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Towards a precision measurement of the Casimir force

in a cylinder-plane geometry
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(Dated: April 5, 2018)

We report on a proposal aimed at measuring the Casimir force in the cylinder-plane configuration.
The Casimir force is evaluated including corrections due to finite parallelism, conductivity, and
temperature. The range of validity of the proximity force approximation is also discussed. An
apparatus to test the feasibility of a precision measurement in this configuration has been developed,
and we describe both a procedure to control the parallelism and the results of the electrostatic
calibration. Finally we discuss the possibility of measuring the thermal contribution to the Casimir
force and deviations from the proximity force approximation, both of which are expected at relatively
large distances.

PACS numbers: 12.20.Fv, 03.70.+k, 04.80.Cc, 11.10.Wx

I. INTRODUCTION

The study of quantum vacuum in modern physics is
crucial due to its profound implications over a broad
range of lengthscales, from elementary particle physics
and quantum field theory [1] to cosmology [2, 3, 4, 5, 6].
In between the extremes, the Casimir force [7] has pro-
vided an experimentally accessible window at the meso-
scopic scale through which significant information about
quantum vacuum can be retrieved. The Casimir force,
which can be interpreted as the net effect of the radia-
tion pressure resulting from the zero point electromag-
netic fluctuations, has been studied in detail both theo-
retically and experimentally [8, 9, 10, 11, 12, 13, 14, 15].
A first generation of experimental studies immediately
followed this prediction, both in the parallel plane config-
uration originally proposed by Casimir himself [16], and
in a variant of this configuration based upon a sphere and
a plane [17]. These attempts had partial success in mea-
suring the Casimir force due to a variety of technical is-
sues. In the last decade, a new wave of experiments have
succeeded in measuring the force in the parallel plane
and in the sphere-plane geometries. The accuracy ob-
tained in the measurements ranges from 15% in the par-
allel plane case [18] to 0.1-5% in the sphere-plane case
[19, 20, 21, 22, 23]. The accuracy for the former configu-
ration is limited mainly by the stringent requirements for
parallelism between the two plates while in the latter con-
figuration the limitation is due to the small force signal
available, leading to a maximum explorable distance be-
tween sphere and plane of about 1µm [24]. At distances
smaller than 1µm the correction to the Casimir force due
to finite conductivity and roughness of the substrates
cannot be neglected, and has to be taken into account in
the theoretical expression of the force. Furthermore, the
Casimir force in the sphere-plane configuration is evalu-
ated by using the so-called proximity force approximation

[25, 26], introducing an uncertainty, estimated to be in
the 0.1 % range, in the theoretical prediction.

In this paper we report on theoretical and experimen-
tal studies of a geometry which interpolates between the
two abovementioned configurations, namely the cylinder-
plane geometry. This geometry is a compromise between
the parallel plane and sphere-plane configurations, as it
offers a simpler way to control the parallelism, with re-
spect to the former geometry, while providing a suffi-
ciently increased force signal at large distances in com-
parison to the sphere-plane configuration. The study
of the cylinder-plane configuration also provides insights
into the finite temperature contribution to the Casimir
force, as well as into the validity of the proximity force ap-
proximation. We show how some of these open issues in
large-distance Casimir physics, still to be pursued in the
laboratory, are easier to deal with in this geometry with
respect to those already studied. Mastering the Casimir
force at the highest level of accuracy is mandatory to give
limits to other macroscopic forces acting in the microme-
ter range, such as expected corrections to the Newtonian
gravitational force [27].

The paper is organized as follows: in Section II we
discuss the Casimir force in the cylinder-plane geometry
introducing the main sources of deviation from ideality
such as finite parallelism, finite conductivity, and finite
temperature. Prior to this, the calculation of the elec-
trostatic force in the same geometry is presented. This
is crucial not only for the calibration of the apparatus,
by applying externally controlled electric fields, but also
for the discussion of the expected background noise due
to unavoidable residual electrical charges present on the
two surfaces. Also, the validity of the proximity force ap-
proximation and some related subtleties in its definition
at the next-to-leading order are discussed. In Section III,
we present an apparatus developed at Dartmouth to test
the basic principle of the measurement and to demon-

http://arxiv.org/abs/quant-ph/0511005v1
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FIG. 1: Absolute electrostatic forces for parallel plane (dotted
curve), cylinder-plane (solid), and sphere-plane configurations
(dot-dashed). The force in the plane-plane case is given by

F
(0)
El = ǫ0AV 2/2d2, and in the sphere-plane case it is given by

F
(0)
El = 2πǫ0V

2∑∞

n=1[coth(u) − n coth(nu)]/ sinh(nu), with
cosh(u) = 1 + d/R. We use V = 50mV for the bias voltage,
A = 1mm2 for the surface area of the parallel plane config-
uration, L = 1cm for the length of the cylinder, a = 100µm
for the radius of the cylinder, and R = 100µm for the ra-
dius of curvature of the sphere. For the parallel plane and
sphere-plane configurations these values are taken from actual
experiments described in Refs. [18] and [20], respectively.

strate various techniques specific to this configuration.
In Section IV, we present the projected sensitivity of the
apparatus. This leads to a discussion of the possible ex-
plorable physics, in particular the measurement of the
thermal contribution to the Casimir force and the test of
the validity of the proximity force approximation.

II. COULOMB AND CASIMIR FORCES IN A

CYLINDER-PLANE GEOMETRY

A. Electrostatic force

A first step towards measuring the Casimir force in the
cylinder-plane geometry is to evaluate the force signal
expected for the corresponding electrostatic force. Any
apparatus for measuring the Casimir force has to be cali-
brated with a more controllable, better understood, force
like the Coulomb force. Additionally, the electrostatic
force is unavoidably present as a background due to the
residual electric charges on the conducting surfaces. Let
us consider a perfectly conducting cylinder of length L
and radius a (with L ≫ a to neglect border effects) kept
at a fixed electrostatic potential V0. The cylinder is par-
allel to a perfectly conducting, grounded, planar surface
of area A, and the distance between the two conductors is
denoted by d. For this geometry, the exact electrostatic
force between the cylinder and the plane is given by [28]

d

x

L/2

L/2

d(x)

x=0

θ

FIG. 2: Geometrical construction of the non-parallel config-
uration. For the proximity approximation, the local distance
between the cylinder and the plane is d(x) = d − (L/2 −

x) tan θ.

F
(0)
El−ex =

4πǫ0LV
2
0

∆ ln2
(

h−∆
h+∆

) , (1)

where ∆ =
√
h2 − a2 and h = d+ a. In the limit d ≪ a,

this expression reduces to

F
(0)
El =

πǫ0
√
aLV 2

0

2
√
2d3/2

. (2)

As we will discuss below, this equation can also be de-
rived using the proximity force approximation [25, 26].
In Fig. 1 we compare the absolute electrostatic forces
corresponding to the parallel plane, cylinder-plane and
sphere-plane configurations with typical values of the
relevant parameters, already achieved or achievable in
practice. Since, under general experimental conditions,
the cylinder and the plane will not be perfectly par-
allel, we need to calculate the corrections to Eq. (2)
due to non-parallelism. This is easily obtained by us-
ing the proximity force approximation, with a local dis-
tance between the cylinder and the plane given by d(x) =
d− (L/2− x) tan θ (see Fig. 2). We obtain

F np
El = F

(0)
El

1

α

(

1√
1− α

−
1√

1 + α

)

≈ F
(0)
El

[

1 +
5

8
α2 +O(α4)

]

, (3)

where α = L sin θ/2d. As described in the next section,
the quadratic dependence of the electrostatic force on the
angle measuring the deviation from the ideal parallelism
provides a way to optimize the parallelism between the
cylinder and the plane during the electrostatic calibra-
tion.
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FIG. 3: Absolute Casimir force for plane-plane (dotted curve),
cylinder-plane (solid), and sphere-plane configurations (dot-

dashed). For the plane-plane case it is given by F
(0)
Cas =

π2
~cA/240d4. The latter two are evaluated within the prox-

imity force approximation. For the sphere-plane case it is

given by F
(0)
Cas = π3

~cR/360d3. Parameters are the same as
in Fig. 1.

B. Casimir force

To evaluate the Casimir force between the cylinder and
the plane we use once again the proximity force approx-
imation. For the parallel case (α = 0), the Casimir force
between the cylinder and the plane is attractive, and its
magnitude in the limit d << a is given by [29]

F
(0)
Cas =

π3
~cLa1/2

384
√
2d7/2

. (4)

The scaling of the Casimir force with distance in the
cylinder-plane geometry is intermediate between the
sphere-plane case (∝ d−3) and the parallel plane con-
figuration (∝ d−4). The absolute force signal, for typical
values of the relevant parameters, is also intermediate
(see Fig. 3). With respect to the sphere-plane geometry,
one can enhance the signal by exploiting the linear dimen-
sion, i.e. the size L, as long as the parallelism between
the cylinder and the planar surface does not become an
issue. In comparison to the parallel plane situation, in
the cylinder-plane configuration one needs to parallelize
in only one spatial dimension instead of two, the latter
being a considerably more difficult task. The correction
to the cylinder-plane Casimir force in the slightly non-
parallel case reads

F np
Cas = F

(0)
Cas

1

5α

(

1
√

(1− α)5
−

1
√

(1 + α)5

)

≈ F
(0)
Cas

[

1 +
21

8
α2 +O(α4)

]

, (5)

which shows a strong similarity to the non-parallel
Coulomb force, just differing at the leading orders by the
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FIG. 4: Permittivity for Au as a function of frequency cal-
culated from optical data (courtesy of Astrid Lambrecht and
Serge Reynaud). Permittivity data for Matsubara frequen-
cies with m ≥ 1 in the range of temperatures of interest
−20oC ≤ T ≤ +60oC can be obtained from this plot. The
vertical lines show the frequency region used in the m sum-
mation over the Matsubara frequencies. The dotted line cor-
responds to m = 1 at T = −20oC, the dashed line to m = 1
at T = +60oC, and the dotted-dashed line to the maximum
value mmax used at all temperatures, corresponding to a max-
imum Matsubara frequency of ξmax = 1017rad/s.

coefficient of the quadratic correction in the parameter
α.
For an accurate comparison between experiment and

theory, apart from the deviations from parallelism al-
ready taken into account within the proximity force ap-
proximation scheme, we consider the deviations of the
predicted force from the ideal situation of perfect con-
ductors, zero roughness, and zero temperature. For
typical surfaces and realistic experimental sensitivities,
the roughness correction is negligible with respect to
other deviations at the distances we are interested in
(d > 1µm). On the other hand, combined temperature
and conductivity corrections are usually important in this
range of distances. We have computed these corrections
via the Lifshitz formalism [30], which provides an ex-
pression for the pressure between two infinite, parallel
plates. We have then used this result in the proximity
force approximation for the cylinder-plane configuration.
The Casimir pressure in the plane-plane configuration at
finite temperature T is given by the Lifshitz formula

P (d) = −
1

πβd3

∞
′

∑

m=0

∫

∞

mγ

dy y2 ×

[

r−2
TMe−2y

1− r−2
TMe−2y

+
r−2
TEe

−2y

1− r−2
TEe

−2y

]

, (6)

where d is the gap between the plates, β = 1/kBT is
the inverse temperature, and γ = 2πd/β~c. The prime
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FIG. 5: Combined thermal and conductivity corrections to
the Casimir force in the cylinder-plane geometry. We show the
Casimir force, normalized to its bare value for infinite conduc-
tivity and zero temperature, versus the distance d in the case
of gold metallic surfaces at a temperature T = 300oK. Optical
data are used to calculate the frequency-dependent permittiv-
ity of Au. The m = 0 contribution to the Lifshitz formula is
computed by extrapolating the optical data to zero frequency
using two different theoretical approaches: the plasma model
(for which the TE m = 0 mode contributes to the force), and
the Drude model (for which the TE m = 0 mode does not
contribute). Parameters are the same as in Fig. 1.

on the summation sign indicates that the m = 0 term is
counted with half weight. The reflection coefficients rTE

and rTM for the two independent polarizations TE and
TM are computed at imaginary frequencies ωm = iξm,
where ξm = 2πm/β~ are the Matsubara frequencies.
Although the foundations for the Lifshitz formula are

well established, the exact expressions for the reflectivity
coefficients are not. Following the Lifshitz formalism,
the reflection coefficients are expressed in terms of the
dielectric permittivity ǫ(ω) as

r−2
TM =

[

ǫ(iξm)pm + sm
ǫ(iξm)pm − sm

]2

; r−2
TE =

[

sm + pm
sm − pm

]2

, (7)

where pm = y/mγ and sm =
√

ǫ(iξm)− 1 + p2m.
Using tabulated optical data for different metals [31],

it is possible to compute the dielectric permittivity along
the imaginary frequency axis [32]. As an example, we
show in Fig. 4 the numerically computed permittivity
of Au as a function of frequency. For the computa-
tion of the m summation in Eq. (6) we used a cut-off
mmax corresponding to a Matsubara frequency ξmmax

=
1017rad/sec. For the range of temperatures we are inter-
ested in (−20oC ≤ T ≤ +60oC), permittivity data for all
Matsubara frequencies ξm = 2πm/β~ corresponding to
m ≥ 1 can be extracted from the optical data (see Fig. 4).
To calculate the m = 0 contribution, it is however neces-
sary to extrapolate the available data to zero frequency.
This extrapolation has been done in the literature using

-20 0 20 40 60

Temperature ( 
o
C )

0.4

0.6

0.8

1

1.2

1.4

FT
,C

 / 
F(0

)

Plasma model (TE m=0 term included)
Drude model (TE m=0 term excluded)

FIG. 6: Dependence upon temperature of the Casimir force
in the cylinder-plane geometry. We show the Casimir force,
normalized to its bare value for infinite conductivity and zero
temperature, versus the temperature T in the case of gold
metallic surfaces separated by a distance d = 3µm. Extrap-
olated data for zero frequency (m = 0) is obtained from two
different theoretical approaches: the plasma model (for which
the TE m = 0 reflection coefficient is non-zero), and the
Drude model (for which the TE m = 0 reflection coefficient
vanishes). Parameters are the same as in Fig. 1.

different theoretical models, and has led to controversial
predictions for the Casimir force between parallel plates
[23, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43].
We have computed the Casimir force between the

cylinder and the plane using two distinct theoretical ap-
proaches. In the first approach, the optical data are
extrapolated using the plasma model for the dielectric
permittivity [11, 23]: ǫ(iξ) = 1 + ω2

p/ξ
2, where ωp is the

plasma frequency (equal to 9.0 eV for Au). In this model,
the reflectivity coefficients for m = 0 are given by

r−2
TM(m = 0) = 1,

r−2
TE(m = 0) =





cy/d+
√

ω2
p + (cy/d)2

cy/d−
√

ω2
p + (cy/d)2





2

. (8)

In the second approach, we use the model of [43], that
extrapolates the optical data using the Drude model:
ǫ(iξ) = 1 + ω2

p/ξ(ξ + ν), where ν is the relaxation fre-
quency (equal to 35 meV for Au). In this second model,
the reflectivity coefficients for m = 0 are, in contrast to
those found in Eq. (8),

r−2
TM(m = 0) = 1 ; r−2

TE(m = 0) = 0. (9)

That is, in this second approach the transverse electric
zero mode does not contribute to the Casimir force. In
Fig. 5 we show the ratio FT,C

Cas /F
(0) between the real

Casimir force (including temperature and conductivity
corrections) and the ideal one (perfect conductors, zero
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d

a ϕ

d (ϕ )

FIG. 7: Cylinder-plane geometry (lateral view). In the prox-
imity force approximation, the force is computed as a super-
position of forces between infinitesimal parallel plates, sepa-
rated by a distance d(ϕ) = d+ a(1− cosϕ).

temperature) as a function of the gap d between the cylin-
der and the plane, assumed to be parallel. The two curves
correspond to the two different theoretical approaches
described above. As follows from the figure, the ratio
of forces increases monotonically with distance for the
plasma model, while it shows a small dip close to 3µm
for the Drude model. In Fig. 6 we show the same ratio
of forces as a function of temperature for a fixed gap be-
tween the cylinder and the plane, set at d = 3µm. The
temperature range corresponds to the one we expect to
control during the actual Casimir experiment at finite
temperature. We see that the normalized force increases
with temperature much faster for the plasma model than
for the Drude model. In the entire targeted range of tem-
peratures the two models give predicted forces differing
by roughly a factor of two, allowing for an easier experi-
mental discrimination, provided that thermal expansion
of the materials of the experimental set-up will be kept
under control.

C. Accuracy of the proximity force approximation

The calculations of the electrostatic and Casimir forces
done in the previous sections rely on the proximity force
approximation. We now discuss its validity in the ideal
case of zero temperature and perfect conductor.
Let us first consider the proximity force approximation

to the electrostatic force in the parallel cylinder-plane
configuration

F
(i)
El =

ǫ0V
2
0

a2

∫ π/2

0

dAi

(1 + d
a − cosϕ)2

. (10)

Here dAi is the effective area of the infinitesimal parts in
which the surfaces are divided to integrate the parallel
plates result, and ϕ is the angle parameterizing the loca-
tion of the infinitesimal surfaces on the the cylinder (see
Fig. 7). Different choices for this area give distinct prox-
imity approximations for the force [44]. For example, the

area of a small portion of cylinder is dAc = Ladϕ, while
the area of a small portion of plane is dAp = La cosϕdϕ.
One could also use a combination of the two, like the
geometric mean dAgm = (dApdAc)

1/2. These choices for
the effective area give the same result to leading order in
d/a, but they differ in the subleading corrections

F
(i)
El

F
(0)
El

= 1 + η
(i)
El

d

a
+O

(

d2

a2

)

, (11)

where η
(p)
El = −0.75, η

(c)
El = 0.25, and η

(gm)
El = −0.25 [45].

One could estimate the error of the proximity force
approximation as the difference between these results.
However, for the parallel cylinder-plane configuration we
know the exact value of the electrostatic force, so we can
use it to analyze the accuracy of the different versions
of the proximity force approximation. The ratio between
the exact and the leading proximity electrostatic forces
Eqs. (1) and (2) is given by

F
(0)
El−ex

F
(0)
El

= 1− 0.083
d

a
+ 0.035

d2

a2
+ . . . . (12)

Both results coincide within 1% for d/a < 0.12.

In Fig. 8 we show the ratios F
(i)
El /F

(0)
El , together with

the exact result, also normalized to the leading proximity
force approximation in Eq. (2). For small d/a, the exact

value of the force is in between F
(c)
El and F

(gm)
El . More-

over, a comparison of Eqs. (11) and (12) shows that the
geometric mean prescription is closer to the exact force
(a similar result has been obtained for the Casimir inter-
action energy between concentric cylinders [46]). Had we
estimated the error of the proximity force approximation

using F
(c)
El and F

(gm)
El , we would have concluded that it

is smaller than 1% for d/a < 0.04.
For the Casimir case, an analytic expression for the

exact force is not available. Therefore, we will estimate

the error of the proximity force approximation using F
(c)
Cas

and F
(gm)
Cas , defined as

F
(i)
Cas =

π2
~c

120a4

∫ π/2

0

dAi

(1 + d
a − cosϕ)4

. (13)

We obtain

F
(i)
Cas

F
(0)
Cas

= 1 + η
(i)
Cas

d

a
+O

(

d2

a2

)

, (14)

where η
(p)
Cas = −0.15, η

(c)
Cas = 0.05 and η

(gm)
Cas = −0.05.

These results are shown in Fig. 9. We see that, for small
d/a, the cylinder-based proximity approximation is larger
than the leading order, while the opposite happens for the
results based on the plane and on the geometric mean ar-
eas. This is analogous to the electrostatic case. Assum-

ing that the exact result is in between F
(c)
Cas and F

(gm)
Cas ,

we estimate the error of the proximity force as smaller
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FIG. 8: (Color online) Electrostatic force in the cylinder-plane
geometry, normalized to the electrostatic force evaluated in
the leading proximity approximation of Eq. (2). We show the
exact force (continuous line), and the force evaluated through
different proximity approximation schemes obtained using the
area of the cylinder (squares), the area of the plane (dots),
and a geometric mean of the areas (triangles).

than 1% for d/a < 0.2. It is worth to note that the
spread of the different approximations is smaller for the
Casimir force than for the electrostatic force (see Figs.
8 and 9). This is due to the fact that, as the Casimir
force is stronger than the electrostatic one at small dis-
tances, the proximity force approximation is dominated
by a smaller region around ϕ = 0, where the difference
between effective area is less important.

The exact Casimir energy for massless scalar fields
satisfying Dirichlet boundary conditions in the cylinder-
plate geometry has been computed using numerical simu-
lations based on the wordline approach to quantum field
theory [47]. Based on an analytic fit of the numerical
data [48], we have found a deviation in the force with
respect to the leading proximity force of 1% already at
d/a = 0.06. The difference is about 5% at d/a = 0.5.
These are still preliminary results, because the precision
of the data is not very high, on the order of 10% for small
values of d/a [48].

Summarizing, if the Casimir force is measured at the
1% level, in order to see deviations from the proximity
force the ratio d/a should be larger than 0.2, according to
the estimation based on the different choices of the area.
On the other hand, numerical simulations suggest that
deviations can already be present at d/a = 0.06. Higher
precision numerical data for the electromagnetic field are
needed to confirm this prediction.

III. ELECTROSTATIC CALIBRATIONS

In order to assess the sensitivity and the requirements
for a precision measurement of the Casimir force in a
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FIG. 9: (Color online) Casimir force in the cylinder-plane
geometry, normalized to the Casimir force evaluated in the
leading proximity approximation. We show the different prox-
imity approximation schemes obtained using the area of the
cylinder (squares), the area of the plane (dots), and a geo-
metric mean of the areas (triangles).

cylinder-plane configuration, we have performed electro-
static calibrations with a prototype of the experimental
apparatus (see Fig. 10 for details). The core part of the
system is a stainless steel cantilever resonator faced on
opposite sides by a stainless steel cylinder and an optical
fiber for the detection of its displacement. The resonator
is clamped to an aluminum base which is in thermal con-
tact with a thermoelectric cooler for temperature stabi-
lization. Below the resonator is the cylinder, attached
to a frame mounted on two piezoelectric actuators pro-
viding a maximum displacement of (15.00 ± 1.5)µm for
an applied voltage of 100 V. The two piezoelectric actu-
ators are located along the axis of the cylinder, provid-
ing both necessary adjustments for parallelization and
the fine approach of the cylinder to the resonator. The
coarse approach is provided by a feedthrough micrometer
located at the bottom of the vacuum chamber. A few tens
of micrometers above the resonator is the optical fiber,
which is part of a fiber optic interferometer [49] having as
light source a 5 mW diode laser at a wavelength of 671
nm. The displacement signal results from the interfer-
ence between the light reflected by the resonator and the
light internally reflected by the fiber end. The condition
of interference which maximizes the displacement sensi-
tivity (obtained at distances for which the dependence
of the intensity versus the distance has the maximum
slope) is obtained with a coarse approach of the optical
fiber to the resonator through a micrometer stage, and
a finer tuning with a piezoelectric actuator. The fiber
position is stabilized by a servo loop circuit controlling
the voltage driving the piezoelectric actuator. The ex-
plored resonator-cylinder distances, ranging between 15
µm and 40 µm, are estimated with a digital microscope,
allowing for a consistency check with the a posteriori de-
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FIG. 10: (Color online) Images of the experimental set-up, with an overall view (left), a close-up on the cylinder-resonator
region (right), and an image from the optical microscope (inset). Inside the vacuum chamber are visible the two piezoelectric
actuators for the fine approach between the cylinder and the resonator on the bottom side, and the piezoelectric actuator for
the fine approach of the optical fiber and its mount on the top side, with the fiber end facing the middle point of the resonator.
In between are the resonator and the cylinder, with coarse motion controlled by vertical feedthrough micrometers. The fiber is
sent through a feedthrough inside the vacuum chamber (left side in the overall view), while a goniometer stage is used for coarse
parallelization (right side in the overall view). The large viewport allows for use of a digital optical microscope with up to 100
× magnification for a rough parallelization and a coarse assessment of the fiber-resonator and resonator-cylinder distances, as
visible in the inset. The size of the resonator is 2 cm × 1 cm × 178 µm for width, length, and thickness, respectively. The
cylinder has a diameter 2a = 6.35 mm (1/4 inch) and a length of 2 cm.

termination of the gap through data fitting, as described
below. Further details on the apparatus setup, its char-
acterization, sensitivity and the noise limitations will be
provided in a future publication.
The calibration has been performed by measuring the

frequency shift induced by the electrostatic force on the
resonator (see for instance [50]). For a generic distance-
dependent force (such as the Coulomb force in Eq. (1)
or the Casimir force in Eq. (4)), the shift in the proper
frequency of the resonator can be written as

∆ν2 = ν2 − ν20 = −
1

4π2m

∂F (d)

∂d
, (15)

where m is the effective mass of the mode of oscillation
of resonator. The corresponding frequency shift for the
Coulomb case then assumes the form

∆ν2El = −
3ǫ0

16
√
2π

√
aLV 2

0

md5/2
= kcV

2
0 , (16)

where we have introduced a curvature parameter kc to
parameterize the parabolic behavior of ∆ν2El versus the
applied bias voltage V0. The determination of the reso-
nant frequency of a mode of oscillation of the cantilever
is obtained by driving its motion with a piezoelectric ac-
tuator clamped in the proximity of its base and fed by
the white noise source of a FFT spectrum analyzer. This
last is used to acquire and perform the spectral analysis

of the signal coming from the photodiode collecting the
interference light at one port of the fiber mixer.

The electrostatic calibrations can be divided into three
steps: a) determination of the parallel configuration by
looking at the minimum frequency shift at constant av-
erage distance and various tilting angles between the res-
onator and the cylinder, b) measurements of the fre-
quency shift versus bias voltage in the parallel config-
uration, and c) repetition of the previous measurements
for various values of the cylinder-resonator distance.

In order to determine the parallel configuration, we
use the result obtained in Eq. (3), according to which
the force exerted on the cantilever is expected to have a
parabolic dependence on the angle describing the devi-
ation from the ideal parallelism for small angles θ. The
coarse control of the parallelism is obtained by using a
goniometer stage on which the resonator is mounted,
which can be manually controlled with an in-vacuum
feedthrough. For the fine control, two piezoelectric actu-
ators are used in a differential mode, in such a way that
the median distance between the resonator and the cylin-
der (i.e. the distance d between the midpoints of the two
structures, see Fig. 2) is unchanged. This is obtained
by pivoting the cylinder around the middle point, i.e.

by summing and subtracting equal amounts of voltage
supplied to the two piezoelectric actuators moving the
cylinder position. The plot of the resonator frequency
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FIG. 11: Assessment of the parallelism. Resonator frequency
versus the difference between the voltages applied to the two
piezoelectric actuators driving the cylinder base ∆VPZT =
VL − VR, starting from a common mode of VL = VR =50 V,
for V0 = 100 V. The resonator frequency without bias voltage
is ν0 = (527.30 ± 0.02) Hz. The maximum frequency (cor-
responding to the minimum frequency shift with respect to
ν0) realizes the condition for parallelism, and this occurs at
∆VPZT = (54.8 ± 7.1) V. As the two piezoelectric actuators
are spaced by 2 cm, this corresponds to achieving parallelism
within δθ = 5.3×10−5 radians. The determination of the fre-
quency is based upon a fit of the mechanical transfer function
of the resonator with a Lorentzian function, obtained through
100 averages of the FFT with a frequency span of 12.5 Hz.

versus the difference between the voltages applied to the
left and right piezoelectric actuators acting on the cylin-
der, for a constant bias voltage difference, has a parabolic
dependence for small deviations from parallelism, with
its maximum corresponding to the parallel case α = 0.
The outcome of this procedure is summarized in Fig. 11,
where the frequency of the resonator displays a parabolic
dependence as a function of ∆VPZT, which reflects dif-
ferent tilting angles θ. The maximum frequency defines
the parallelism condition, within the error, which leads
to a precision of δθ = 5.3 × 10−5 radians. This cor-
responds, based on Eq. (5), to a correction equal to

(F np
Cas − F

(0)
Cas)/F

(0)
Cas = 1.43 × 10−4. Notice that, unlike

the parallel plane configuration, the search for the paral-
lel situation is considerably simpler and faster to imple-
ment in the cylinder-plane geometry as it requires only a
one-dimensional optimization [51].

After this preparatory measurement, we have then ob-
tained the frequency shift versus the bias voltage, and the
related curvature parameter kc of the expected parabolic
dependence, as shown in Fig. 12. This has been re-
peated for various distances between the resonator and
the cylinder, adding a common mode voltage to the ac-
tuators, thereby inducing a global approach of the cylin-
der to the resonator. In Fig. 13 the curvature param-
eter kc is plotted versus the piezoelectric actuator volt-

FIG. 12: (Color online) Electrostatic calibrations. Squared
frequency shift ∆ν2 versus bias voltage between the cylinder
and the resonator for different values of the cylinder-plane
distance, corresponding to the application of VPZT =0 V (con-
tinuous line), 30 V (dashed line), and 70 V (dotted line). The
curves are the best fit with a generic parabola. The typical
resonance frequency without bias potential is around 527 Hz,
with a bandwidth of 4 Hz. The peak frequency is determined
through the Lorenzian fit with a typical error of 12 mHz.

age VPZT. The latter quantity is related to the abso-
lute distance between the cylinder and the resonator as
d = din − αactVPZT, where αact = (150.0 ± 15.0)nm/V
is the actuation coefficient of the piezoelectric and din
the initial distance corresponding to VPZT = 0. This
allows comparison of the data to the predictions from
Eq. (16) of a power-law dependence with scaling −5/2
upon the absolute distance. As usually done in this type
of measurement, the absolute initial distance has been
determined by considering an offset as a free parameter
in the fit. A zero distance, shorting the cylinder-plane
gap, is reached when the piezoelectric actuator voltage is
VPZT = din/αact = VMAX. From the value of VMAX deter-
mined from the fit, VMAX = (177.4± 24.1)V, we deduce
an initial distance din = αactVMAX = (26.6±4.5)µm. The
estimated minimum gap corresponding to the maximum
excursion of the piezoelectric actuator before shorting the
gap is therefore ≃ 16.1µm, consistent with the expected
roughness of both cylinder and resonator surfaces. The
relative accuracy in the determination of the absolute
distance in these preliminary calibrations is 17%. Better
precision can be obtained by looking at gaps in the 10-
30 µm range using a large magnification, high resolution
optical microscope. The absolute gap can be accurately
determined due to a particular feature of the cylinder-
plane configuration: by properly illuminating the gap,
the cylinder will appear reflected on the planar surface,
and the distance between the cylinder edge and its mirror
image on the plane surface can then be measured. Exten-
sion of the calibration into the range of interest for the
measurement of the Casimir force (1-5 µm) will require
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FIG. 13: Electrostatic calibrations. Plot of the curvature co-
efficient kc versus the piezoelectric common voltage VPZT and
best fit with a law ∆ν2 = a+b/(VMAX−VPZT)

2.5 correspond-
ing to the expected frequency-shift dependence from Eq. (16).
The best fit gives a parameter VMAX = (177.4 ± 24.1)V, cor-
responding to the voltage which should close the gap between
the cylinder and the resonator.

high precision nanopositioners with minimal hysteresis,
thereby reducing the relative error in the determination
of the distance to less than 1%.

IV. EXPECTED CASIMIR FORCE SIGNAL

Based on the electrostatic calibrations and the possible
short-term improvements, we now evaluate the sensitiv-
ity to physics related to the Casimir effect, in particular
the thermal contribution and the test of the validity of
the proximity force approximation scheme. The expected
frequency shift due to the Casimir force is written as

∆ν2Cas−cp = −
7π

3072
√
2

~cL
√
a

md9/2
. (17)

It is worth comparing the expected frequency-shift sig-
nal to the one already measured in Padova [18]. The
squared frequency shift for a parallel plane configuration
is expressed as

∆ν2Cas−pp = −
~c

240

A

md5
, (18)

where A is the surface area of the plates. Considering
resonators with the same mass for the two configurations
corresponding to Eqs. (19) and (20), we obtain a ratio
between the expected squared frequency shifts as:

∆ν2Cas−cp

∆ν2Cas−pp

=
35π

64
√
2

L
√
ad

A
. (19)

Apart from a numerical factor of order unity, the ratio
between the expected squared frequency shifts is the ra-
tio between the relevant geometrical scales in the two
configurations, i.e. the transversal size of the resonator-
cylinder region L, the geometrical average of the ra-
dius of curvature of the cylinder a and the cylinder-
plane distance d, and the plates surface area A. By
inserting the respective values from the Padova exper-
iment, and a radius of the cylinder of 51 cm (using com-
mercially available cylindrical lenses with proper metal-
lic coating), at the distance d = 1µm the ratio gives
∆ν2Cas−cp/∆ν2Cas−pp ≃ 0.727. This implies that a fre-

quency shift equal to ∆νcp = ∆ν2cp/2ν0 =4.08 mHz (571
mHz) at a gap of 3µm (1µm) is expected for the cylinder-
plane case, as compared to a ∆νpp =3.2 mHz (780 mHz)
at a gap of 3µm (1µm) for the parallel plane case. In pre-
liminary long time average tests with our prototype we
have obtained an error on the determination of the peak
frequency of the resonator through a Lorenzian fit of ≃ 6
mHz. We find that the minimum detectable frequency
shift can be made significantly smaller through a careful
study of the resonance curve of the mechanical transfer
function of the cantilever in a relatively large range of
frequencies, equal to 10-20 times its intrinsic bandwidth.
A careful fitting of data, with a long sampling time and
a large number of averages, allow for the determination
of the resonance frequency with a precision of the order
of mHz or less, even when working with relatively large
mechanical bandwidths as in the case of stainless steel
resonators. From this point of view the use of resonators
with a large quality factor may not seem advantageous;
in order to acquire a resonance curve with the same reso-
lution one needs to adapt a smaller frequency binning re-
sulting in a much longer integration time, which is more
vulnerable to frequency shifts possibly induced by the
finite degree of stabilization of the temperature of the
apparatus. Further improvements in the sensitivity are
expected by implementing frequency and amplitude sta-
bilization of the diode laser, high-performance actuators
with minimal hysteresis and better displacement reso-
lution, and a better control of the temperature setting
and stabilization both for the resonator and for the fiber
set-up. Alternative detection schemes, like homodyne or
heterodyne modulations [50], may be utilized to improve
the precision.

As a final assessment of the experimental set-up, apart
from the need for improved planarity and decreased
roughness of the resonator and cylinder surfaces using
optical quality surfaces, and a careful determination of
the absolute distance between the cylinder and the res-
onator as discussed above, we need to explore the Volta
and patch electrostatic potentials present between the
two surfaces. To quantify this source of noise it is worth
introducing, in analogy to the discussion in [52] for the
parallel plane case, the equivalent voltage corresponding,
at a given distance, to the Casimir force. By equating
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Eqs. (2) and (4) we obtain an equivalent voltage as

Veq =

(

π2
~c

192ǫ0

)1/2
1

d
= 13.55

(µm

d

)

mV. (20)

For instance, at a targeted gap of d = 3µm the Casimir
force corresponds to an equivalent voltage Veq = 4.61
mV, which implies that one should control the electro-
static stray potentials within a fraction of this value in or-
der to see the thermal contribution to the Casimir force.
The capability of counterbiasing the electrostatic poten-
tial difference at this level will require a dedicated study
in a concrete setting once the gap distances will be re-
duced to few micrometers. From this point of view it
is encouraging that, as visible in Fig. 1, the electro-
static force in the cylinder-plane configuration can exceed
at large distances the corresponding one for the parallel
plane situation. This can lead to larger signals in a wider
range of distances and consequently to a more precise de-
termination of the stray voltages to be counterbiased.
The apparatus could also be adapted to the study of

the validity of the proximity force approximation. As we
already mentioned at the end of Section II, recent numer-
ical results based on the wordline approach [48] indicate
that deviations from the proximity force approximation
should be relevant starting from a ratio d/a ≃ 0.06 up-
ward. For instance, at a distance of 5µm they should be
of the order of 1 % for a choice of the radius of the cylin-
der a=100 µm. This suggests the use of metallic wires to
intentionally look for the deviation from the predictions
of the proximity force approximation [47, 48].

V. CONCLUSIONS

We have discussed a novel geometry to study the
Casimir force which more adequately addresses current
issues related to the large distance behavior of quantum

vacuum fluctuations. In particular, this should allow for
the study of the interplay of zero-point fluctuations with
the thermal contribution due to the real photons present
at any finite temperature. From this point of view the
theoretical discussion presented here is complementary to
the one presented in [29] for the case of eccentric cylin-
ders, the latter being promising for investigating extra-
gravitational forces due to a smaller sensitivity to long-
range Casimir related effects. An apparatus to demon-
strate some of the concepts developed in this discussion
has been built and tested, showing promising features
towards the observation of the thermal effect. With an
upgraded version of the apparatus, including better ther-
mal stabilization, high precision actuators, and mechani-
cal resonators with decreased roughness, and with a care-
ful study of the stray electrostatic potentials, we should
be able to explore the Casimir force in the target range
centered around 3µm with a precision of a few percent.
Moreover, the possible observation of deviations from the
force predicted by the proximity force approximation will
be important to assess the limits to extra-dimensional
forces of gravitational origin.
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