 1.861028 from human Mendelian disease frequencies by

Lynch [105] and Kondrashov [106], respectively, and to a recent

estimate of 1.4 – 2.361028, obtained from a different approach

that avoids phylogenetic calibration [104]. Nonetheless we

recognize that our ages are likely to be underestimates. On the

other hand, our rate was calibrated assuming human-chimpanzee

sequence divergence of 7.5 My [7,49,107]. Using 6 My instead, as

in many earlier studies, would increase our rate estimate by 20%

and lower our time estimates by the same factor (see internal left

side scale in fig. 2 and table S4). Importantly, such a shift of the

time scale would not affect our results and conclusions that point

to a longer evolutionary time frame for human evolution,

considering a possibility that contemporary humans originated

by amalgamation of lineages from different populations that were

separated by years of independent evolution.

Conclusions
The analysis of the MTMR8 segment diversity and its

population tree provided new insights into the evolutionary

history of sub-Saharan Africans and demographic events preced-

ing the out of Africa migration. Consistent with earlier studies we

found the oldest MTMR8 lineages among Khoe-San from South-

Africa. Worth noting a unique Biaka haplotype branched off

directly from the root of the MTMR8 haplotype tree and may

represent a trace of archaic admixture within Africa. Inferred

ancient population stratification and the age of the separately

evolving lineages deduced from MTMR8 evolution may imply an

older dating of our species, older in fact than the earliest fossils of

anatomically modern humans. Additionally, our data indicate that

at the time of out of Africa migration sub-Saharan Africans were

subdivided for a substantial amount of time. The MTMR8

segment carries signature of a selection sweep that most likely

started prior to the exodus. Such selection events could

additionally potentiate the effect of the out-of-Africa demographic

bottleneck by reducing the genetic diversity of non-African X

chromosomes. Because of its characteristics this subcentromeric

region of the X-chromosomes appears particularly interesting to

study sub-Saharan populations’ history and warrants more

detailed analysis using full sequence data.

Web Resources
Arlequin software, http://cmpg.unibe.ch/software/arlequin3/;

Network software, http://www.fluxus-engineering.com/; Program

genetree, http://www.stats.ox.ac.uk/̃griff/software.html; Program

msHot, http://home.uchicago.edu/̃rhudson1/source/

mksamples.html; HGDP data, http://www.cephb.fr/en/hgdp/;

HapMap3 data, http://hapmap.ncbi.nlm.nih.gov/.

Supporting Information

Figure S1 Network of MTMR8 extended haplotypes in

HapMap3 populations [39]. The analyzed region extends over

380 Kb (between sequence positions 63312040 to 63693104) and

includes 40 SNPs. A total of 53 haplotypes were observed in 1180

X-chromosomes. Africans: LWK, MKK, YRI, and non-Africans:

CEU, TSI, JPT, GIH, CHD. Haplotype frequencies are

proportional to the surface of the circle (or to its single colored

segment within a population group).

(JPG)

Material S1 Supplementary Material.

(DOCX)

Table S1 Samples and their Geographic/Ethnic Origin.

(DOCX)

Table S2 PCR Primer Sequences.

(DOCX)

Table S3 Summary Statistics of Populations Samples. Abbrevi-

ations: n – number of chromosomes; S – number of segregating

sites (SNPs); k – number of haplotypes; G – gene (haplotype)

diversity; (1-G) – haplotype homozygosity; H – estimator of

population mutation rate 4Nm (N – effective population size; m -

mutation rate per DNA segment per generation); Hp – estimate

from nucleotide diversity [108]; Hs – estimate from the number of

segregating sites [63]; HH – estimate from frequency of the derived

alleles [60]; HML – maximum likelihood estimate by genetree [42];

Hk - estimate from the number of haplotypes [55]; HG – estimator

from haplotype diversity [109,110]

(DOCX)

Table S4 Time estimates (Ky 6 S.D.) marking the MTMRC8

segment history (figs. 1 and 2) based on phylogenetic calibration of

the mutation rate using human-chimpanzee divergence of 6 My.

(DOCX)

Table S5 Extended haplotypes of a subset of our Sub-Saharan

samples from HGDP project that were used in our study (Table

S1) and for which genome-wide genotypes were available at

http://www.cephb.fr/en/hgdp/ [38]. Two positions (A.G8 and

T.C36 of the haplotype) whose derived alleles are shared with

Neandertals and Denisovans are separated by 1585 Kb, whereas

the distance between the same A.G8 and the leftmost C.T24 in

the Biaka HT16 (H22 in Fig.1) is 812 Kb. The polymorphism

C.T13, with derived T highlighted in red corresponds to the

mutation 16 in the network in Fig.1 of the main text. The

correspondence between the extended haplotypes below and the

Fig.1 network haplotypes are on the right.

(DOCX)
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