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Ali Raja, and
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Abstract

A large body of research has investigated whether physicians overuse care. There is less evidence 

on whether, for a fixed level of spending, doctors allocate resources to patients with the highest 

expected returns. We assess both sources of inefficiency exploiting variation in rates of negative 

imaging tests for pulmonary embolism. We document enormous across-doctor heterogeneity in 

testing conditional on patient population, which explains the negative relationship between 

physicians’ testing rates and test yields. Furthermore, doctors do not target testing to the highest 

risk patients, reducing test yields by one third. Our calibration suggests misallocation is more 

costly than overuse.

1 Introduction

Many have argued that current medical practice involves large amounts of wasteful 

spending, with little cross-sectional correlation between regional health spending and health 

outcomes (Wennberg et al. 1996). But determining the best approach to lower costs and 

improve quality depends critically on the nature of the inefficiency (Garber and Skinner 

2008): is the problem that physicians are spending to the “flat of the curve” where marginal 

*An earlier draft of this paper circulated under the title, “Negative Tests and the Efficiency of Medical Care: What Determines 
Heterogeneity in Imaging Behavior?” Thanks to Brian Abaluck, Joe Altonji, Joshua Aronson, David Chan, Judy Chevalier, Michael 
Dickstein, David Dranove, Amy Finkelstein, Howard Forman, Jonathan Gruber, Nathan Hendren, Vivian Ho, Mitch Hoffman, Lisa 
Kahn, Jon Kolstad, Amanda Kowalski, Danielle Li, Costas Meghir, David Molitor, Fiona Scott-Morton, Blair Parry, Michael Powell, 
Constana Esteves-Sorenson, Ashley Swanson, Bob Town, and Heidi Williams as well as seminar participants at AHEC 2012, AEA 
meeting 2013, Boston University, Cornell, HEC Montreal, IHEA 2013, the National Bureau of Economic Research, NIA Dartmouth 
research meeting, the National Tax Association annual meeting, Northwestern, Stanford, University of Houston, and Yale. Funding for 
this work was provided by NIA Grant Number T32-AG0000186 to the NBER.
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returns to treatment are low, or are physicians treating the wrong patients and achieving 

suboptimally low returns for a given amount of spending?

Diagnostic imaging has been a particularly salient target for policy intervention to prevent 

overuse. Use of imaging studies grew faster than any other physician service between 2000 

and 2007 (Iglehart 2009), leading to concerns about the costs and appropriateness of these 

imaging tests (Rao and Levin 2012). The Choosing Wisely campaign, sponsored by the 

American Board of Internal Medicine Foundation and other leading professional societies, 

encouraged reductions in use of 45 common tests and procedures in 2012, over half of which 

were diagnostic imaging services.

In this paper, we develop an econometric framework for evaluating how testing intensity and 

selection of patients impact yields of diagnostic imaging studies. To identify testing intensity 

(defined as the tendency to test any given patient), our framework decomposes variation in 

diagnostic imaging rates across doctors into heterogeneity in patients’ benefits from testing 

and heterogeneity in physicians’ tendency to test a given patient. Additionally, the model 

identifies whether physicians are weighting patient observable risk factors to maximize test 

yield (i.e. the number of positive tests for a given number of tests). Despite the widespread 

policy attention to the problem of overuse in imaging, our analysis finds that the welfare 

costs of misallocation are much larger than the costs of overuse. Our findings suggest that 

for a popular and common diagnostic test, physicians systematically fail to target imaging to 

those patients with the greatest risk of an acute, often fatal medical condition.

Our model builds on classical econometric selection models originally developed by 

Heckman (1979) and refined by Chandra and Staiger (2011). Adapting these models to study 

repeated test decisions by physicians, we argue that the test yield among each doctors’ 

marginally tested patients—those tested patients whom the doctor is nearly indifferent 

between testing and not testing—can be used to reveal the doctor’s testing intensity and 

provides exclusion restrictions useful for identifying whether doctors successfully maximize 

test yields.

The same modeling approach can be applied in any setting where we observe repeated 

choices by a decision-maker meeting two conditions: first, the decision-maker aims to 

maximize an observable outcome among selected individuals; second, the value of the 

relevant outcome is known under the counterfactual where selected individuals were not 

selected.1 In this case, we assume that physicians seek to maximize test yield for a given 

number of tests, and we know that test yield is zero if a patient is not tested (the condition 

will not be detected without this test). Other applications include banks deciding which 

customers to loan to at a given interest rate in order to maximize profits or employers 

deciding which employees to hire to maximize productivity. Banks earn zero profits from 

1We discuss the second condition at greater length in Section 4. In Abaluck, Agha, and Chan (2016), we extend the framework 
developed here to the case of two-sided selection also studied by Chandra and Staiger (2011). Specifically, we study the decision of 
whether to treat a patient with Warfarin to minimize strokes; unlike the case studied in this paper where knowing test yield fully 
reveals the impact of testing on the probability of a positive test (and given calibration assumptions, on the medical value of the test), 
knowing strokes only among treated patients does not suffice to recover treatment effects for those patients.
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customers who do not receive a loan and employers get no productivity benefits from 

employees who are not hired, so our second condition is satisfied.

We apply our model to analyze CT scans that test for pulmonary embolism (PE). Estimation 

of the model requires that we can observe test outcomes among patients selected for testing, 

as well as the structural assumption that doctors will order a CT scan to test for PE if the 

patient’s ex ante risk of PE exceeds a doctor-specific testing threshold. This threshold is our 

patient invariant measure of physician testing intensity and we seek to recover it for each 

doctor in our sample.

Identifying differences in physicians’ practice styles separately from patient heterogeneity 

typically requires either quasi-random assignment of patients to physicians or estimates of 

potentially heterogeneous causal effects of medical treatment for each patient. Prior 

research, including Chandra and Staiger (2011) and Currie and MacLeod (2013), has argued 

that reliable estimates of causal treatment effects can be obtained using detailed chart data to 

control for all patient characteristics observable to doctors, but such data is typically only 

available in limited samples. This stumbling block makes it difficult to investigate both the 

extent and the determinants of healthcare overuse or misuse.

A key insight of this paper is that the ex post value of a diagnostic test, in this case chest CT 

scans, is partially observable in insurance claims records based on whether the test results in 

the relevant diagnosis. A doctor who performs many negative CT scans, which have little ex 
post value for improving patient health, is likely to have a low testing threshold. Our model 

accounts for heterogeneity in patient PE risk and shows how to recover physicians’ testing 

thresholds. Using these estimated testing thresholds, we investigate the role of medical 

training, malpractice environment, hospital characteristics and regional factors in shaping 

practice styles. The model also allows investigation of whether doctors are misweighting 

observable patient risk factors in selecting which patients to test for PE. By comparing how 

observable risk factors predict physicians’ testing decisions to how those same variables 

predict rates of positive tests amongst tested patients, we can identify whether physicians are 

targeting CT scans to the patients with the highest risk of PE based on demographics and 

comorbid conditions.

Previous research has identified important differences in practice style and skill across 

physicians. Chandra and Staiger (2011) conclude that overuse of care explains a large 

amount of variation in treatment for heart attacks across hospitals. Currie and MacLeod 

(2013) uncover substantial heterogeneity in diagnostic skill across obstetricians. Finkelstein 

et al. (2014) find that roughly half of the variation in medical spending across regions is 

driven by provider behavior (rather than patient preferences or health risks), and Molitor 

(2012) reports that environmental factors explain much of the variation in physician’s rates 

of cardiac catheterization.

We extend this prior literature by not only estimating heterogeneity in physician practice 

styles, but also explicitly demonstrating that differences in practice style explain why 

physicians who use more medical resources have lower average medical returns to 

utilization. We then estimate the resulting welfare loss from the measured variation in 
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practice styles. We additionally investigate physicians’ systematic underweighting and 

overweighting of patient risk factors and assess how failure to target medical resources to the 

patients with the highest expected returns impacts health benefits and total welfare. To our 

knowledge, we are the first to do so in the health economics literature. This analysis 

highlights a policy-relevant mechanism by which physician decisions may influence health 

outcomes, and sheds light on the economic importance of these systematic errors in expert 

judgment.

We analyze 1.9 million emergency department visits drawn from a 20% sample of Medicare 

claims data, 2000–2009. We present reduced form evidence of a sharply negative 

relationship between physician testing rates and test yields: those physicians who test the 

most patients also have the lowest rate of positive tests. We apply a structural model to show 

that this pattern is explained by enormous heterogeneity in doctors’ testing thresholds. 

Doctors who test more patients move further down the net benefit curve and test patients 

who are less likely to test positive. Less experienced doctors and doctors in higher spending 

regions tend to have lower risk thresholds at which they deem CT imaging worthwhile.

Further, physicians fail to target the test to the highest risk patients. Recognized risk factors 

based on a patient’s medical history, some of which are included in popular PE risk scores, 

continue to receive too little weight in physicians’ testing decisions. On the other hand, 

symptoms appear to be overweighted in some cases. Physicians tend to overtest patients 

previously diagnosed with one of several conditions which have similar clinical symptoms to 

PE: rather than infer the patient is having a recurrent episode of their existing condition, the 

physician may order a PE CT despite the low predicted risk. Finally, black patients are tested 

less often than other patients despite their higher risk of PE.

Applying calibration assumptions about the cost of testing, the benefits of treating PE and 

the likelihood of false positives, we compare our estimated distribution of physician testing 

thresholds to the calibrated socially optimal threshold. This comparison tells us whether 

doctors are overtesting or undertesting from a social standpoint.2 Under our preferred 

calibration assumptions, 84% of doctors are overtesting in the sense that for their marginal 

tested patients,3 the costs of testing exceed the benefits. In a simulation where no doctors 

overtested, the net social benefits from chest CTs would increase by 60% and the number of 

chest CT scans would fall by 50%. The calibration also allows us to assess the degree of 

inefficiency from physician misweighting of patient risk factors. Weighting observable 

comorbidities to maximize test yields would increase the net benefits of testing by more than 

300%, primarily by leading to additional testing and appropriate diagnosis of patients with a 

PE.

2Earlier drafts of this paper called this an “allocative inefficiency”. In the framework of Garber and Skinner (2008), this is an 
allocative inefficiency in the sense that one has gone too far along the flat of the curve relating health outcomes to spending, meaning 
that the marginal return to an additional dollar of care is small (too many resources are allocated to this service). This is contrasted 
with a productive inefficiency in which one is on a lower production function than could feasibly be achieved. Confusingly, such a 
“productive inefficiency” may well result from misallocation of resources - for example, failing to allocate CT scans to those patients 
who benefit most. To avoid the resulting confusion, we now avoid the use of the terms “allocative inefficiency”” and “productive 
inefficiency” and only use the term “allocation” in the context of whether physicians are appropriately choosing which patients to test 
in order to maximize test yield.
3Throughout this paper, “marginal” patients is used to refer to those patients whom a given physician is indifferent between testing 
and not testing.
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The paper is organized as follows. Section 2 provides some background on chest CT scans 

for PE. Section 3 describes the data and uses reduced form evidence to motivate the 

structural model. Section 4 lays out our structural model of testing behavior and describes 

our estimation strategy. Section 5 reports results from estimating our structural model. 

Section 6 probes the robustness of these results to alternative modeling approaches that relax 

or vary key identifying assumptions. Section 7 conducts simulations to uncover the welfare 

implications of our findings, and Section 8 concludes.

2 Background on PE CTs

We study testing behavior in the context of chest CT scans performed in the emergency 

department to detect PE. PE is the third most common cause of death from cardiovascular 

disease, behind heart attack and stroke (Goldhaber and Bounameaux 2012), and CT scans 

are the primary tool for diagnosis of PE. Yet given the financial costs and medical risks of 

testing, PE CT scans are commonly thought to be overused in emergency care. The 

American College of Radiology targeted PE CT as a key part of the Choosing Wisely 
campaign aimed to reduce overuse of medical services. Despite the concern about overuse, 

the Office of the Surgeon General (2008) estimates that approximately half of PE cases are 

undiagnosed, based on analysis of autopsy reports. The simultaneous concern in the medical 

community about overuse and missed diagnoses raises the question of whether diagnostic 

testing for PE is currently being targeted to maximize PE detection.

A PE occurs when a substance, most commonly a blood clot that originates in a vein, travels 

through the bloodstream into an artery of the lung and blocks blood flow through the lung. It 

is a serious and relatively common condition, with an estimated 350,000 diagnosed cases of 

PE per year in the United States (Office of the Surgeon General 2008). Left untreated, the 

mortality rate from a PE depends on the severity and has been estimated to be 2.5% within 

three months for a small PE (Lessler et al. 2010), with most of the risk concentrated within 

the first hours after onset of symptoms (Rahimtoola and Bergin 2005). Accurate diagnosis of 

PE is necessary for appropriate follow-up treatment; even high risk patients are unlikely to 

be treated presumptively.

CT scans to test for PE have a number of attractive features for our purposes: they are a 

frequently performed test; they introduce significant health risks and financial costs; a 

positive test is almost always followed up with immediate treatment, observable in Medicare 

claims records; and a negative test provides little information to the physician about 

alternative diagnoses or potential treatments. We discuss each of these features in more 

detail in Appendix B, explaining how the clinical context supports our modeling 

assumptions.

PE is an acute event with a sudden onset. The symptoms of PE are both common and 

nonspecific: shortness of breath, chest pain, or bloody cough. Hence, there is a broad 

population of patients who may be considered for a PE evaluation. Practice guidelines 

recommend that physicians also consider several additional risk factors before determining 

whether to pursue a workup for PE.4
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Many argue that PE CT scans are widely overused (Coco and O’Gurek 2012, Mamlouk et al. 

2010 and Costantino et al. 2008). Recent estimates by Venkatesh et al. (2012) suggest that 

one third of CT scans in a sample of 11 US emergency departments would have been 

avoidable if physicians had followed National Quality Forum guidelines on CT usage. The 

nonspecific symptoms of PE and significant mortality risk likely both contribute to overuse, 

particularly in the emergency care setting.

A CT angiogram is the standard diagnostic tool for PE. The average allowed charge in the 

Medicare data is around $320 per PE CT when the bill is not covered by a capitation 

payment. Payment goes to the radiologist for interpreting the scan and to the hospital for the 

technician and capital equipment required to perform the scan. The emergency department 

doctor responsible for ordering the test has, at most, a diffuse incentive to ensure the 

hospital’s financial health and reduce his malpractice risk, but he receives no direct 

payments from Medicare or the hospital for ordering a scan.

PE CT scans also come with small but important medical risks. The most significant risk 

arises from false positive CT scans which lead to additional unnecessary treatment with 

anticoagulants, incurring financial costs and creating significant risk of bleeding. In addition, 

there is an estimated 0.02% chance of a severe reaction to the contrast, which then carries a 

10.5% risk of death (Lessler et al. 2010), although this cost is small relative to the billed 

financial costs of a CT scan. Finally radiation exposure may increase downstream cancer 

risk, although the additional lifetime cancer risk is minimal for the elderly Medicare 

population in this study.

The key simplifying assumption we make to evaluate the net benefits of testing is that a 

negative test has no value. This assumption is not true in general for all tests: a negative test 

may rule out one treatment thus justifying treatment for an alternative, or a negative test 

might prevent an otherwise costly treatment. However, in our setting—CT scans for PE—a 

positive test is followed by an inpatient admission and treatment with blood thinners while a 

negative test does not suggest any further interventions or testing for related problems. We 

defend this assumption at greater length in Appendix B.

3 Data

We combine data from five sources: Medicare claims records, the American Hospital 

Association annual survey, the American Medical Association Masterfile, the Medicare 

Physician Identification and the Eligibility Registry, and the Avraham Database of State Tort 

Law Reforms. Using a 20% sample of Medicare Part B claims from 2000 through 2009, we 

identify patients evaluated in an emergency department and observe whether they were 

tested for PE, as well as whether any such test succeeded in detecting PE.

4Popular practice guidelines use the following factors to calculate a risk score: age, elevated heart rate, recent immobilization or 
surgery, history of deep vein thrombosis or PE, recent treatment for cancer, coughing up blood, lower limb pain or swelling, and 
chances of an alternative diagnosis.
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3.1 Medicare claims data

We begin by identifying all patients evaluated in the emergency department (ED), using 

physician-submitted Medicare Part B claims for evaluation and management.5 The physician 

submitting this claim for evaluation and management is responsible for the patient’s 

emergency care; it is his decision whether or not to order testing for PE. Using physician 

identifiers, we track the behavior of all doctors who routinely evaluate Medicare patients in 

the ED.

We identify which ED patients are tested for a PE using bills submitted by radiologists for 

the interpretation of chest CTs with contrast, when the CT is performed within 1 day of the 

ED visit.6 We restrict our sample to physicians who order at least seven in sample CT scans 

between 2000–2009, since very low volume doctors provide too little information to 

accurately estimate physicians’ testing thresholds.7

While diagnosis of PE is the most common purpose of a chest CT performed in the 

emergency care setting, there are a small handful of other, less common indications, 

including pleural effusion, chest and lung cancers, traumas, and aortic dissection. For this 

reason, we exclude patients from the sample who are coded with a diagnosis related to 

trauma, pleural effusion, chest or lung cancer, or patients with a history of aortic aneurysm, 

aortic dissection, or other arterial dissection. We also exclude patients with a history of renal 

failure, since these patients are likely ineligible for a CT scan with contrast, due to risks of 

the contrast agent. These sample restrictions are designed to limit the sample to patients who 

may be eligible for a chest CT scan and for whom the scan is highly likely to have been 

ordered to detect PE; these assumptions are discussed in more detail in Appendix C.

Once we have identified relevant CT scans in billing data, we then need to code the test 

outcome, i.e. whether or not the scan detected a PE. Patients with acute PE are typically 

admitted to the hospital for monitoring and to begin a course of blood thinners or place a 

venous filter to reduce clotting risk. From the sample of patients tested in the emergency 

department with a chest CT, we identify positive tests on the basis of Medicare Part A 

hospital claims that include a diagnosis code for PE among any of the diagnoses associated 

with the hospital stay.

We have validated this approach to identifying positive tests by using cross-referenced 

patient chart and hospital billing data from two large academic medical centers. The 

evidence from these centers suggests that we are unlikely to understate physicians’ testing 

thresholds due to undercounting of positive test results. More detail on this data validation 

exercise is presented in Appendix D.

In addition to measuring whether patients were tested and the testing outcome, we also 

document a number of characteristics that allow us to predict the patient’s propensity to be 

5In particular, we identify patients based on CPT codes for emergency department evaluation and management: 99281, 99282, 99283, 
99284, 99285, and place of service 23 (i.e. hospital emergency department).
6We begin by identifying all bills for chest CTs on the basis of CPT codes 71260, 71270, and 71275.
7In our sample, this restriction drops about 1/2 of all CT scans since a large number of patients are evaluated by very low volume 
providers. Nonetheless, our sample likely includes the most policy relevant sample - it is difficult to target interventions at physicians 
who order a procedure less than once a year.
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diagnosed with a PE, including age, race, sex, and medical comorbidities. We code 

comorbidities from both Medicare’s Chronic Condition Warehouse and from the Elixhauser 

et al. (1998) definitions; while these sets of conditions overlap, the Chronic Condition 

Warehouse utilizes outpatient claims to code comorbidities whereas the Elixhauser 

comorbidities are based only on inpatient medical history, so they typically encode different 

levels of disease severity. We augment these standard sets of medical comorbidities to 

include several measures that are specific to PE risk: whether the patient was previously 

admitted to the hospital with a diagnosis of PE, thoracic aortic dissection, abdominal aortic 

dissection, or deep vein thrombosis, and any cause admission to the hospital or surgical 

hospital admission within 7 days or 30 days.

3.2 Physician, hospital, and regional data

After using the Medicare claims data to estimate the testing threshold applied by each 

doctor, we explore predictors of physicians’ practice styles by linking testing thresholds to 

physician, hospital, and regional characteristics.

We draw physician data from two sources, the Medicare Physician Identification and 

Eligibility Registry (MPIER) and the American Medical Association Masterfile (AMA 

data). The MPIER and AMA both identify the medical school and graduation year for each 

physician, which we have linked to the US News & World Report medical school rankings. 

We bin schools according to whether they are typically ranked in the top 50 for either 

primary care or research rankings.

Hospital characteristics are drawn from the American Hospital Association annual survey. 

We use these data to observe whether the physician typically practices at a for profit hospital 

or an academic hospital, defined as a hospital with a board certified residency program.

Using provider zip codes, we identify the hospital referral region (HRR) in which each 

patient is treated. HRRs are regional health care markets defined by the Dartmouth Atlas to 

reflect areas within which patients commonly travel to receive tertiary care. There are 306 

HRRs in total. Using data from the Dartmouth Atlas, we link each HRR to the average 

spending per Medicare beneficiary to capture a broad measure of regional care intensity.

Finally, data on state malpractice environment is from Avraham (2011) Database of State 

Tort Law Reforms. Following prior work by Currie and MacLeod (2006) and Avraham et al. 

(2012), we focus on two key measures of malpractice law: whether a state has enacted 

malpractice damage caps on award amounts, and joint and several liability reform.

3.3 Summary statistics

There are 1.9 million emergency department visit evaluations in our dataset, after making 

the sample exclusions noted above. Of these patients evaluated in the ED, 3.8% of them are 

tested with a chest CT scan with contrast. Amongst tested patients, 6.9% of them receive a 

positive test, i.e. are admitted to the hospital within 24 hours with a diagnosis of PE.

Summary statistics are reported in Table 1, with results reported separately for patients who 

do not receive a CT scan (column A), patients who receive a negative test (column B), and 
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patients with a positive test (column C). We observe the testing behavior of over 6600 

physicians, with an average of 284 ED patients per physician.

Patient demographics are similar across the untested and tested patient groups. The average 

age is 78 years in the untested sample and slightly lower (77 years) in the sample of patients 

with negative or positive tests. Patients who test negative are more than twice as likely to 

have a history of PE as untested patients; patients with positive tests are five times more 

likely to have a history of PE than untested patients.

We note a few modest differences in physician background and practice environment across 

patient groups. Patients with negative tests are evaluated by doctors with five months less 

experience on average than patients with positive tests, and were treated in regions with 1% 

higher Medicare spending per beneficiary, compared to patients with positive tests. Among 

tested patients, those with positive tests were 1 percentage point more likely to have been 

evaluated by a doctor trained at a top tier medical school. In the structural model, we will 

decompose to what extent these differences may be driven by differential sorting of high risk 

patients and to what extent they reflect differences in physician practice styles.

3.4 Reduced form evidence of heterogeneity in doctor testing behavior

Before describing our model, we consider reduced form evidence of heterogeneity in 

doctors’ testing behavior. We first divide doctors in our sample into 10 deciles according to 

the average fraction of patients tested. We observe average testing rates that range from 

1.7% of ED patients in the lowest physician decile to 8.2% of ED patients in the highest 

physician decile. We want to know whether this variation reflects differences in doctor 

behavior for patients with similar PE risk, or differences in patient PE risk for physicians 

with similar testing intensities.

We can separate these hypotheses by comparing rates of positive tests conditional on testing 

behavior. If doctors who test more do so because their patients are at higher risk of PE, we 

should expect that doctors with higher testing rates will also have a higher fraction of 

positive tests among tested patients.8 Alternatively, if doctors who test more do so because 

they are the type that tests more for any given level of patient risk, then we expect to find 

that physicians who test more also have a lower fraction of positive tests among tested 

patients. In the latter case, physicians could differ in the threshold probability at which they 

think testing is worthwhile, and physicians who test more are moving further down the 

expected benefits curve.

To illustrate this point, we have sketched a stylized picture of the testing decision in Figure 

1. Patients are sorted along the x-axis according to their risk of PE, qid, from highest risk to 

lowest risk. The x-axis corresponds to the cumulative fraction of patients, and the y-axis 

corresponds to the marginal patient’s PE risk qid, so that each point (x, y) along the plotted 

curve shows the fraction x of patients for whom qid ≥ y. For example, at point (TA = 2/3, τA 

8In particular, both doctors would have similar test yields among marginal tested patients, but the doctor who tests more would have a 
higher test yield among the higher risk inframarginal patients. We formalize the points in this section in the context of our structural 
model in section 4.
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= 1/2) in Panel A, the graph indicates that 2/3 of patients have a risk of PE that equals or 

exceeds 1/2. (We use this unrealistically high risk for illustrative purposes.)

In Panel A, we consider two doctors with the same patient distribution of PE risk, but with 

different testing thresholds. Doctor A tests every patient whose personal PE risk qid exceeds 

Doctor A’s testing threshold τA, and likewise Doctor B tests all patients for whom qid > τB. 

Because Doctor B’s threshold is lower than Doctor A’s, i.e. τB< τA, Doctor B tests a greater 

fraction of patients, TB > TA. Doctor B’s tested patients have a lower average PE risk than 

Doctor A’s tested patients, so Doctor B’s test yield ZB—i.e. the fraction of positive tests 

among tested patients—is lower than Doctor A’s test yield ZA, as can be seen in the graph. 

In this panel, there is a downward sloping relationship between the fraction of patients each 

doctor tests and his average test yield.

In Panel B, we consider an alternate scenario which could also explain why Doctor B 

continues to test a greater fraction of his patients than Doctor A, i.e. why TB > TA. In this 

example, doctor A and Doctor B have the same testing threshold, so . Given the same 

expected patient PE risk, Doctors A and B would arrive at the same testing decision. 

However, the two doctors now face different distributions of patient PE risk. For any given 

probability of a positive test, Doctor B sees (weakly) more patients with qid exceeding the 

common threshold for testing. In other words, Doctor B’s patient population is higher risk 

than Doctor A’s. As can be seen in the graph, Doctor B’s test yield ZB′ will be higher than 

Doctor A’s test yield ZA′, even though both doctors have the same testing threshold, since 

more of the mass in Doctor B’s distribution of patient risk is concentrated at higher risk 

levels. In contrast with Panel A, there is now an upward sloping relationship between the 

fraction of patients each doctor has tested and his average test yield.

Now turning to our observed Medicare data, we use a simple binned scatterplot to explore 

whether variation in risk for PE or variation in testing behavior can explain the differences in 

physicians’ testing propensities. We begin by binning physicians into deciles according to 

the fraction of patients they test; next we calculate the fraction of tested patients for whom 

PE was detected within each decile. This relationship between fraction tested and average 

test yield is plotted in Figure 2 Panel A. The graph displays a generally downward sloping 

relationship between average testing probability along the x-axis and fraction of tested 

patients with detected PE along the y-axis. Doctors who test a greater fraction of their 

patients are less likely to find positive test outcomes among tested patients; a simple 

regression reveals this relationship is highly significant. The figure suggests that differences 

in testing thresholds across doctors may be an important determinant of observed 

heterogeneity in testing behavior. It appears that doctors who are more likely to test their 

patients compared to their peers are also testing more low-risk patients.

Our structural model formalizes the intuition described above. It is designed to disentangle 

(observable and unobservable) differences in patient PE risk from differences in physician 

testing thresholds and evaluate the contribution of each to observed variation in testing 

behavior, following the intuition of this simple empirical exercise. We discuss the structural 

model in more detail in Section 4 below.
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3.5 Reduced form evidence of misweighting patient PE risk factors

In addition to considering heterogeneity in physicians’ testing thresholds, we also investigate 

whether physicians are successfully identifying observable risk factors associated with the 

highest probability of positive tests and testing patients with those characteristics. 

Determining which patients should be tested requires complex, subtle judgments about 

clinical risk on the basis of many factors. In our data, we capture some of the most common 

and relevant comorbidities by analyzing patients’ claims histories. Guided by the structural 

analysis that follows, we motivate our exploration of misweighting PE risk with a few 

simple examples.

Consider a comparison of patients with a history of prostate cancer to those with no such 

history. Patients with a history of prostate cancer are no more likely to be tested for PE than 

patients without that condition; in fact, testing rates are slightly lower among prostate cancer 

patients (3.7%) compared to the rest of the population (3.8%). However, it turns out that 

among tested individuals, prostate cancer patients are over 50% more likely to be diagnosed 

with PE than patients with no such history.

In Figure 2 Panel B, we see that for each decile of doctors’ overall testing rate, doctors are 

equally or more likely to test patients without prostate cancer, despite the consistently higher 

PE risk among patients with prostate cancer. As described in the previous section, in the 

absence of variation in physician practice style, we would expect this graph to be upward 

sloping: doctors who tested more patients would do so because they have higher risk patients 

and higher expected test yields. Splitting the sample by comorbidity, if patients with a given 

comorbidity have higher yield they should also be tested at higher rates.

A PE risk score popularly used to guide physicians on whether to order diagnostic testing 

includes treatment for cancer malignancy among its 7 risk criteria (Wells et al. 1995; Wells 

et al. 1998; Wells et al. 2000). And yet, although cancer is a recognized clinical risk factor 

for PE, a relationship supported by our data, it appears that patients with a history of prostate 

cancer are no more likely to be tested than the average ED patient. This provides the first 

suggestive evidence that physicians may not be properly accounting for the increased PE 

risk associated with prostate cancer, and thus may be under-testing prostate cancer patients 

relative to the rest of the population.

In Table 2, we highlight the basic summary statistics for eight of the clinical factors that 

show significant evidence of misweighting in the structural model that follows. Similar to 

the case of prostate cancer, we find that black patients are less likely to be tested than non-

black patients, even though among tested patients, the rate of positive tests is much higher 

for black patients. Figure 2 Panel C illustrates the lower test rates and higher test yield of 

black patients within every decile of physician test rate. A reverse pattern holds for patients 

with ischemic heart disease, atrial fibrilation or chronic obstructive pulmonary disease 

(COPD); they are tested at similar or higher rates than patients without those conditions, 

despite the fact that tested patients with these conditions are approximately 30% less likely 

to have a PE detected. Figure 2 Panel D shows the test rates are substantially higher and 

yields lower for pateints with COPD, within each decile of physician test rate.
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For other conditions, physicians respond in the right direction but overweight or 

underweight that condition relative to what would maximize the incidence of positive tests. 

The model implies that, everything else held equal (including other patient characteristics 

and physician thresholds), two comorbidities which have the same marginal impact on 

testing behavior should also have the same marginal impact on the conditional likelihood of 

a positive test. Our model identifies a few factors which appear to have a disproportionate 

impact on the likelihood of a positive test given their impact on testing behavior: a past 

history of PE, deep vein thrombosis, or a recent hospital admission are associated with 20 to 

90 percent higher rates of testing but are 140 to 200 percent more likely to have a PE 

detected, a disproportionate increase relative to other factors in our model with a similar 

impact on testing behavior.

This exploration of misweighting presumes that patients with and without a particular risk 

factor don’t differ in their other comorbidities and are sorting to ED physicians with similar 

testing thresholds. In the structural model, we formalize this analysis, explicitly modeling 

differences in testing rates that may be driven by physician’s testing thresholds or other PE 

risk factors.

4 Model of testing behavior

Our reduced form results suggest that physicians vary in their testing intensity and that 

physicians may not be allocating tests in a way that maximizes test yields. Our structural 

model embeds both possibilities and allows us to assess the quantitative importance of each 

inefficiency.

First consider the question of how we can identify variation in physicians’ practice style. In 

a world with random assignment of patients to doctors, a simple comparison of average 

testing rates across doctors could recover physicians’ testing intensities, since there would be 

no cross-doctor variation in patients’ ex ante PE risk. After adjusting for statistical noise, the 

variation in physician testing rates with random patient assignment would tell us whether 

physicians vary in their testing intensity for identical patients. Unfortunately, in our setting

—as in many cases of interest—patients are not randomly assigned to physicians. If we 

regressed testing behavior on physician fixed effects, those fixed effects would jointly 

capture both physicians’ testing tendencies and the suitability of each physician’s patient 

population for testing. Since some doctors see patients with greater ex ante risk, we cannot 

attribute all variation in physician fixed effects to differences in doctor testing intensities.

To recover a measure of practice style that is purged of variation due to different patient 

populations, we apply an insight from Chandra and Staiger (2011) (hereafter, CS) which 

builds upon classical selection models developed by Heckman (1979) and Heckman and 

MaCurdy (1980). CS’s insight closely parallels the logic in Section 3.4. In their model, if 

physician A is more inclined to treat any given patient than physician B, then physician A’s 

marginal patients should have lower returns to treatment. Estimation of the original CS 

model requires observing the individual-specific return to treatment for all treated 

individuals, a difficult object to recover if one does not have random patient assignment. We 
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adapt the model to cover diagnostic testing, where test results (positive or negative) can 

proxy for the impact of treatment on the treated.9

As noted in the introduction, the distinctive feature of positive tests which eliminates the 

need to separately estimate or assume treatment effects arises in many other settings of 

interest. The essential ingredient is that we need only observe outcomes among treated 

individuals; counterfactual outcomes if treated patients had not been treated are known. Test 

yield is zero among untested patients: PE would not have been detected without this test. As 

a result, we can use test outcomes among tested patients to analyze whether physicians 

sucessfully maximize test yields for a given number of tests. Likewise, a bank deciding 

whether to extend credit learns exactly the profits they received from a given customer once 

the loan term is reached and they know whether default occurred. Similarly, a firm deciding 

which applicants to hire knows how much productivity they generated from a given 

employee once the employee has completed a given employment spell.

In contrast, our model would not directly extend to a doctor deciding which patients to treat 

with a drug in order to minimize stroke risk. In that case, we would not know the impact of 

the drug just from observing whether a patient had a stroke, because we would not know 

what the value of the objective function (strokes) would have been absent treatment. 

Likewise, if the employer’s objective were to maximize the productivity of a given employee 

regardless of which firm they end up in (perhaps a more reasonable objective for a policy-

maker), we would not know whether that employee would have been more productive 

elsewhere. Our model is not directly applicable in such cases without further structure and 

assumptions.10

In the setting of diagnostic tests, the CS intuition becomes very simple because test yield is 0 

among untested patients. Suppose physician A is more inclined to test than physician B, in 

the sense that physician A tests all patients with a probability of a positive test greater than 

4% while physician B tests all patients with a probability of a positive test greater than 5%. 

Then by looking directly at test yields for each doctor’s marginal patients, we can recover 

her threshold: those patients whom physician A is indifferent between testing and not testing 

have a test yield of 4%, while those patients whom physician B is indifferent between testing 

and not testing have a yield of 5%. Our model uses cross-doctor heterogeneity in test yield 

among marginal patients to identify variation in physician testing thresholds, which tell us 

whether physicians would behave differently given identical patient populations.

To identify misallocation of tests, we ask whether different patient characteristics which 

predict the same change in testing probabilities also predict the same change in yield 

conditional on testing. If we find that, for example, patients with and without prostate cancer 

are tested at the same rates but patients with prostate cancer are much more likely to test 

positive conditional on being tested, this suggests that one could increase test yield by 

testing more patients with prostate cancer.

9Given our assumption that negative test results do not improve patient health ex post, the testing outcome can proxy for the impact of 
treatment on the treated, as long as the benefits of treating a detected PE are constant across patients. The clinical basis for this 
assumption is discussed at greater length in Appendix B.
10We extend the model to investigate the use of Warfarin to prevent strokes in Abaluck, Agha and Chan (2016).
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For our analysis of both physician practice style and test misallocation, considering 

counterfactuals requires us to predict how test yield would change if physicians test more or 

fewer patients with a given set of observable characteristics. Following CS (and more 

generally Heckman and Vytlacil 2005), we recover this information by estimating the 

relationship between test yields and testing probabilities (or more precisely, predicted 

indices of testing propensity). In the exposition below, we make explicit the conditions under 

which the relationship between test yields and testing probabilities fully captures how 

marginal benefits decline as physicians test more patients.

Our exposition will proceed as follows. First we lay out the CS model with the adaptation 

described above—i.e. replacing the returns to treatment with the probability of a positive test

—and describe how we can recover each physician’s testing intensity. In section 4.2, we 

extend the CS modeling framework to capture the possibility that physicians may not select 

patients to test in a way that maximizes test yield. In section 4.3, we discuss how physician 

thresholds, misweighting, and the degree of selection on unobservables can be jointly 

identified. In section 4.4, we provide further details on how our model is estimated.

4.1 A Chandra-Staiger Model of Testing

Assume that the suitability of a patient for testing is determined entirely by the ex ante 
likelihood of a positive test. We define qid to be the conditional probability of a positive test 

for patient i evaluated by doctor d, given all the information available to the doctor:

(1)

where xid are observed patient characteristics (which we assume throughout are normalized 

to have mean 0 for each doctor), αd are doctor fixed effects, and ηid are factors observable to 

the doctor but unobservable to the econometrician which impact the likelihood that a test is 

positive. Note that the inclusion of physician fixed effects ad allows the population risk of 

PE to vary across doctors in ways that are not captured by the included patient covariates.11

Following the typical structure of Heckman selection models, we begin by assuming that ηid 

is independently and identically distributed across patients and doctors; we refer to this as 

the “ignorability assumption” following the prior literature. (We explore relaxing the 

ignorability assumption in Section 6.) We further assume that ηid has full support; note it is 

also bounded because qid lies between 0 and 1.

Following CS, we make the structural modeling assumption that physicians test if and only 

if the probability of a positive test qid exceeds a physician-specific threshold τd. That is, they 

test if and only if:

(2)

11CS interpret αd to reflect variation in expertise rather than differences in patient population. In our setting, where there is separation 
between the diagnostician ordering the test and the radiologist conducting it, and less expected skill dispersion in interpreting the test, 
we focus instead on the possibility that some doctors see a patient population which is ex ante more likely to have PEs.
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which implies that:

(3)

where the functional form of f(xidβ + αd − τd) = Pr(ηid > − (xidβ + αd − τd)) depends on the 

distribution of ηid. By estimating equation 3, we can calculate the probability that a patient 

with a given set of observables is tested by doctor d, which will be a nonlinear function of 

the testing propensity index Iid = xidβ + αd − τd.

τd is our measure of physician treatment intensity holding patient population fixed. 

Physicians with lower τd are more likely to test any given patient: they have a lower 

threshold probability at which they decide testing is worthwhile. If we had random 

assignment of patients to physicians, then we would know that αd = α for all physicians and 

could recover τd directly from estimation of equation 3 (at least up to a normalization 

constant). Without random assignment, αd and τd are not separately identified from 

observed testing decisions; to separate them, we will need to use data on test outcomes.

Let Zid denote a binary variable indicating whether the test is positive or negative, which we 

observe only for tested patients. If every patient were tested, we would observe Zid for the 

entire sample and could recover β and αd by estimating the linear probability model implied 

by equation 1 using OLS. (Of course, if every patient were tested, there would be no 

variation in doctor testing thresholds.) In practice, we only observe whether a test is positive 

or negative for those patients whom doctors choose to test, so there is a selection problem; 

this is the standard selection problem originally studied by Heckman (1979).

Formally, we model testing outcomes as follows:

(4)

where h(xidβ + αd − τd) ≡ E(ηid|qid > τd) = E(ηid|ηid > − Iid) and λ(Iid) ≡ Iid + h(Iid). Test 

yields are a function of physician thresholds and the propensity to test.

For marginal patients whom doctors are indifferent between testing and not testing, λ(Iid) = 

E(Iid + ηid|Iid + ηid = 0) = 0, so E(qid|Testid) = τd. If a physician tests all patients with a 

probability of a positive test greater than 3%, then for marginal patients (with the minimum 

observed value of Iid among tested patients), the positive test probability is exactly 3%. The 

probablity of a positive test will generally rise among inframarginal tested patients, who are 

more likely to be tested based on observables and doctor fixed effects than marginal patients.

The binned scatterplot of testing rates and test yields described in section 3.4 can provide 

some intuition for understanding this model. Variation in testing propensities Iid could be 

driven by differences in patient PE risk, either through differences in observed comorbidities 
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xid or unobserved population risk αd. Alternatively, differences in testing propensities could 

be explained by differences in physician testing thresholds τd.

If all variation across doctors in testing behavior were driven by patient PE risk, then 

physicians with higher average testing propensities will have higher test yields. This 

relationship is apparent in the last line of equation 4; if we hold τd fixed and increase Iid, 

E(qid|Testid = 1) will increase.12 On the other hand, variation in physician testing thresholds 

τd will lead to a downward sloping relationship between testing propensities Iid and test 

yields E(Zid|qid > τd). This relationship is apparent from the first line of equation 4; if we 

hold αd fixed and raise testing propensities by decreasing τd, then E(qid|Testid = 1) will 

decrease. The model derivation formalizes the intuitive argument made in section 3.4, which 

interpreted the observed downward sloping relationship between doctors’ average fraction of 

patients tested and test yield as evidence of variation in testing thresholds.

In sum, average test yields for marginal patients will reveal testing thresholds τd among 

doctors who evaluate enough marginal patients in our sample. Estimating the relationship 

between higher testing propensities and higher test yields for physicians with known τd will 

identify the function λ(·), which allows us to recover τd even for lower volume doctors who 

do not test marginal patients in our sample. Identification is discussed more formally in 

Section 4.3. The model so far allows us to identify differences in physician testing intensity 

for fixed patient populations and to simulate how physician testing behavior and outcomes 

would change if physician practice styles were more uniform.

4.2 Misweighting of patient risk

A key difference between our model and Chandra and Staiger (2011) is that we extend the 

model laid out above to allow for the possibility that doctors may not successfully select 

patients on the basis of observable comorbidities to maximize test yields for a given number 

of tests. We previously assumed that the coefficients β attached to patient observables when 

doctors decide which patients to test reflect the true relationship between those 

characteristics and the likelihood of a positive test. This need not be the case. Doctors may 

under- or over-weight the importance of different risk factors, so that testing is not 

necessarily targeted at the highest risk patients.

Assume that each doctor’s belief about the probability of a positive test is given by:

(5)

while the actual probability remains:

(6)

12This is satisfied as long as λ(Iid) = E(ηid + Iid|ηid + Iid > 0) is upward sloping in the function Iid. This restriction holds for many 
general distributions of ηid, including, for example, under distributions meeting the restriction that ηid is symmetric and mean 0.
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In this model, doctors test if . Note that if ,  can be rewritten as:

(7)

Thus, it is without loss of generality to assume that  while noting that one reason for 

variation in thresholds τd is that physicians may have mistaken beliefs about patient PE risk 

αd. We cannot distinguish between the case where some physicians test more because they 

have a lower threshold and the case where some physicians test more because they 

mistakenly believe their patients are more likely to test positive than is actually the case.13

We define the new testing propensity  to reflect the observed propensity 

given physician beliefs about β′. With this change, we can rewrite the test outcomes 

equation:

(8)

The above derivation is identical to equation 4, except now the observables xid directly enter 

the test outcomes equation, even after conditioning on the propensity to test. In other words, 

the model implies that if observables xid continue to have explanatory power after 

conditioning on the propensity Iid, then physicians are not weighting those observables in 

the manner that would maximize the incidence of positive tests.

How can we rule out the possibility that untested patients with a given set of observables are 

known based on unobservables not to have a PE? The function λ(·) reveals this information 

given the assumptions we have made about the distribution of unobservables. This point can 

be seen most directly by rearranging equation 8 into the form of the first line of equation 4. 

That is, we can write:

(9)

where . Written this way, αd + xidβ reflects the 

average return for all patients in the population with this set of observables and 

reflects the fact that the more patients one tests (as one lowers τd and thus raises ), the 

more one moves down the marginal benefit curve and tests patients who are likely to have a 

lower test yield given unobservables.

13Note that an analogous argument implies that it is without loss of generality to allow testing thresholds to vary with observables. 
That is, suppose . Then we can replace β′ with β″ = β′ − γ. In other words, the hypotheses that physicians test 
patients with a given observable more because they believe those patients are more likely to test positive and that physicians test 
patients with a given observable more because physicians have a lower testing threshold for patients of that type are empirically 
indistinguishable.
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4.3 Identification

Equation 8 shows that test yields among tested patients depend on physician thresholds (τd), 

allocation of tests to patients (xid(β − β′)) and a selection term. As is typical for Heckman 

selection models, the selection term λ(·) can be identified using functional form restrictions, 

but it would be desirable for λ(·) to be semiparametrically identified. We lay out below how 

semiparametric identification is possible in our setting and how our identifying assumption 

differs from that used in CS due to the possibility of misallocation.

The CS model is essentially the model we outline in Section 4.1—the one difference is that 

the dependent variable in equation 4 of our model is whether a patient tested positive rather 

than an estimate of the causal treatment effect for that patient. In the CS model, 

identification comes from the fact that xid only enters the test outcome equation (i.e. 

equation 4) via λ(Iid). In that model, xid are excluded from directly entering the test 

outcomes equation and we can think of them as instrumental variables which aid in the 

estimation of λ(·), parallel to the standard instrumental variables identification in Heckman 

selection models (e.g. Mulligan and Rubinstein 2008). This restriction is no longer valid if 

physicians incorrectly assess the PE risk associated with some observable comorbidities and 

demographics xid. In the model with misweighting, equation 8 above shows that xid directly 

enters the test outcomes equation with coefficients that are not known from estimating the 

equation governing selection into testing.

In order to generalize the model to the case where doctors fail to appropriately weight 

observable risk factors in deciding whom to test, we consider an additional set of exclusion 

restrictions.14 We exploit the fact that τd can be directly estimated for physicians testing 

patients we can identify as marginal.15 Marginal tested patients are those with the lowest 

observed values of the testing propensity  who are still tested. We estimate the average 

probability of a positive test among these marginal tested patients. For these patients who are 

“just barely worth testing,” the observed probability of a positive test reveals the threshold at 

which doctors are willing to test.

Formally, since ηid is bounded with full support, there exists some value of the propensity in 

the testing equation  such that patients are only tested for . For those marginal tested 

patients with , we know the realization of ηid is just barely sufficient to tip these 

patients across the testing threshold, so that . Since λ(Iid) = Iid + 

h(Iid), it follows that  for these marginal tested patients.

Let QQd denote the average rate of positive tests Zid among tested marginal patients for 

doctor d; taking the expectation of equation 8 yields:

(10)

14CS discuss the identification strategy outlined in this paragraph and consider it as a robustness check, but do not directly use it when 
estimating their model.
15More precisely, τd is known modulo a misweighting adjustment we spell out below.
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In the equation above, Em,d(xid|Testid = 1) denotes the expectation of xid only among doctor 

d’s tested marginal patients m. The likelihood of a positive test for those tested patients with 

the lowest testing propensities is given by the physician’s threshold τd plus an adjustment 

for the fact that the actual likelihood of a positive test for these patients differs from 

physician’s beliefs because β ≠ β′. This calculation provides an exclusion restriction—after 

subtracting the average yield among a doctor’s marginal tested patients from both sides, 

doctor fixed effects are excluded for those physicians in equation 8. A more detailed 

derivation of this result is in Appendix E.

This exclusion restriction also suffices to identify λ(·). Intuitively, suppose that by studying 

marginal tested patients, we uncover multiple physicians with identical thresholds τd. These 

doctors may still differ in their propensity to test for identical observables θd = αd − τd, 

because they may treat patient populations with different PE risk αd. After conditioning on 

τd, any remaining doctor-level variation in test outcomes must be explained by differences in 

patient risk αd, and the functional form relating αd to test outcomes will flexibly identify the 

shape of the λ(·) function.

For example, suppose we see many doctors who all share the same test threshold. Some of 

these doctors test more patients than others because their patient population is riskier (higher 

αd). If a small increase in a patient’s test probability predicts a large increase in test yield 

among tested patients (correlating to a much higher αd), this implies that risk factors 

observable to the doctor but not observable by the econometrician must heavily influence 

test yields and thus testing choices. Because a small change in testing behavior correlates 

with a large change in patient risk, λ(I) will be steeply sloped. Technically, this result arises 

because the density of ηid will be smaller as dispersion in ηid increases, placing fewer 

patients in a given neighborhood of the doctor’s threshold. Alternatively, if the distribution 

of unobserved PE risk is less dispersed, i.e. unobservables exert less influence on testing 

decisions and test outcomes, a given increase in a patient’s test probability will predict a 

smaller increase in test yield among tested patients (correlating to a smaller increase in αd), 

implying that λ(I) will be relatively flat.

In addition to the validity of the exclusion restrictions, the other crucial identifying 

restriction underlying this estimation approach is the ignorability assumption: ηid is 

additively separable and i.i.d. across doctors and patients. The ignorability assumption 

implies that the function λ(·) is the same for different doctors and patients. If this 

assumption were violated and ηid were distributed differently across doctors, the function 

λ(·) could be doctor-specific. In Section 6.2, we consider one such model and show that it 

does not materially impact our results.

In our baseline model, the ignorability assumption contributes to the identification of test 

yield among currently untested patients. What would happen to test yields if a doctor 

lowered his threshold (from τ0 to τ1) and tested more patients on the margin? The definition 

of the threshold immediately tells us the new test yield among marginal patients (τ1). The 

fact that λ(Iid) embeds information about the entire distribution of ηid allows us to infer test 

outcomes among inframarginal patients as well. Ideally, this variation is “in sample” in the 

sense that we observe other doctors with a threshold as low as the value we would like to 
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simulate and can trace out how test yields relate to test probabilities for patients of those 

doctors. In our baseline model, ignorability implies that this function is the same for all 

doctors and the threshold varies the y-intercept in (test probability, test yield) space.

The identification of misweighting also relies on the ignorability assumption. The 

ignorability assumption implies that if doctors were optimally assessing PE risk, any two 

conditions with the same β′ weight in the testing equation should induce the same change in 

the fraction of positive tests amongst tested patients, holding all other comorbidities and 

testing thresholds constant. If two conditions with the same β′ weight in the testing equation 

lead to different changes in the fraction of positive tests, then we identify misweighting; we 

conclude the risk factor that induces the larger increase in positive tests is underweighted 

relative to the other factor. The slope of the function λ(·) with respect to known variation in 

αd pins down how xid should impact test outcomes Zid given β′—so we can in principle 

identify misweighting even with just a single x variable. This strategy echoes the logic of the 

reduced form evidence on misweighting presented in section 3.5, but the additional structure 

allows us to make more detailed comparisons of weighting and risk across conditions, after 

accounting for differences in patient risk and testing thresholds across doctors.

Empirically, the ignorability assumption may be undermined if the distribution of 

unobserved patient PE risk differs across conditions. For example, if fewer patients with the 

risk factor that appears to be under-weighted present to the ED with the relevant PE 

symptoms (e.g. chest pain, shortness of breath, elevated heart rate), then it may be that 

physicians are already testing every patient in the relevant at-risk population. This 

assumption is directly analogous to the standard exogeneity assumption used in virtually all 

structural models; e.g. just as discrete choice models assume that observed product 

characteristics are independent of the error term, our misweighting model is identified by 

assuming that specific observed characteristics are not systematically related to unobserved 

determinants of PE risk.

With unlimited data, we could relax the ignorability assumption. If for every set of xid, we 

observed sufficient variation in doctor testing choices for patients of that type, we could 

directly estimate the distribution of ηid conditional on xid and check whether testing more 

patients with a specific underweighted factor leads to more positive tests. In other words, we 

could allow the function λ(·) in our model to be a different function for every set of xid. In 

practice, we estimate the overall degree of selection on unobservables (assuming ηid does 

not depend on xid), but we lack sufficient data to estimate a separate distribution for each set 

of xid.

An additional subtlety of our estimation approach is that many doctors test only a small 

number of patients, so we do not necessarily observe marginal patients for all doctors. Given 

the ignorability assumption, we can still identify λ(·) from the doctors for whom we do 
observe marginal patients, and thus determine τd for other doctors.
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4.4 Estimation of the parametric model

Let us now specify precisely how we estimate the structural model outlined in the previous 

sections. Define θ′d = α′d − τd. Plugging our specification for the probability of a positive 

test from equation 5 into the testing equation 2 yields the final form of the testing equation:

(11)

These assumptions yield a binary choice model of testing. In our baseline specification, we 

assume that ηid is i.i.d. across doctors and patients with a parametric distribution we 

describe below. Thus, patients’ ex ante risk distributions may have different means (xidβ + 

αd) but are assumed to be otherwise identically distributed. In section 6, we estimate 

versions of the model which (separately) relax the parametric assumption and allow for 

heteroskedasticity across doctors in the distribution of patient PE risk.

The most common parametric assumptions in binary choice models—normal and logit—are 

inconsistent with our model because qid must lie between 0 and 1. Instead, we assume that 

each ηid is drawn from a two parameter distribution which is a mixture of a Bernoulli and a 

uniform distribution. With probability 1 − p, ηid ~ U[−η, η] and with probability p, pid ~ 

U[υ − η, υ + η]. Intuitively, this distribution captures the idea that most patients are not 

candidates for a CT scan. A small fraction of patients p present with symptoms of PE such 

as chest pain and given those symptoms, there is a range of ex ante risks parameterized by η. 

We assume that patients are never tested unless they receive the shock υ (i.e. unless they 

present with PE symptoms).

In addition to these clinical reasons, there are several methodological advantages to this 

distribution. Among bounded distributions, a uniform distribution is attractive because it 

leads to a particularly tractable linear selection term λ(·). The mixture distribution has two 

methodological advantages over a pure uniform: firstly, if p = 1 (the uniform case), the 

estimated variance of η is so large that it implies qid < 0 for some patients, which is 

inconsistent since qid is a probability. Secondly, since testing is a low probability event, a 

uniform distribution would imply that more precise information (a higher variance of ηid, 

meaning that doctors have more private information about test outcomes) leads doctors to 

test more everything else held equal; the mixture distribution allows for the possibility that 

more precise information leads to less testing. This second point is especially relevant in the 

heteroskedastic model considered in Section 6.2 where the variance of ηid is allowed to vary 

across doctors. To demonstrate that our results are not driven by this specific choice of 

parametric distribution, we also estimate the model semiparametrically as a robustness check 

in Section 6.3.

In Appendix E, we show that this distributional assumption implies:

(12)
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where . Estimation of this equation by non-linear least squares allows us to 

recover  and  which we use to construct an estimate of the testing 

propensity .

Following the steps outlined in the previous section, the testing threshold parameters τd can 

be recovered from a regression of test outcomes (i.e. positive or negative for detecting PE) 

on doctor fixed effects, controlling for the propensity  estimated from the testing equation. 

Note that under the parametric assumptions we have made so far, 

. As shown in more detail in Appendix E, this implies that:

(13)

As discussed in section 4.3, we avoid relying solely on functional form to identify the 

coefficient on  by estimating τd directly for doctors with tested marginal patients based on 

the observed average rate of positive tests among those marginal patients, . We define 

marginal patients as patients in the first decile of  among tested patients; this definition is 

conservative from the standpoint of detecting overtesting since more restrictive definitions 

(e.g. the first percentile) will tend to lead to lower estimated thresholds. We show in 

Appendix Table A.1 how our estimates change for alternative definitions of marginal 

patients. As expected, we estimate lower τd (and thus more implied overtesting) using more 

restrictive definitions.

Subtracting  from both sides of equation 13 yields:

(14)

where Yid = Zid for doctors with no tested marginal patients and  for doctors 

with marginal patients, Md is an indicator for whether a doctor has marginal patients, Xid = 

(xid − Em,d(xid)) for doctors with marginal patients and xid for doctors with no marginal 

patients.

One could estimate equation 14 in two steps—first, estimating the model among doctors 

with marginal patients with doctor fixed effects omitted to recover  and β − β′, and then 

estimating the model among doctors with non-marginal patients to recover the full set of 

doctor thresholds τd. Because fixing either  or β − β′ would be sufficient to identify 
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equation 14 for doctors with non-marginal patients, estimating the model jointly for all 

doctors uses additional information about the relative value of the parameters for doctors 

with non-marginal patients; this increases the precision of the estimates but has little impact 

on the magnitude of the coefficients.

Least squares estimation of equation 14 will allow us to recover the constant  and doctor 

fixed effects τd for non-marginal patients which, when combined with our estimates for 

marginal patients from , can be used to recover the full distribution of estimated .

The distribution of  combines both the true underlying variation in τd and estimation error 

from the fact that each τd is imprecisely estimated. To correct for estimation error, we apply 

an “empirical Bayes” technique to recover moments of the true underlying distribution of τd. 

Our approach is described in detail in Appendix F.16 Unlike more standard estimators (such 

as Kane and Staiger 2008), this technique is robust to the fact that we observe only a small 

number of observations per doctor and makes no distributional assumptions about either the 

true distribution of τd or the estimation error. The true distribution cannot be 

nonparametrically identified, but we can recover moments of that distribution; we report the 

mean and standard deviation. Simulation results do require us to recover a posterior estimate 

of τd for each doctor, and for these exercises we impose a further assumption that τd is log-

normally distributed as described in Appendix F.

5 Results

In this section, we report results of the estimation strategy described in section 4.4 above. 

First, we describe the recovered distribution of physician testing thresholds and test how 

physicians’ training and practice environment are related to testing intensity. Then, we report 

results on which risk factors are under- and over-weighted in physicians’ risk assessments 

relative to the weighting that would maximize detection of positive tests and consider 

possible clinical explanations for these patterns. Finally, we simulate how variation in test 

thresholds and the presence of misweighting affects physicians’ test yields.

5.1 Distribution and correlates of physician testing thresholds

After estimating the model laid out in Section 4 and applying the empirical Bayes 

adjustment, we find the mean value of τd is 0.056 and and the standard deviation is 0.054.17 

In other words, the average doctor is willing to test a patient provided the doctor’s estimate 

of the probability of a positive test exceeds 5.6%. Note that this positive test rate includes 

tests which detect actual PEs and false positives. The standard deviation of 0.054 suggests 

that there is a large amount of heterogeneity across doctors in their testing thresholds, with 

some doctors testing almost all patients displaying the relevant symptoms, and other doctors 

testing only patients with very substantial PE risk. Considering that the overall test yield in 

16We use quotation marks since our procedure is not a traditional empirical Bayes appraoch: we do not derive our estimator as the 
posterior of any specific distribution.
17Note that of course this would not be consistent with a normal distribution since in this case τd > 0 for all doctors or they would test 
every patient. In our welfare exercises we assume a log-normal distribution.
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our sample is only 6.9%, it is likely that this variation in testing thresholds may affect testing 

decisions for many patients.

We next consider regressions of the estimated testing thresholds  on doctor, hospital and 

regional characteristics to explore the determinants of practice style. Specifically, we regress 

 on variables capturing doctor experience (the number of years since the doctor graduated 

from medical school), whether the medical school the doctor attended is ranked in the top 50 

for research or primary care by US News & World Report, whether the hospital where the 

physician practices is a for profit hospital or an academic hospital, regional medical 

spending, the state tort environment, and average income in the region.

We consider OLS estimates as well as FGLS estimates which take into account the 

estimation error in the dependent variable τd.18 For each specification, we consider models 

with and without hospital fixed effects. Including hospital fixed effects to identify the impact 

of within-hospital variation in physician characteristics obviates the concern that our model 

omits unobserved differences in the cost of testing at the hospital level. For example, there 

may be variation in the opportunity cost of testing, depending on whether the CT scan is 

used to capacity. This heterogeneity will be absorbed into the hospital fixed effect.

Table 3 reports the results. We find that doctors in higher spending regions have lower 

testing thresholds, i.e. they are more likely to test low risk patients. A 10% increase in 

regional spending, as reported by the Dartmouth Atlas, is associated with a 0.4 percentage 

point decline in testing thresholds, significant at the 1% level. This finding provides 

empirical support for the hypothesis that high spending regions are providing lower marginal 

value, “flat of the curve” medical care.

We also find evidence that more experienced doctors have higher testing thresholds: a 10-

year increase in doctor experience is associated with 0.7 percentage point higher testing 

thresholds, significant at the 1% level. This relationship persists after controlling for hospital 

fixed effects, suggesting that even within the same institution, more experienced doctors are 

less likely to test low-risk patients. Unfortunately, we do not observe enough testing 

decisions per physician to estimate the model with year-specific testing thresholds for each 

physician, and as a result we cannot disentangle cohort and experience effects. Our finding 

stands in contrast to the result in Cutler et al. (2013) that older physicians are more likely to 

recommend agressive treatment for cardiac patients. One explanation for this difference may 

be that older physicians were trained before the broad diffusion of modern CT scans which 

are used to diagnose PE, and so may be more likely to rule out pulmonary embolism on the 

basis of clinical presentaation.

Many factors predicted to influence care quality, such as the quality of the physician’s 

training, the financial structure of the hospital (for profit or otherwise), its status as an 

academic institution, and the income of the patients served, have no significant relationship 

to testing thresholds. Estimates relating physician’s medical school rank to testing thresholds 

18The FGLS estimates are based on Lewis and Linzer (2005), where the error term consists of both a homoskedastic εid with 
unknown variance and a heteroskedastic component with known variance. The heteroskedastic component arises from the estimation 
error in  which is in turn recovered from estimation of equation 14.
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are imprecisely estimated, with the upper bound of the 95% confidence interval at a 1.2 

percentage point higher threshold for those attending a top 50 research institution. Point 

estimates suggest slightly higher thresholds for academic hospitals and lower thresholds 

among for-profit hospitals, but the 95% confidence intervals bound the differences in 

average thresholds to less than one percentage point.

Finally, exploiting cross-sectional variation in enactment of tort reform, including joint and 

several liability and malpractice damage caps, we find no consistent relationship between the 

malpractice environment and testing thresholds. The FGLS estimates point to a significant, 

negative relationship between testing thresholds and malpractice damage caps, which would 

be the opposite prediction of theory suggesting physicians are more likely to test low-risk 

patients in states with damage caps. The coefficient is much smaller in magnitude and no 

longer statistically significant in the OLS specification. Our lack of power to estimate year-

specific testing thresholds precludes us from undertaking a difference-in-differences analysis 

of malpractice law.

Given the large estimated variation in τd, with a standard deviation of 0.054 after adjusting 

for statistical noise, observed factors can explain only a small fraction of the estimated 

variation in physician practice style. This observation implies that policy responses targeted 

at reducing testing rates in specific hospital types (e.g. for profit hospitals) or policies aimed 

at raising the qualifications of emergency department doctors are unlikely to lead to 

substantial reductions in testing variation. Instead, focusing on policies which target the 

decision-making process rather than physician credentials or practice environment may have 

greater scope for reducing heterogeneity in practice style. This parallels the finding in the 

teacher fixed effects literature that there is substantial variation in teacher productivity not 

explained by teacher credentials or other observable factors (Jackson et al. 2014).

5.2 Identifying misweighted comorbidities

Next, we explore physicians’ misweighting of observable PE risk factors. As outlined in 

section 4.2, we focus on measuring aggregate misweighting: factors which appear to be 

systemically under- or over-weighted in physicians’ assessments of patient PE risk. The 

model implies that physicians are overweighting a given risk factor if they are substantially 

more likely to test a patient with that factor (holding constant other observable patient 

characteristics), but this variable does not yield a commensurate increase in the rate of 

positive tests among tested patients. The evidence of both under- and over-weighting 

suggests that physicians could perform the same total number of tests but detect more PE 

cases, if they improved targeting of the tests by applying different weights to important risk 

factors.

Results are reported in Table 4 and Appendix Table A.2. For each risk factor in our model, 

column 1 reports the marginal effect of this variable on testing probability based on the 

coefficient β′ from the testing equation (cf. equation 5). Column 2 reports the estimated 

error in physicians’ assessment of the PE risk associated with each comorbidity, implied by 

how the weights attached to each comorbidity in their testing decisions compare to the 

conditional influence of each comorbidity on test outcomes (cf. equation 13). Finally, 
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columns 3 and 4 report the standard error and t-statistic on estimated misweighting, 

respectively. Variables are sorted by their t-statistic in this table.

Given our nonlinear model, the reported marginal effects in column 1 hold for all patients 

for whom , which is true for the average patient in our data. (Marginal effects are zero 

for patients with negative values of .) All included risk factors are binary variables; 

variables with the most misweighting will have the largest absolute value of misweighting 

reported in column 2. We report robust standard errors that don’t account for estimation 

error in the testing propensity index , although this adjustment would be very small given 

the large sample of patients identifying .

We find evidence of substantial under- and over-weighting of key risk factors, relative to the 

weights that would maximize test yields. Comparing physician’s implied prediction of PE 

risk for each patient with the estimated actual risk, we find that physicians appear to be 

misestimating a patient’s probability of a positive test by 2.3 percentage points on average, 

accounting for all comorbidities and averaging the absolute value of each patient’s aggregate 

misweighting to include both under- and over-estimates. This degree of misestimation has 

the potential to affect testing decisions for many patients.

Investigating the specific conditions that drive the aggregate misweighting, we find that 

doctors appear to react strongly to patients’ clinical symptoms, overtesting patients with 

clinical conditions that may mimic the symptoms of PE, while discounting the importance of 

known PE risk factors from the patient’s medical history. We cannot distinguish in this 

setting whether the apparent overattention to symptoms rather than comorbidities is driven 

by inadequate information in the emergency care context about patient’s medical history or 

by mistaken beliefs about the PE risk associated with each factor. Future research could 

study whether high quality electronic medical records mitigate this problem by providing 

timely information about relevant medical history or whether tailored decision support might 

help guide physicians’ assessment of patient PE risk.

The strongest evidence of underweighting comes from physicians’ implicit estimate of the 

PE risk associated with a recent inpatient admission history. While immobilization is a 

commonly known risk factor for PE, popular risk scores highlight the role of recent surgery 

but do not broadly include other types of hospitalization. Perhaps as a result, we see 

evidence that physicians have adequately increased testing rates for patients with a recent 

surgical history, but do not place sufficient weight on recent hospital admissions that did not 

include a surgical procedure. The marginal effect reports that physicians are 0.9 percentage 

points less likely to test a patient with a prior inpatient admission within the past 30 days, 

implying that doctors have underestimated these patients’ PE risk by 11 percentage points 

after accounting for the role of other observed comorbidities.

In addition, several specific cancer diagnoses and a history of PE or the related condition 

deep vein thrombosis show evidence of substantial underweighting, suggesting that 

physicians are failing to adequately consider these risks when assessing a patient for PE.19 

For all but one of these conditions (metastatic cancer), physicians are indeed more likely to 
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test patients with the observed condition, holding constant other patient risk factors, but the 

response is not adequate given the large influence of this preexisting condition on the current 

risk for PE. This pattern is occurring despite the fact that both cancer treatment and history 

of PE or deep vein thrombosis are two of the seven risk factors in a popular PE risk-scoring 

algorithm known as the Wells score. This suggests that physicians are continuing to under-

respond to these critical risk factors despite their recognized role in PE risk.20

A few other risk factors also show evidence of significant underweighting, including 

rheumatoid arthritis, obesity and paralysis, all of which are known risk factors for PE 

documented in the medical literature, although not explicitly included in popular risk scoring 

algorithms. A complete list of underweighted risk factors is reported in the top panel of 

Table 4.

A number of different conditions that mimic the symptoms of PE appear on the list of over-

weighted comrbidities: these are conditions where test yields are predicted to improve if 

physicians became less likely to test patients with these particular conditions. The three 

conditions with the most significant evidence of overweighting (i.e. atrial fibrillation, 

chronic obstructive pulmonary disease, and ischemic heart disease), have chest pain and 

difficulty breathing as hallmark symptoms; these are also key clinical symptoms of PE. 

Severe depression often manifests in the emergency department context with somatic 

symptoms of chest pain and shortness of breath as well. Patients who visit the emergency 

department with an exacerbation of another previously diagnosed condition could be 

suspected of having PE due to similar symptoms and thus may be tested at a higher rate even 

though our data suggests they are not at higher risk of PE, holding constant their other risk 

factors. Given that these other conditions must have been diagnosed prior to the emergency 

department visit in order to be included on our comorbidity list, physicians should be aware 

of them at the time they are evaluating the patient for PE. Of course, failure to take an 

appropriate medical history or limited access to patients’ prior health records could hinder 

evaluation and contribute to the observed overweighting of these conditions.

Turning to demographic variables, we find evidence that black patients are under-tested. 

They are less likely to be tested for PE than non-black patients, despite the fact that they are 

at higher risk of PE. Given the structure of our model, these differences in testing patterns of 

black and white patients cannot be explained by differential sorting to physicians, since we 

have controlled for differences in physicians’ testing thresholds. This finding provides new 

empirical support for the concern about racial disparities and possible provider prejudice in 

medical treatment (cf. Nelson 2002). The result stands in contrast to results from Chandra 

and Staiger (2010) that applied a related analytic framework to a different clinical setting 

and found that while blacks receive less treatment for heart attacks, differences were fully 

explained by their lower benefits from treatment. In the setting of testing for PE, differences 

19Prostate cancer, metastatic cancer, endometrial cancer and colorectal cancer all have significant underweighting.
20Whether the underweighting of these risk factors is driven by failure to adhere to Wells’ score criteria or whether the Wells score 
inadequately weights these risks is not something we can directly assess in our data. Complete calculation of the Wells’ score would 
require information that is difficult to observe in claims data or even retrospective study of patient charts. For example, the most highly 
weighted factor in the score is the physician’s clinical opinion that PE is the most likely diagnosis, or equally likely to the other 
possible diagnosis.
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in test yields do not explain disparities in testing rates. Notably, these disparities are arising 

among patients who have all arrived at the emergency department for evaluation by a 

physician with access to a CT scanner, and all carry Medicare insurance coverage, although 

they may differ in their subscription to wrap-around private insurance.

Taken together, these results suggest that misassessments of the clinical risk associated with 

preexisting comorbidities may lead to substantially diminished test yields. It is possible that 

physicians could detect more PE cases while performing a similar number of tests, by 

adjusting the targeting.

An alternative explanation for these patterns of apparent misweighting would be that the 

value of detecting PE differs for patients with these varying risk factors. For example, if the 

value of detecting PE were substantially lower in patients with a recent hospital admission or 

a cancer diagnosis, that could explain the apparent underweighting. Conversely, if the value 

of detecting PE were higher for patients with ischemic heart disease, COPD or atrial 

fibrillation, then that could also help rationalize the observed testing behavior. We find no 

obvious link between most of these conditions and the value of PE detection. In fact, our 

results on age-related risk suggests that physicians are undertesting younger patients, for 

whom the value of PE detection should be particularly high, since they have a longer life 

expectancy and accordingly higher value of statistical life. One exception in which a lower 

value of treatment may explain the observed results is Alzheimer’s disease; this appears in 

our list of underweighted conditions, but may reflect the lower value of treating pulmonary 

embolism among patients with this severe, progressive disease.

5.3 The impact of threshold variation and misweighting on test yields

To quantify the role that testing thresholds and misweighting play in the observed patterns of 

testing behavior and test yields, we return to the graph of physician testing rates and test 

yields. Now, rather than binning physicians by the average fraction of patients tested as we 

did in Figure 2, we bin physicians by the structural analogue: the average estimated testing 

propensity  across their patients. Recall the observation from the reduced form analysis in 

section 3.4 that physicians with the highest average testing rates also had the lowest test 

yields. This downward sloping relationship is what we would expect to find if heterogeneity 

in τd were the primary driver of observed variation in testing rates across doctors.

We can explore this hypothesis more formally by using our model to simulate what the 

relationship between average physician testing propensities and positive test rates would 

have been if all doctors had the same testing threshold. We simulate testing decisions and 

test outcomes under a counterfactual where τd is held constant across doctors, at the 

estimated average value E(τd) = 0.056. Details of this simulation are provided in Appendix 

G.

Results of this exercise are pictured in Figure 3. The open circles depict the downward 

sloping relationship between physicians’ average testing propensities and their test yields in 

our observed data. As we suggested earlier, if all doctors had the same testing threshold, the 

remaining variation in doctors’ average testing propensities would be driven by differences 
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in patient risk of PE. As a result, the relationship between doctors’ average testing 

propensities and their test yields would become upward sloping over most of the domain. 

The solid square markers display the results of this simulation in Figure 3. Now the doctors 

with higher testing rates are those with the highest risk patients; these doctors test the 

greatest fraction of their patients and experience the highest test yields, as evidenced by the 

upward slope in the simulated plot.21

Finally, we investigate how misweighting impacts this relationship between testing 

propensity and test yields. We simulate the counterfactual relationship between physicians’ 

average testing propensities and test yields that would be observed if there were no 

heterogeneity in testing thresholds and no misweighting of observable risk factors. 

Eliminating misweighting should increase the test yield for all values of the testing 

propensity index by improving the targeting of PE CT tests. Details of the simulation 

exercise are described in Appendix G.

Results of this simulation are pictured in Figure 3 and plotted with the X-shaped markers. 

We see that for every decile of physicians’ average testing propensity, the predicted test yield 

is higher in the simulation with no misweighting than was observed in both our actual data 

or the simulation that only eliminated threshold variation. We predict more detected positive 

tests if physicians attached appropriate weights to observable risk factors, and the increase is 

largest at lower testing propensities. (We quantify the precise increase in test yields and their 

welfare consequences in section 7.3.) Inframarginal patients are likely to be tested even with 

misweighting, but the set of marginal patients changes—some patients who are less likely to 

test positive are no longer tested and others who were previously not tested but have a higher 

likelihood of testing positive are now tested. This exercise suggests that misweighting is a 

substantial contributor to low test yields, and attention to better targeting of testing resources 

is warranted, rather than focusing solely on reducing variation in testing rates.

6 Robustness

The results discussed in the previous sections depend on a number of modeling assumptions. 

Two crucial assumptions underly our identification arguments: first, that we can identify 

marginal tested patients and use their test yields to reveal physician’s test thresholds; second, 

that the restrictions we assume for the ηid term, the factors influencing testing choices that 

are observable to the doctor but unobservable to the econometrician, are valid. In our 

baseline specification, we assume that ηid is i.i.d. across patients and doctors and follows a 

specific parametric distribution. In the robustness checks described below, we test the 

sensitivity of our results to these assumptions. Specifically, we consider the robustness of 

our results to varying the set of included covariates and the definition of the marginal tested 

patients; we estimate a version of our model where the variance of ηid is allowed to vary 

21If we graphed testing propensities vs. simulated rates of positive tests at the individual patient level, fixing τd = E(τd), our model 
implies that the resulting relationship would be monotonic. Because we are aggregating to the physician level in the figure, this 
relationship also depends on the variance in testing propensities for a given physician; the slight non-monotonicity at the lowest 
deciles arises because doctors with the lowest average testing propensities have more heterogeneous patients (driven by variation in 
observed comorbidities xid) than those in adjacent deciles. At these low average testing propensities, higher variance in Iid is 
associated with more positive tests amongst tested patients due to the convexity of the relationship between Iid and positive testing 
rates at the individual level.
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flexibly across doctors; and we estimate a semiparametric model where ηid is once again 

assumed to be homoskedastic but now with an arbitrary distribution.

6.1 Stability of results to inclusion of alternate patient controls

In the spirit of Altonji et al. (2008), we explore the sensitivity of our results to the set of 

included variables to assess potential bias from unobservable risk factors. The rationale for 

this exercise is that omitting the variables  from the baseline specification could 

generate heteroskedasticity, if the resulting error term  is not independently 

and identically distributed across doctors and patients. If this heteroskedasticity substantially 

changes our estimates of the distribution of τd or the degree of misweighting for the 

remaining variables, this might suggest that including additional unobserved variables would 

change our estimates further.

Recall that we rely on comorbidities to identify the patients the doctor is just indifferent 

between testing and not testing, and then calculate test outcomes among that group to 

identify thresholds for physicians with marginal patients. In addition to testing robustness to 

heteroskedasticity in the error term, varying the set of included variables will also change the 

set of patients identified as marginal (i.e. just barely worth testing given their physician’s 

threshold). As we remove comorbidities from the analysis, we are less able to isolate the 

marginal patients and may include more inframarginal patients in the group used to identify 

doctor’s testing thresholds. To show exactly how varying the definition of marginal patients 

impacts the analysis separately from heteroskedasticity, we also consider explicitly varying 

our threshold quantile for which patients count as marginal.

The baseline model reported above included four main classes of patient level risk factors: 

PE specific risk factors, chronic condition warehouse comorbidities, Elixhauser 

comorbidities, and patient demographic variables. Because some variation in comorbidities 

is required to appropriately identify this model, we retain the PE specific risk factors and the 

chronic condition warehouse comoribidities throughout, and test the stability of our findings 

to excluding the Elixhauser comorbidity set and the vector of demographic variables. Results 

from this exercise are reported in Table 5; the empirical Bayes correction has been applied 

before reporting the mean and standard deviation of physician’s testing thresholds.

The mean estimated value of physician’s testing thresholds ranges between 5.6% and 6.6%, 

and shows evidence of substantial dispersion in all models. The standard deviation of τd 

ranges between 3.9% and 5.4%, depending on the set of included patient risk factors. 

Dropping covariates does appear to increase the value of the estimated mean τd although the 

range of values across specifications is only one quarter of the estimated across-doctor 

standard deviation. If including additional covariates would cause estimates of τd to 

decrease, this suggests that our results may be conservative with respect to the amount of 

overtesting. Controlling for the full set of risk factors also appears to increase the variance in 

estimated testing thresholds, providing suggestive evidence that the observed variation in 

thresholds is not driven by the exclusion of unobserved risk factors from the model. In all of 

these cases, variation in testing thresholds is sufficient to imply large differences in testing 

probabilities for identical patients depending on which doctor they visit.
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It is not surprising that the mean τd increases when we exclude covariates. When we exclude 

comorbidities from the sample, we make it more difficult to identify accurately the marginal 

tested patients, and may end up including more non-marginal patients in this calculation. 

These non-marginal tested patients will have higher average test yields, and so will push up 

our estimated test thresholds. To examine more directly the sensitivity of our results to the 

definition of marginal patients, we explicitly vary this definition in Appendix Table A.1. We 

include all the baseline covariates but vary the quantile of the testing propensity cutoff below 

which patients are defined as marginal. Less stringent definitions of marginal patients than in 

our baseline results recover a larger average value of the physician threshold as predicted 

and more stringent definitions recover a lower value, suggesting our results are conservative 

with respect to the degree of overtesting to the extent that with more data (or more 

covariates) we could better identify those patients who were truly marginal.

All specifications also predict substantial misweighting of included risk factors. The average 

absolute value of misweighting in physicians’ assessment of PE risk ranges from 0.020 to 

0.023 percentage points. Perhaps unsurprisingly, the full model which includes all available 

risk factors as candidate sources of misweighting recovers the largest predicted amount of 

misweighting. In all cases, misweighting is sufficiently large that it has the potential to 

change testing decisions for many marginal patients. Appendix Table A.1 reports that 

varying the definition of marginal patients also does not change the estimated misperception 

of PE risk.

In results reported in Appendix Table A.3, we find that the specific misweighted factors 

identified in Table 4 and discussed in section 5.2 continue to show evidence of misweighting 

of similar direction and magnitude, even as we vary the set of other included comorbidities. 

For example, the PE risk associated with recent hospital admissions and history of PE or 

deep vein thrombosis appears significantly underweighted in all specifications; black 

patients also show evidence of being under-tested in both specifications that include 

demographic variables. Similarly, a consistent set of conditions shows evidence of 

overweighting across specifications, including ischemic heart disease, chronic obstructive 

pulmonary disease and atrial fibrillation. These findings are not sensitive to the choice of 

other included covariates.

6.2 Estimation with physician-specific heteroskedasticity

Even if our results are not sensitive to dropping some covariates, we might worry that PE 

risk factors we cannot observe from insurance claims vary systematically across doctors. 

Differences across doctors in the variance of ηid could arise for at least three reasons. First, 

doctors may differ in their skill at assessing risk factors unobservable to the econometrician. 

A doctor with more diagnostic skill may have a higher variance in ηid across his patients, 

since he is more discerning in his judgement of which patients should be tested on the basis 

of clinical presentation and symptoms. Second, doctors may differ in the variance of latent 

PE risk present in their patient population. A doctor with a more heterogeneous patient 

population may have a higher variance in ηid across his patients. Finally, doctors may simply 

make “errors” that lead them to deviate from typical practice patterns; a doctor who 

frequently deviates from his peers’ practice patterns in assessing PE risk may have have a 
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higher variance in ηid. The model we develop in this section allows us to isolate differences 

in physician testing thresholds that are unrelated to possible differences in the variance of 

ηid across physicians.

Recall the assumption we made in Section 4.4 that ηid followed a mixture of a Bernoulli and 

uniform distribution. We maintain the basic shape of the distribution but now allow both the 

Bernoulli probability and the variance of the uniform distribution to vary across doctors, so 

that ηid ~ U(−ηd, ηd) with probability 1 − pd and ηid ~ U[υ − ηd, υ + ηd] with probability 

pd.

Following the derivation in Appendix E, the more flexible distributional assumption implies 

the testing equation takes this form:

(15)

From the testing equation above, we can see that heteroskedasticity in ηid is identified by the 

fact that observables are less predictive of testing behavior for doctors with a high variance 

in ηid, i.e. a smaller value of . As described in the appendix, the testing equation can be 

used to estimate , where C is an unknown scaling constant. For computational 

tractability given the demands of this more flexible estimation strategy, we randomly 

exclude half of the physicians from our sample to reduce sample size, and drop the 

Elixhauser comorbidities and demographic risk factors from our list of included covariates.

With the introduction of heteroskedasticity, the conditional probability of a positive test is 

given by:

(16)

where  are the variances estimated in the testing equation. Further details of the 

estimation strategy are provided in Appendix E.

Table 5 reports the results of this analysis in panel 4, which can be compared to results from 

the baseline model with the same excluded comorbidity set, as reported in panel 3. The 

mean value of physicians’ test thresholds τd is slightly higher at 7.0% in the model allowing 

for heteroskedasticity compared to 6.6% in the baseline model with the same covariates. 

Estimates of the standard deviation of τd are are also higher at 5.1 percentage points in the 

heteroskedastic model compared to 3.9 percentage points in the homoskedastic model. Thus, 

the cross-physician variation in testing behavior is not explained by differences in the 

variance of ηid across doctors. This provides reassuring evidence that the assumption of 
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homoskedasticity in the baseline model was not leading us to overstate differences across 

physicians in testing thresholds. Finally, the degree of misweighting remains very similar to 

the original estimates, with the average absolute value of misweighting estimated at 0.021 in 

the heteroskedastic model compared to 0.020 in the baseline model.

The role of physician diagnostic judgment in driving testing behavior and outcomes was 

previously explored by Doyle, Ewer, and Wagner (2010). In a natural experiment, they find 

that physicians from more prestigious residency programs achieve similar patient outcomes 

at 10–25% lower cost compared to their less skilled peers. One potential explanation for this 

phenomenon is that physicians from less prestigious schools prefer to administer more low-

value care and could achieve the same outcomes at lower cost if they cut back some services. 

In the language of our model, these less skilled physicians might have lower testing 

thresholds, i.e. smaller τd. A second explanation is that these less skilled physicians just 

need to use more medical resources to achieve the same quality of care, because they are less 

accurate in their assessments of ex ante patient risk. In the language of our model, this 

decreased diagnostic accuracy would correspond to a lower variance of ηid, since these less 

skilled physicians would be failing to incorporate clinical information about patient risk to 

improve test targeting. Our results suggest that the heterogeneity in measured τd across 

physicians persists even after allowing for heterogeneous variance of ηid acoss doctors. This 

finding raises the possibility that cost variance across physicians is driven in part by lower 

marginal value services provided by doctors with lower expected benefit thresholds.

6.3 Estimation of a semiparametric selection model

Next we test whether our results are sensitive to the shape of the distribution assumed for the 

unobserved component of patient PE risk, ηid. We previously imposed a strict distributional 

assumption, requiring ηid to be distributed according to a mixture of Bernoulli and Uniform 

distributions. Now, we relax this assumption by estimating Equation 11 as a semiparametric 

binary choice model, using the Klein and Spady (1993) binary choice estimator. This 

robustness exercise will ensure that differences in testing thresholds observed in the previous 

sections are not driven solely by the strong distributional assumptions which restricted the 

functional form of the testing equation and the shape of the selection correction function 

λ(·). To implement the semiparametric model, we return to our original, strong version of 

the ignorability assumption that ηid is i.i.d. across physicians and patients.

Estimation of the semiparametric model proceeds as follows. Let g denote the probability 

that patient i is tested given index . The log likelihood is given by:

(17)

The idea of the Klein-Spady estimator is to approximate g using a “leave-one-out” estimator 

which predicts the probability of testing for a particular patient, giving more weight to 

patients with nearby indices . Specifically, we substitute for g using the following 

function:
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(18)

We use a 4th-order Gaussian Kernel, k(·), and empirically select for the smallest bandwidth 

h such that g is a monotonic function of the index .

Given the propensity to test index  from estimating equation 11 by the Klein-Spady 

procedure, the next step is to estimate the testing outcome equation. Echoing the derivation 

in Section 4.2, the probability of a positive test among tested patients is given by:

(19)

where . Because we no longer assume a particular distribution of ηid, 

we now fit the function λ(·) flexibly, reporting results with λ(·) as a linear function and as a 

cubic polynomial, and estimate the net benefit equation by OLS.

Note that the Klein-Spady estimator only recovers  up to a location and scale 

normalization. The scale normalization is embedded in the function λ(·). We impose the 

appropriate location normalization so that at the smallest value of  among tested patients, 

, we have  as shown in Section 4.3.22

Estimation of the semiparametric model is quite computationally intensive, and as a result, 

we maintain the restricted sample size and covariate set also used in the estimation of the 

heteroskedastic model in the previous section. Each time we construct the likelihood 

function, we need to construct a jackknife estimate for each observation which is a weighted 

average across all other observations given our kernel and bandwidth. This is nested within 

an optimization problem in which we estimate the parameters of our model for a given 

bandwidth. We then iterate the entire procedure, searching over for the smallest bandwidth 

that gives a monotonic result.

Results of the semiparametric estimation are reported in Table 5, panels 5 and 6. This 

semiparametric estimation approach estimates the mean value of τd at 6.7% (linear) or 6.6% 

(cubic), similar to the parametric model estimate of 6.6% in the sample with identical 

comorbidities. We continue to find a large amount of cross-doctor dispersion in estimated 

testing thresholds. The standard deviation of τd is 5.4% across doctors, compared to 3.9% in 

22This normalization can be implemented by omitting the constant term from the polynomial λ(·) and subtracting a constant  from 

 ; thus the resulting polynomial  will equal 0 for . To avoid sensitivity to outliers, we normalize  so that 

 for  in the 10th percentile amongst tested patients, which agrees with our definition of marginal patients in Section 4.3.
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the parametric model with the same covariates (but interestingly nearly identical to the 

parametric model with the full set of covariates included). Our assessment of misweighting 

continues to be highly consistent across models, with an average absolute value of the error 

due to misweighting at 2.1% in the semiparametric model, compared to 2.0% in the 

parametric model.

Taken together, these robustness checks, including varying the set of included covariates, 

allowing for physician-specific heteroskedasticity, and estimating a semiparametric selection 

model, all suggest that our findings on the dispersion in testing thresholds and amount of 

misweighting are very stable across alternative modeling assumptions. We find substantial 

variance in testing thresholds of similar magnitude in all specifications, suggesting that 

much of the observed variation in testing behavior may be driven by differences in practice 

styles. Further, doctors are misassessing patient PE risk by similar amounts in percentage 

point terms across all models.

7 Welfare cost of overtesting and misweighting

We now turn to the welfare implications of the models estimated in the previous sections. In 

order to assess the welfare cost of overtesting and misweighting, we will need to make 

additional assumptions about the costs of testing and the dollar-equivalent benefits of 

detecting and treating a PE. Given these assumptions, we can evaluate whether the observed 

variation in testing thresholds reflects overuse and compare the welfare cost of overuse to 

the welfare cost of misweighting. Applying the structure and estimates of our baseline 

estimation procedure, we perform simulations to determine how welfare would change if 

doctors behaved optimally from a social standpoint. We begin by simulating worlds with no 

overtesting but maintaining the observed patterns of misweighting; next, we simulate a 

world with no misweighting but maintain the observed distribution of testing thresholds. In 

each case, we decompose the sources of estimated welfare gains into financial costs, medical 

costs and medical benefits.

This section proceeds first by describing the calibration of the optimal testing threshold τ*, 

then exploring the welfare implications of the measured variation in physician testing 

thresholds, and finally estimating the welfare costs of misweighting the PE risk associated 

with patient comorbidities. All of the calibrations in this section are implemented in our 

baseline model as outlined and reported in Sections 4 and 5.

7.1 Calibration of parameters

In order to proceed with welfare calculations, we make several additional assumptions about 

the costs of testing and the benefits of a positive test. We assess these costs and benefits from 

a social standpoint; e.g. if some physicians test more due to reimbursement incentives, this 

would appear in our model as measured heterogeneity in τd that deviates from the social 

optimum we compute below.

If physicians are behaving optimally, they should test a patient if and only if: NUqid − c > 0 

where NU represents the net utility of detecting a positive test, c represents the cost of the 
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test and as above, qid denotes the likelihood of a positive test. This yields a socially optimal 

testing threshold  such that physicians should test only if qid > τ*.

If there were no false positive or false negative tests, the net utility would correspond to the 

net medical benefits of treating PE minus any financial costs of treatment. However, CT 

scans, like many other medical tests, can generate both false positive and false negative 

results (Stein et al. 2006). It turns out that an important cost of overtesting is a consequence 

of type I and type II errors: overtesting leads to unneeded treatment which can have adverse 

consequences. Patients with false positive test results receive medical treatment as if they 

truly had a PE; this treatment will incur medical risks and financial costs without conferring 

any medical benefit on the patient, since they do not truly have the condition being treated.

Let fp denote the likelihood of a false positive, s the sensitivity of the test (one minus the 

probability of a false negative), MB the medical benefits of treating a PE, MC the medical 

costs and CT the financial costs of treatment. In Appendix H, we show that allowing for 

false positives and false negatives results in a model which is isomorphic to the one above 

with NU replaced by  and c replaced by .

Table 6 reports the values of the parameters that we use to compute . Parameters 

specifying test sensitivity and specificity, the medical benefits of testing, and the medical 

costs of testing are drawn from the existing medical literature. Note that our calibration of 

both the medical benefits and the medical cost of treatment depend on an estimate of the 

value of a statistical life (VSL); following Murphy and Topel (2006) we assume a VSL of $1 

million.23 We estimate the financial cost of testing and the financial cost of PE treatment 

directly from our Medicare claims data. Appendix Table A.5, which we discuss below, 

explores the sensitivity of our welfare findings to these calibration parameters.

One parameter of this calibration turns out to be of particular importance and remains a 

source of uncertainty in the medical literature: the rate of false positive tests. To our 

knowledge, the single piece of medical evidence on chest CT scans’ false positive rate 

derives from a comparison of CT imaging results to older diagnostic methods, VQ scanning 

and ultrasonography; the authors estimate the false positive rate at 4% (Stein et al. 2006). 

We report results with a false positive rate of 4% as our preferred welfare calibration, but 

also show the welfare implications of assuming a 3% or 0% false positive rate. Lower false 

positive rates boost the net utility associated with treating a positive test, and thus provide 

more conservative estimates of the costs of overtesting.

Table 7 reports the optimal testing threshold τ* under these calibration assumptions. With a 

false positive rate of 4%, we find physicians should optimally test all patients with an ex 

ante likelihood of a positive test greater than or equal to 6.2%. The optimal threshold 

23The choice of a lower VSL estimate in this context is driven by the fact that we are studying an elderly population, with an average 
age of around 77.
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decreases to 5.0% at a false positive rate of 3%; at the (unlikely) extreme of no false positive 

test results, the optimal threshold falls to 1.5%.

7.2 Welfare impact of eliminating overtesting

The model implies welfare loss whenever a physician’s testing threshold τd does not equal 

the optimal value τ*. We focus on the welfare consequences of overtesting, where τd is 

below this calibrated optimum, for two reasons. First, overtesting is empirically the larger 

problem in our sample, with an estimated 84% of doctors overtesting under our preferred 

calibration assumptions. Second, unlike the overtesting case, we find that the welfare loss 

due to under-testing is highly dependent on the distribution we assume for τd when applying 

an empirical Bayes technique to recover the posterior distribution of τd. Previously, we were 

agnostic about the distribution of τd and recovered only the posterior mean and variance, but 

for welfare calculations, a specific distributional assumption is required. For some 

distributions of τd, even a small number of doctors under-testing can lead to large welfare 

losses if the right tail of the τd distribution is sufficiently thick.

To determine the percentage of doctors overtesting we need to extend our empirical Bayes 

analysis to recover a posterior estimate of τd for each physician; proceeding requires an 

assumption about the shape of the underlying τd distribution. First, note that τd is bounded 

below at the false positive rate. We assume that τd minus the false positive rate is log-

normally distributed with the posterior mean and variance of the τd distribution as 

previously calculated. Table 7 reports the percentage of doctors overtesting at each false 

positive rate, given this distributional assumption.

Our initial estimates of τd are in units of the probability of a positive test. For example, in 

our baseline specification, we find that the average doctor tests a patient if the probability of 

a positive test exceeds 5.6%. We want to know: how would testing behavior change for each 

physician if all physicians with testing thresholds below τ* = 6.2% instead adopted a 

threshold of 6.2%? If we observed qid for each patient, this would be a simple matter of 

counting the number of inframarginal patients. But qid is not observed—instead, we know 

the probability of a positive test as a function of the propensity to test. Our model allows us 

to determine how changes in τd impact the propensity to test using the scaling factor , the 

estimated coefficient on the selection term in equation 14. Equation 14 also allows us to 

compute how the probability of a positive test conditional on testing changes for each 

observation. More details are provided in Appendix H.

Combined with our assumptions about costs and net utility, we compute separately the 

realized medical benefits of testing, the medical costs of testing, the financial costs of testing 

and the net benefits of testing given the estimated  as well as a counterfactual where τd = 

τ* for all doctors with . These results are shown in Table 7, under a series of different 

assumptions about the false positive rate.

At a false positive rate of 4% (the estimate in the medical literature), we estimate that 84% 

of the physicians in our sample are overtesting on the margin, i.e. they apply a testing 

threshold that is lower than the 6.2% threshold probability of a positive test the calibration 
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suggests is optimal. At a false positive rate of 3%, the proportion of doctors overtesting falls 

to 67.2%. To illustrate the importance of the false positive rate in assessing welfare, note that 

if there were no false positive tests, the optimal testing threshold τ* drops substantially to 

1.5% and only 10% of physicians are overtesting on the margin, i.e. have a testing threshold 

lower than 1.5%.

At a false positive rate of 3% or 4%, eliminating overtesting would decrease the total 

number of patients tested by more than 30% or 50%, respectively. Why such large effects? 

Recall that with a false positive rate of 4%, the minimum possible perceived probability (qid) 

of a positive test is 4%. The median physician in our sample has a τd which is less than 5% 

(much less than the mean, since the distribution is bounded from below by 4%). Increasing 

τd to 6.2% thus greatly increases the range of probabilities qid which would not be tested for 

many physicians.

In these scenarios, the financial and medical costs of testing would fall by an amount 

proportional to the decline in tested patients. There would be a small offsetting decline in the 

medical benefits of testing because the patients not tested in the counterfactual world have a 

very low probability of truly having a PE. Eliminating overtesting leads to a 12.5% increase 

in net benefits at a false positive rate of 3% and a more than 60% increase in net benefits at a 

false positive rate of 4%; the increase in net benefits per test is of course much larger. This 

exercise illustrates both the large welfare implications of overuse of medical testing and the 

sensitivity of this result to the false positive rate. As detailed in Table 7, most of the net 

benefit increase comes from eliminating the financial costs associated with testing low-

probability patients for PE and unneeded treatment of patients with false positive test results.

Given the widespread incidence of overtesting under our preferred calibration, it is worth 

considering a few possible explanations. As we illustrate in Table 7, the estimated 

overtesting behavior of a majority of doctors in our sample could be explained if they were 

behaving as if there were no false positive test results. Similarly, if physicians ignored the 

financial costs associated with testing and treating PE, this could also explain much of the 

overtesting behavior. However, the only way to rationalize the entire estimated posterior 

distribution of physician testing patterns would be to allow physicians to vary substantially 

in their assessment of financial costs or the false positive rate.

One could also interpret variation in τd as variation in the patients’ “value of knowing” that 

they do not have a PE. In contrast to the case of Huntington’s disease (Oster, Shoulson, and 

Dorsey 2011), the value of knowing seems an unlikely driver of testing decisions in this 

context, since in most cases a PE has a very low ex ante probability and the rate of false 

negatives is sufficiently high that even after testing one has only somewhat reduced that 

probability. Further, Finkelstein et al. (2014) find that variation in patient demand (i.e. both 

patient preferences and medical needs) explains only 14% of the regional variation in 

spending on imaging, suggesting a very limited role for patient preferences in explaining 

variation in imaging decisions.

Finally, the socially optimal testing threshold depends on the cost of scanning a patient, 

which we estimate directly from the Medicare claims data. The $300 financial cost of testing 
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is calculated based on the allowed charges which compensate for the technician’s time to run 

the scan, the radiologist’s time to interpret the scan and capital depreciation. If some of this 

reimbursement is intended as compensation for the high fixed costs of owning a CT scanner, 

then we may be overstating the social cost of testing. We believe this concern is mitigated by 

calculating costs directly from the Medicare data, where reimbursement for CT scans 

remains much below the estimated fees paid by privately insured consumers (cf. Healthcare 

Blue Book which estimates the typical fee at $517 to $577 depending on the precise billing 

code). In addition, there may be opportunity costs of scanning a patient not accounted for in 

our calibration if the hospital is capacity constrained in its allocation of time in the CT 

scanner or time spent awaiting a scan in an ED bed. If present, opportunity costs would lead 

us to understate the true costs of performing a scan, and thus understate the amount of 

overtesting in our data.

Panel A of Table A.5 explores how our results on the net welfare cost of overtesting vary 

with the calibrated parameters. The results do not vary much with the calibration of test 

sensitivity. Changing either the VSL or the cost of the test shifts the optimal testing 

threshold τ* and thus the welfare benefits. For example, with a VSL of $500,000 rather than 

$1 million, the optimal threshold increases from 6.2% to 14.3%. Due to this dramatic 

increase in τ*, simulations with no physicians overtesting involve more dramatic declines in 

the fraction of patients tested, and the net benefits of eliminating overtesting almost double 

vis-a-vis the baseline calibration results. If the VSL is $1.5 million rather than $1 million, 

the number of patients tested in a world with no overtesting increases by 50%, and the net 

benefits of eliminating overtesting likewise fall. Similarly, if the cost of the test is $0 (i.e. if 

there is zero marginal social cost of running a CT scan), the optimal threshold τ* falls to 

4.8%, there is substantially less overtesting and the overtesting that does occur has much 

lower social cost (only the costs from overtreatment of false positive tests). If the costs of 

treating patients with positive tests were also equal to $0, the optimal threshold τ* falls 

further to 4.3%, eliminating most over-testing but implying large amounts of under-testing. 

By contrast, if the cost of the test is $500 (comparable to the fees paid to private insurers per 

CT scan) rather than $300, the net benefits of eliminating overtesting almost double.

7.3 Welfare impact of eliminating misweighting of patient risk factors

Table 8 reports results from a simulation in which doctors select patients for testing by 

weighting observable comorbidities in the manner the model suggests would maximize 

detection of positive tests. In other words, we simulate physician behavior if they were to 

use the true weights β rather than the observed weights β′ to assess PE risk. In this 

simulation, we maintain the distribution of physician testing thresholds at their baseline 

values, so we allow for the observed patterns of under- and overtesting. We report results at 

our preferred calibration of the false positive rate, 4%; the welfare consequences of 

eliminating misweighting would be even larger at lower false positive rates.

Structurally, this exercise is very similar to the exercise where we simulate alternative values 

of τd. Our initial estimates tell us the degree of misweighting in units of the probability of a 

positive test. We want to determine how the propensity to test would differ if physicians did 

not misweight; the scaling factor  allows us to translate the estimated degree of 
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misweighting into the same units as the testing propensity and calculate the testing 

propensity and expected test outcomes if there were no misweighting. We demonstrate this 

explicitly in Appendix H.

One concern with these estimates is that even if there were zero misweighting at the true 

parameter values, a model like ours would detect some misweighting due to the presence of 

statistical noise. To deal with this, we conduct a cross-validation exercise where we estimate 

the scaling factor  and the misweighting coefficients β − β′ in one half the data (the 

“training” sample) and then conduct a simulation in the other half (the “test” sample). Test 

yields are determined by the estimated parameters in the test sample while counterfactual 

testing decisions are determined by the estimated parameters in the “training” data. These 

estimates are reported in columns 3 of Table 8. The fact that we find a nearly identical 

amount of misweighting in the test sample shows that our evaluation of misweighting costs 

is not driven by statistical noise.

We find that properly weighting observables to improve PE detection would lead the fraction 

of patients tested to increase from 3.8% to 4.3%, by moving some patients just over their 

estimated physician’s testing threshold. But by far the predominant welfare impact comes 

from the predicted increase in the rate of PE detection. The medical benefits due to treatment 

of PE nearly double and the net benefits of testing more than triple. The total welfare loss 

from misweighting ($35.9 million in our sample) is more than 4 times as large as the welfare 

loss from overtesting ($8.1 million), even in the model with the highest rate of false 

positives.

To investigate whether a small number of risk factors account for most of the observed costs 

of misweighting, we conduct an exercise where we correct the weights applied to each 

variable, one at a time. Results from this exercise with more detailed notes are reported in 

Appendix Table A.4. First, it is worth noting that in this simulated second-best world where 

physicians do not all share the optimal testing threshold τ* and where other factors are 

misweighted, correcting misweighting of a single risk factor in isolation can sometimes 

worsen total welfare; certain misweighting errors offset some of the costs associated with 

overtesting. However, in most cases, correcting a single variable’s weight weakly improves 

estimated welfare.

Correcting the weighting on 30-day inpatient admissions accounts for approximately 20% of 

the total potential gains from eliminating misweighting. Expanding the list to include the 5 

highest-impact covariates (30-day admission history, 1-week admission history, 1-year 

surgical history, chronic obstructive pulmonary disease, and ischemic heart disease) 

accounts for roughly 60% of the total potential gains. These covariates are both substantially 

misweighted and common enough to induce large welfare consequences.

Intuitively, given our estimates of misweighting in Section 5.2, it is not surprising that the 

welfare loss from misweighting substantially exceeds the welfare losses from overtesting. 

Several factors combine to make misweighting a more serious problem. Physicians behave 

as if they are misestimating a patient’s PE risk by 2.3 percentage points on average by 

failing to weight observable characteristics to maximize detection of positive tests. By 
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comparison, the average difference between τd and τ* for physicians who are overtesting is 

only 1.7 percentage points in the calibration with a false positive rate of 4%. The welfare 

cost of misweighting errors or suboptimal values of τd increases with the square of the 

deviation—as the bias grows, both the number of patients impacted and the average severity 

of the error among those patients increases. Further, the welfare costs of overtesting are 

bounded. The worst outcome of overtesting is that a patient is tested with no chance of 

having a PE and incurs the cost of the test (a few hundred dollars) plus the potential financial 

costs and medical risk of treatment if they receive a false positive test result. The potential 

costs of misweighting are substantially greater since you might fail to treat a patient with a 

substantial risk of death.

Panel B of Table A.5 explores how our results on the net welfare cost of misweighting vary 

with the calibrated parameters. The positive impact of misweighting on testing behavior 

does not depend on the calibration (unlike the case of overtesting, since the calibration 

determines which physicians overtest). The welfare cost of misweighting is not too sensitive 

to the false positive rate, the sensitivity of the test or the cost of the test, but it is sensitive to 

the VSL. Misweighting creates more welfare loss from undertesting than overtesting: the 

welfare costs of overtesting are bounded by the financial costs of the test plus the costs of 

treating false positive test results, while the costs of undertesting in the worst case is the 

2.5% chance of mortality from a missed PE. These latter costs are roughly proportional to 

the VSL.

Undiagnosed PE is thought to be a major public health problem, with the Office of the 

Surgeon General (2008) estimating that approximately half of PE cases are never diagnosed; 

analysis of autopsy reports have found it to be a frequently missed mortality risk. By 

improving physician assessment of patient PE risk, our model suggests that the rate of 

undiagnosed PE could fall substantially. Although there is policy attention in the medical 

community on the risks associated with the perceived overuse of PE CT, this evidence 

suggests that there may be even larger gains possible from improving the targeting of CT 

scans.

Our welfare calculations are based on a 20% sample of patients enrolled in Medicare Parts A 

and B over a 10-year period, and the numbers reported in Tables 7 and 8 reflect potential 

gains to this sample only. To understand the annual welfare loss for Medicare patients 

associated with the inefficiencies we identify in this sample, we do an informal scaling 

exercise. We first scale the estimates up by a factor of 5 to account for the entire population 

of Medicare fee for service enrollees, then adjust to account for the 28% of Medicare 

patients who enroll in a Medicare Advantage plan, and finally divide by 10 to calculate 

annual estimates. We recover a $5.5 million annual welfare loss from overuse of PE CT due 

to low testing thresholds, and a $25 million annual loss from misweighting observable 

patient risk factors, for emergency department CT scans among elderly patients. Yet these 

scaled welfare gains from the efficient application of PE CT to the elderly population 

seeking emergency care may represent only a small fraction of the total welfare benefit 

available from more efficient diagnostic testing and treatment decisions across a variety of 

medical conditions.
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8 Conclusion

While it is commonly believed that the US health care system spends significant resources 

on services that have low medical returns and high costs, there is little consensus on how this 

waste could be reduced. Wasteful spending is characterized both by overuse of medical care 

and mistargeting of medical resources. This paper investigates both forms of inefficiency, 

analyzing whether doctors efficiently select patients for medical testing and how physicians 

vary in the risk thresholds at which they test patients. We study these inefficiencies in the 

context of emergency department CT scans to diagnose pulmonary embolism (PE). We 

document both widespread variation in physician use of CT scans for PE unexplained by 

differences in patient risk, and also systemic failure to target medical testing to the highest 

risk patients.

The identification strategy underlying this analysis relies on exclusion restrictions motivated 

by our structural model of testing behavior. The identification arguments require that 

physicians select patients for testing on the basis of private information about expected PE 

risk and they apply a consistent PE risk threshold across patients. The ignorability 

assumption that private information about PE risk is independently and identically 

distributed across doctors and patients underlies the single-index structure and is important 

to identifying the model. Further, to the extent that we have not isolated marginal tested 

patients to recover test thresholds of high-volume doctors, we may be understating the full 

costs of over-testing behavior; notably, sensitivity analyses suggest our results on 

misweighting are not sensitive to the definition of marginal patients. If the value of treating 

pulmonary embolism varies substantially across patients, this may explain some of the 

apparent patterns of misweighting and overuse.

Estimating the model to study physicians’ CT scanning decisions in a national sample of 

Medicare claims, we find substantial variation in physician’s use of diagnostic scans on low-

risk patients. This variation generates a negative relationship between testing propensities 

and test yield across physicians, since physicians who test more also test lower risk patients 

on average. Investigating the role of training and practice environment in explaining practice 

styles, we find that physicians practicing in high-spending Dartmouth Atlas regions and 

those with less experience are more likely to scan low-risk patients. Other factors, such as 

hospital ownership or quality of medical school training are not significantly related to 

testing behavior. Taken as a whole, observable characteristics can explain only a small 

fraction of the total variation in testing thresholds. Applying further calibration assumptions 

suggests that 84% of physicians in our sample are overtesting on the margin in the sense that 

their risk threshold is lower than the calibrated optimum.

We also find that doctors do not weight observable patient risk factors in a way that would 

maximize test yields. Physicians systematically underweight certain important predictors of 

PE risk, including recent prior hospitalizations and metastatic cancer. Other preexisting 

conditions that have similar clinical symptoms to PE are over-weighted in the testing 

decision. These apparent errors occur despite the fact that physicians are widely encouraged 

to use diagnostic scoring systems such as the Wells or Geneva score to assess the risk of PE 

before deciding whether to order a CT scan. The continued prevalence of risk assessment 
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mistakes despite the popularity of these PE risk scoring systems may reflect shortcomings in 

the scoring systems themselves or failures to make adequate use of these scores. (The data 

used in this project cannot disentangle these possibilities.) Together, these mistakes in 

assessing patient PE risk lead to significant welfare losses from failing to target the test to 

the highest risk patients according to our welfare simulations. In fact, despite the huge 

attention in the health economics literature to the problem of overuse of care, the simulated 

welfare loss from mistargeting of diagnostic imaging is four times larger than the welfare 

loss from overuse.

The model developed in this paper could be applied to a variety of empirical contexts—it is 

applicable whenever economic actors make repeated decisions about whom to treat, as long 

as the objective function is known for the counterfactual where treated individuals are 

untreated. In the PE testing case, we know that untested individuals have no PE detected. In 

other applications, the model could be used to evaluate the decisions of loan officers to 

extend credit, hiring directors to select among potential job applicants, or admissions 

officers to predict which students will perform most highly. Positively, one could investigate 

the degree to which observed heterogeneity in treatment rates is due to decision-maker 

discretion. Normatively, many of these organizations have specific objectives they seek to 

optimize (e.g. reducing default on loans or productivity among employees) and one could 

use the model developed here to investigate whether observed selection patterns are 

successfully optimizing these outcomes.

Our findings suggest that both overuse and misuse of medical resources are important 

drivers of high spending and low medical returns to care. Future work could pair this 

framework for estimating overuse of diagnostic testing with experimental or quasi-

experimental variation in physician’s training or practice environment; these estimates could 

more directly inform policy by causally identifying how these changes to a physician’s 

education or training affect the efficiency of the medical care delivered. Given more detailed 

patient-level data, our model could be used to formulate optimal guidelines and risk scores, 

overcoming the selection problems that may lead to biased estimates of risk under popular 

existing methodologies. Our findings underscore the fact that purely cost-focused health 

reform may be insufficient to achieve efficiency in healthcare delivery—there are potentially 

large benefits to patients from physicians making better use of the available information to 

target medical resources to those patients with the highest returns.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Stylized relationship between testing thresholds, testing rates, and test yields

Notes: Figure illustrates the theoretic relationship between testing thresholds, test yields and 

fraction of patients tested for two hypothetical doctors, A and B. Patients are sorted along 

the x-axis according to their risk of PE, qid, from highest risk to lowest risk. Each point (x, 

y) along the plotted curve shows the fraction of patients x for whom qid ≥ y. For example, at 

point (TA = 2/3, τA = 1/2) in Panel A, the graph indicates that 2/3 of patients have a risk of 

PE that equals or exceeds 1/2. τA denotes doctor A’s testing threshold, TA denotes the 

fraction of patients tested by doctor A, ZA denotes doctor A’s test yield (among tested 

patients), and likewise for doctor B. In Panel A, both doctors face patient populations with 
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the same distribution of PE risk. In Panel B, Doctor B’s patients are higher risk, i.e. for any 

given probability of a positive test q, a greater fraction of doctor B’s patients meet or exceed 

that threshold compared to doctor A.
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Figure 2. 
Binned scatterplot of physician test yield by fraction of patients tested

Notes: Figures displays a binned scatterplot based on our sample of Medicare claims data. 

Physicians are binned into deciles according to the fraction of patients they test. Panel A 

reports results across all patients evaluated by each doctor; the x-axis reports the average 

fraction of patients tested and the y-axis reports the rate of positive test results among tested 

patients, within each physician decile. The slope coefficient and standard error on the simple 

bivariate regression of average test yield on fraction of patients tested is reported on the 

panel. Panels B, C, and D maintain the same definitions of physician groups by deciles of 

test rate as in Panel A, but splits each doctor’s patients into groups according to whether they 

have a particular risk characteristic. We report average test rates and test yields by 

physician’s test decile, for patients with and without the listed characteristic.
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Figure 3. 
Binned scatterplot of physician test yield by testing propensity index: Estimation results and 

simulations

Notes: Figure displays a binned scatterplot based on our estimation and simulation results; 

physicians are binned into deciles based on the average estimated value of the testing 

propensity index . The open circle markers plots the relationship between physicians’ 

actual test yields and physicians’ average . Th solid square markers display the simulated 

relationship between testing propensities and test yields under a counterfactual with no 

variation in physician testing thresholds, and instead all physicians assigned the average 

testing threshold E(τd). The X-shaped markers displays the simulated relationship between 

testing propensities and test yields if there were no variation in physician testing thresholds 

and there were no misweighting of observable risk factors.
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Table 1

Summary statistics

A. Untested patients B. Patients with negative tests C. Patients with positive tests

Patient characteristics

 Age 77.6 76.8 76.9

 Female 0.586 0.602 0.600

 Black 0.082 0.066 0.083

 History of PE 0.003 0.006 0.017

Doctor, hospital and region characteristics

 Doctor experience 16.5
(8.3)

16.4
(8.4)

16.8
(8.5)

 Top 50 research med. school 0.28 0.29 0.30

 Top 50 primary med. school 0.26 0.27 0.28

 Academic hospital 0.33 0.34 0.356

 For profit hospital 0.12 0.13 0.120

 HRR avg spending (in $) 8,198
(959)

8,173
(972)

8,089
(936)

 Average income in region 22,771
(5521)

23,005
(5490)

23,039
(5710)

 Joint and several liability 0.69 0.70 0.692

 Malpractice damage caps 0.70 0.76 0.747

 Number of observations 1,819,015 66,677 4,968

Notes: Table reports means and standard deviations (in parentheses). Data is from the Medicare claims 2000–2009, the American Hospital 
Association annual survey, the American Medical Association Masterfile, the Dartmouth Atlas, and the Avraham Database of State Tort Law 
Reform.
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Table 2

Summary statistics illustrating potential misweighting of risk factors

A. Fraction tested B. Test yield

Selected candidates for under-weighting

 Prostate cancer (CCW) 0.0370 0.1019

 No prostate cancer (CCW) 0.0380 0.0677

 Black 0.0313 0.0851

 Non-black 0.0385 0.0682

 History of PE 0.0726 0.1881

 No history of PE 0.0378 0.0686

 History of deep vein thrombosis 0.0507 0.1656

 No history of deep vein thrombosis 0.0378 0.0685

 Prior hospital visit within 30 days 0.0465 0.1976

 No prior hospital visit within 30 days 0.0377 0.0656

Selected candidates for over-weighting

 Chronic obstructive pulmonary disease (CCW) 0.0466 0.0524

 No chronic obstructive pulmonary disease (CCW) 0.0360 0.0742

 Ischemic heart disease (CCW) 0.0376 0.0566

 No ischemic heart disease (CCW) 0.0382 0.0786

 Atrial fibrillation (CCW) 0.0317 0.0520

 No atrial fibrillation (CCW) 0.0388 0.0713

Notes: Table reports summary statistics for selected comorbidities to motivate the examination of misweighting. Variables are selected on the 
Column A reports average rates of testing for patients with and without the listed conditions. Column B reports average rate of positive tests among 
tested patients with and without the listed conditions. CCW notes comorbidity is coded by the Chronic Condition Warehouse. Data is from the 
Medicare claims 2000–2009.
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Table 3

Regressions of testing threshold on physician characteristics and practice environment

Dependent variable: Physician testing threshold τd

OLS FGLS OLS FGLS

Independent variables: (1) (2) (3) (4)

 Doctor experience 0.0007***
(0.0001)

0.0007***
(0.0001)

0.0007***
(0.0002)

0.0008***
(0.0001)

 Top 50 research medical school 0.0047
(0.0038)

0.0050
(0.0031)

0.0053
(0.0047)

0.0032
(0.0037)

 Top 50 primary care medical school −0.0062
(0.0039)

−0.0042
(0.0032)

−0.0077
(0.0048)

−0.0030
(0.0037)

 Academic hospital 0.0006
(0.0026)

0.0007
(0.0022)

 For profit hospital −0.0004
(0.0041)

−0.0018
(0.0032)

 Log(HRR average Medicare spending) −0.0391***
(0.0109)

−0.0474***
(0.0093)

 Average income in region (in $10k) 0.0000
(0.0025)

0.0000
(0.0019)

 Joint and several liability 0.0001
(0.0027)

0.0003
(0.0023)

 Malpractice damage caps −0.0029
(0.0028)

−0.0053**
(0.0023)

 Hospital Fixed Effects No No Yes Yes

Notes: Each column reports results from a regression of estimated physician testing thresholds τd on characteristics of the physician’s training and 

practice environment. Even numbered columns report FGLS estimates which account for estimation error in τd. Columns 3 and 4 include hospital 

fixed effects. An observation is an individual doctor; there are 6636 observations.

*
significant at the 10% level

**
significance at the 5% level;

***
significance at the 1% level.
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Table 4

Comorbidities with significant misweighting: Impact of comorbidity on testing decisions and estimated 

misassessment of PE risk

Marginal effect 
from testing 

eqn
(1)

Misassessment of 
PE risk

(2)

Std. error of 
misassessment

(3)

T statistic of 
misassessment

(4)

Underweighted risk factors

 Prior hospital visit w/in 30 days −0.0094 0.1070 0.0121 8.8430

 Prior hospital visit w/in 7 days −0.0041 0.1128 0.0130 8.6769

 Prostate cancer (CCW) 0.0014 0.0298 0.0048 6.2083

 Cancer metastisis (Elixhauser) −0.0155 0.0726 0.0128 5.6719

 History of deep vein thrombosis 0.0092 0.0571 0.0114 5.0088

 History of pulmonary embolism 0.0315 0.0666 0.0145 4.5931

 Rhumatoid arthritis, osteoarthritis (CCW) 0.0053 0.0091 0.0024 3.7917

 Endometrial cancer (CCW) −0.0011 0.0547 0.0153 3.5752

 Obesity (Elixhauser) 0.0095 0.0218 0.0076 2.8684

 Paralysis (Elixhauser) −0.0026 0.0331 0.0117 2.8291

 Other neurological conditions (Elixhauser) −0.0043 0.0194 0.0075 2.5867

 Any prior admission history 0.0028 0.0102 0.0041 2.4878

 Alzheimer’s disease (CCW) −0.0023 0.0152 0.0064 2.3750

 Colorectal cancer (CCW) −0.0012 0.0136 0.0067 2.0299

Overweighted risk factors

 Ischemic heart disease (CCW) 0.0007 −0.0226 0.0023 −9.8261

 Chronic obstructive pulmonary disease (CCW) 0.0132 −0.0182 0.0036 −5.0556

 Atrial fibrillation (CCW) −0.0066 −0.0156 0.0036 −4.3333

 Depression (Elixhauser) 0.0033 −0.0208 0.0069 −3.0145

 Peripheral vascular disease (Elixhauser) −0.0013 −0.0214 0.0071 −3.0141

 Diabetes (CCW) −0.0055 −0.0087 0.0029 −3.0000

 Osteoperosis (CCW) 0.0024 −0.0087 0.0033 −2.6364

 Deficiency anemias (Elixhauser) −0.0004 −0.0142 0.0056 −2.5357

 Asthma (CCW) 0.0043 −0.0088 0.0040 −2.2000

 Chronic pulmonary disease (Elixhauser) −0.0042 −0.0094 0.0048 −1.9583

Demographic factors

 Black −0.0074 0.0257 0.0044 5.8409

 Asian 0.0005 −0.0386 0.0118 −3.2712

 Hispanic −0.0056 −0.0168 0.0097 −1.7320

 Female 0.0014 0.0000 0.0024 0.0000

 Age 65–69 −0.0012 0.0119 0.0037 3.2162

 Age 70–74 −0.0089 0.0129 0.0052 2.4808

 Age 75–79 −0.0024 0.0140 0.0038 3.6842

 Age 80–84 −0.0033 0.0166 0.0039 4.2564

 Age 85–89 −0.0043 0.0208 0.0042 4.9524

 Age 90–94 −0.0127 0.0132 0.0078 1.6923
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Notes: This table reports results only for demographic variables and variables with statistically significant evidence of misweighting. The results 
are continued in Appendix Table A.2, which reports results for the remaining comorbidities. Column 1 reports marginal effects from coefficient 
estimates of the testing equation (i.e. equation 2); for example, patients who were admitted to the hospital within 30 days are 0.94 percentage points 
less likely to be tested, after controlling for included PE risk factors and physicians’ testing thresholds. Column 2 reports estimates of physicians’ 
misweighting of these PE risk factors estimated from equation 14; for example, physicians’ observed testing patterns suggest they are 
underestimating the PE risk associated with a prior hospital visit in the past 30 days by 10.7 percentage points. Column 3 reports standard errors on 
these misweighting terms. Column 4 reports t-statistics. Variables are sorted by statistical significance, with the exception of demographic risk 
factors.
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Table 5

Distribution of testing thresholds and misweighting under alternative estimation strategies

Baseline parametric model, all 
comorbidities

Parametric model, 
Elixhauser 

comorbidities excluded

Parametric model, 
Elixhauser 

comorbidities & 
demographics excluded

(1) (2) (3)

Mean of τd 0.0563 0.0623 0.0662

Standard deviation of τd 0.0540 0.0396 0.0394

Average absolute value of PE 
misassessment

0.0226 0.0214 0.0200

Standard deviation of PE 
misassessment

0.0347 0.0336 0.0329

Number of observations 1,890,660 1,890,660 1,890,660

Heteroskedastic parametric model Semiparametric model, 
linear polynomial

Semiparametric model, 
cubic polynomial

(4) (5) (6)

Mean of τd 0.0703 0.0672 0.0661

Standard Deviation of τd 0.0514 0.0539 0.0541

Average absolute value of PE 
misassessment

0.0212 0.0207 0.0208

Standard deviation of PE 
misassessment

0.0361 0.0357 0.0364

Number of observations 861,707 861,707 861,707

Notes: Panel 1 reports the estimated posterior mean and standard deviation of physician testing thresholds τd from our baseline parametric model, 

after applying the Bayesian shrinkage described in Appendix F. Recall that τd is the threshold probability of a positive test at which a physician 

determines it is worthwhile to test a patient. The average absolute value of misweighting calculates the absolute value of the difference between 
physicians’ assessment of the patient’s PE probability and the estimated risk associated with the patient’s comorbidities, and then averages this 
value across all patients. The standard deviation of misweighting describes how the amount of misweighting varies across patients. Panel 2 reports 
results from the parametric model that excludes all Elixhauser comorbidities. Panel 3 reports results from the parametric model that excludes both 
Elixhauser comorbidities and demographic variables. Panel 4 reports results from the heteroskedastic model described in Section 6.2, which allows 
the variance of ηid to differ across physicians. Panels 5 and 6 report results from the semiparametric model described in Section 6.3, where Panel 5 

fits the function λ(·) with a linear function and Panel 6 applies a cubic polynomial. Models estimated in Panels 4, 5, and 6 exclude Elixhauser 
comorbidities and demographic variables and are estimated on a random subsample of half of the physicians for computational tractability.
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Table 6

Calibration Parameters

Definition Value Parameter Source

test sensitivity 0.83 s Stein et al., 2006

baseline false positive rate 0.04 fp Stein et al., 2006

value of a statistical life $1,000,000 VSL Murphy and Topel, 2006

medical benefit of treating PE 0.025VSL MB Lessler et al., 2009

medical cost of treating PE 0.0017VSL MC Lessler et al., 2009

financial cost of testing $300 c estimated from Medicare claims

financial cost of PE treatment $2,800 CT estimated from Medicare claims

Notes: Calibrated parameters of the model applied in welfare simulations reported in Section 7.
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Table 8

Patient welfare with observed misweighting vs. in simulations with no misweighting

False positive rate of 4%

Actual testing decisions No misweighting, simulation 
without cross validation

No misweighting, simulation 
with cross validation

(1) (2) (3)

Description of results:

 Percent of patients tested 3.8% 4.3% 4.3%

 Number of patients tested 71314 81410 79734

 Test yield among tested patients 7.0% 9.2% 8.6%

 Number of positive tests detected 5019 7526 6872

Welfare analysis:

 Total financial costs of testing ($ millions) 35.6 45.2 43.4

 Total medical cost of testing ($ millions) 8.5 12.4 11.7

 Total medical benefits of testing ($ millions) 57.5 106.8 96.7

 Net benefits of testing ($ millions) 13.5 49.1 41.6

 Total (financial + medical) costs per test ($) 618.9 707.8 690.8

 Total benefits per test ($) 806.9 1311.3 1213.1

 Net benefits per test ($) 188.1 603.5 522.2

Notes: We compare testing behavior and social welfare under the observed physician weighting of patient risk factors (in column 1) to simulated 
behavior assuming that physicians target testing to patients with the highest expected probability of a positive test based on observable 
demographics and comorbidities (in column 2). The simulated results in Panel B allow τd to follow the estimated posterior distribution (i.e. without 

correcting for overtesting).
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