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FEATURE ARTICLE: CLOUD COMPUTING 

NoCloud: Exploring 
Network Disconnection 
through On-Device Data 
Analysis  

Application developers often advocate uploading data 

to the cloud for analysis or storage, primarily due to 

concerns about the limited computational capability of 

ubiquitous devices. Today, however, many such 

devices can still effectively operate and execute 

complex algorithms without reliance on the cloud. The 

authors recommend prioritizing on-device analysis 

over uploading the data to another host, and if on-

device analysis is not possible, favoring local network services over a cloud service.  

The paradigm of cloud computing has transformed the IT industry, enabling developers to use 
high-performance hardware and applications without raising a large amount of capital.1 This type 
of architecture offers several other advantages, including significant reductions in hardware 
maintenance costs, scalability, and so forth.  

To take advantage of the cloud, small devices such as mobile phones or smartwatches sometimes 
transfer data to the cloud for storage and processing, that is, they offload these functions. For 
instance, physical activity information derived from the accelerometers of wearables are often 
transferred to and stored in the cloud—as with, for example, Google Fit (www.google.com/fit) 
or Intel Context Sensing SDK (software.intel.com/en-us/context-sensing-sdk). Many virtual 
assistants, such as Apple’s Siri or Amazon’s Echo, transfer voice input to a vendor’s cloud for 
analysis. The ability to offload complex tasks from devices with limited computation capabilities 
to virtually limitless processing capacity in the cloud sounds appealing, but it ignores two major 
issues: threats to privacy from organizational and government surveillance, and advances in 
hardware capabilities.  
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Dartmouth College 
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Dartmouth College 

David Kotz 
Dartmouth College 
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Unlike our interactions with traditional personal computers, some computing devices, such as 
mobile devices and wearables, are deeply personal and can have presence in our most private 
spaces. This pervasive presence means that they can recognize behaviors that we do not intend to 
share with others. The severity of privacy and security risks of wearable, mobile, and Internet of 
Things (IoT) devices can be significant. For example, consider the October 2016 denial-of-
service (DoS) attacks that used IoT devices in the US to overwhelm the DNS infrastructure 
(www.npr.org/2016/10/22/498954197/internet-outage-update-internet-of-things-hacking-attack-
led-to-outage-of-popula). Any device that is connected to the Internet and uses cloud systems is 
vulnerable to exploitation.  

The challenge of reducing use of the cloud for mobile applications has been recognized before, 
and some researchers have proposed mechanisms to substitute the cloud with local networks, 
including cloudlets.2 Nevertheless, even local-area networks are prone to attack or abuse; attacks 
on Wi-Fi networks and their connected devices can be launched by proximate attackers. For 
applications that collect personal data we suggest that developers design their applications by 
reducing their application’s reliability on the network as much as possible, and thus reduce their 
application’s vulnerability.  

According to conventional wisdom, computationally complex algorithms should be run in the 
cloud. However, sending data to the cloud could increase device energy use, the use of network 
bandwidth, and response time. We do not recommend avoiding the cloud or removing network 
connections in all scenarios—for example, it is not possible with social networking applications; 
rather, we recommend that developers avoid treating the cloud (or networks) as the default for 
hosting, managing, and maintaining users’ data, or for all data processing. For instance, there are 
algorithms such as deep learning that are computationally complex and thus resource intensive. 
These algorithms provide high accuracy for some tasks such as image recognition. They, howev-
er, could not be hosted on traditional information-processing chips. In these scenarios, uploading 
data into a cloud is more cost-effective. In contrast, many ubiquitous and pervasive applications 
could work fine without any network connection or by using a hybrid approach that does not 
send all data into the cloud. There are models3–4 to assist developers in calculating whether it is 
worthwhile to send the data to a remote host or not. We describe these later in the Related Work 
section.  

On the other hand, hardware and devices are becoming ever more capable while decreasing in 
size and weight through miniaturization. Therefore, given the privacy risks and network and 
energy costs, we believe designers should default to a “local first” approach, that is, avoid using 
cloud services whenever possible, and furthermore, avoid the network altogether especially when 
handling sensitive data.  

The decision to use cloud or local device depends on tradeoffs between communication and 
computation, application functions, network bandwidth, and energy costs. We suggest, if possi-
ble, applications stay disconnected from the network, especially the Internet, and perform analy-
sis on-device and maintain data in personal storage. If on-device storage or processing is not 
possible, we recommend that developers favor a local network such as a cloudlet2 over a general 
cloud service that is connected to the Internet. If there is an ultimate need for cloud uploading, 
we recommend developers consider making the offloading process a runtime decision, such as 
by using smart partitioning or dynamic offloading.5 

We call our approach NoCloud and in this article discuss both its advantages and its challenges. 

RELATED WORK 
Cloud challenges have led to the introduction of concepts such as hybrid clouds,6 cloudlets,2,7 
and fog computing.8 Moreover, the cost of offloading computation to the cloud has been com-
pared with processing data on a smartphone.3,9–11 
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Cloud Derivatives 
The need for processing on-device and avoiding the cloud is well known for hostile settings such 
as military environments,2 though the distinction between trustable and hostile environments is 
outside the capabilities of most end users. The hybrid cloud6 is an architecture in which two 
clouds operate simultaneously: a local (private) cloud and a public cloud. The local cloud is 
similar to the external cloud but physically located near the target system. A cloudlet7 is a private 
cloud server located close to the local system; an application triggers instantiation (or migration) 
of the necessary cloud service to a nearby cloudlet server.10 It hosts the data and related pro-
cessing. In that sense, a cloudlet is similar to traditional client/server architectures but supports 
multiple tenants via virtual machines.  

Latency is an important issue in some IoT applications that require a near-real-time response. To 
improve cloud response time, Flavio Bonomi and his colleagues8 proposed the concept of fog 
computing, in which cloud nodes are geographically distributed and in closer proximity to the 
client device and thus lower the latency to near real time. A related approach is edge computing, 
in which vendors such as Cisco and Intel rely on local gateways to perform data preprocessing 
(in addition to routing data to the server).  

Application Designs  

Karthik Kumar and his colleagues3 listed factors that should be considered while deciding 
whether to offload mobile computing to another host. These factors include bandwidth, server 
speeds, available memory, server loads, and the amounts of data exchanged between servers and 
mobile systems. Muhammad Habib ur Rehman and his coauthors4 categorized three data-mining 
approaches for mobile phones: the on-board approach runs all processing on the device; the mo-
bile approach processes data on a remote host; and collaborative approaches distribute the pro-
cessing to an ad hoc network of connected mobile nodes in the same locality. Kyunghan Lee and 
his fellow researchers11 quantified the impact of delaying data transfer in 3G networks, transfer-
ring data only when devices are connected to Wi-Fi.  
So-called elastic mobile applications benefit from offloading and partitioning12 the application 
process either statically or dynamically at runtime (for example, smart partitioning). In other 
words, they adaptively upload data to the cloud if there is a lack of resources on the local device; 
otherwise, the process will be done entirely locally. These applications usually upload intensive 
processes into the cloud such as natural language processing (NLP), and keep simple processes, 
such as user interface interaction, on the device. 

Muhammad Shiraz and his coauthors13 provided a taxonomy of mobile offloading approaches 
based on six elements: framework nature (for example, entire application migration or applica-
tion partitioning), objective function (for example, energy savings and/or bandwidth utilization), 
migration granularity (for example, entire process or class level), migration pattern (for example, 
application proxy or binary code migration), migration support (system or application level), and 
partitioning approach (static or dynamic). They also reviewed mobile offloading approaches that 
mitigate data safety and users’ privacy.  

MOTIVATION 
Due to increasing surveillance by government agencies and companies as well as miniaturization 
trends resulting in greater hardware processor power, we believe that developers could design 
applications to run more processes locally. From a technical perspective, four factors motivate 
the introduction of NoCloud: privacy and trust, energy efficiency, network reliability and outag-
es, and response time.  

Privacy and Trust 
There are three major privacy threat actors. First, Edward Snowden14 revealed that surveillance 
by government agencies is much more extensive than previously suspected. Second, large corpo-
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rations such as Google (www.cnet.com/news/google-closes-3-2-billion-purchase-of-nest) and 
Apple (www.wsj.com/articles/apple-targets-augmented-virtual-reality-with-hiring-acquisition-
1454107392) are acquiring pervasive technologies that can quantify detailed aspects of our life. 
These technologies provide useful applications but pose a threat to privacy. For instance, a 
smartwatch could record all voices in the owner’s vicinity. Even when manufacturers or service 
providers try to protect customers’ privacy, vulnerabilities in the device or back-end services 
could leave customer data open to attackers. Third, cybercriminals are increasingly hacking into 
cloud services, as demonstrated by the theft of compromising celebrity photos from Apple’s 
iCloud service in August 2014 (www.wikipedia.org/wiki/ICloud_leaks_of_celebrity_photos). 

Governmental and corporate violations of privacy are usually supported by legal institutions, and 
victims usually lack the resources to contest such violations. With their organizational superiori-
ty, such attacks can be more successful and wide-ranging compared to those conducted by cy-
bercriminals. Technologically superior adversaries might be able to defeat even strong security 
approaches such as the separation of encrypted data (in one vendor) and key material (in another 
vendor). Governments have also been known to use their authority and legal tools to compel 
disclosure of data or keys from vendors. Therefore, we believe keeping data private could miti-
gate risks associated with these organizations. Although a government agency could compel end 
users to provide their physical device for analysis, the cost of approaching each user individually 
is significantly higher than getting the data from a centralized location and dealing with one or-
ganization instead of a group of users. 

Researchers and developers have proposed new software infrastructure and hardware devices to 
challenge these threats. While these are promising efforts, as soon as the data gets outside the 
device it is vulnerable to wireless and cloud-based attack.13 By storing and processing the data in 
a local network server that is managed by the device owner and disconnected from the Internet, 
the attack surface will be reduced. In other words, the attacker would need to be in the local vi-
cinity of the network, which depends on the network’s radio range. Nevertheless, one can argue 
that the physically owned device is prone to theft, loss, and damage. We agree there is a tradeoff 
between the security of these approaches, but a personal device is owned by the user and the user 
is the sole controller of the device.  

Table 1 summarizes existing threats to data repositories based on the STRIDE model 
(www.owasp.org/index.php/Threat_Risk_Modeling#STRIDE). Except for the “elevation of priv-
ilege” threat, we believe other threats have less chance of successful execution by using the on-
device or local-network-only approach. Put simply, a cloud attacker can be anywhere in the 
world and still be successful. If the device is networked only to a local server, the attacker has to 
be in close proximity to the network; if the device is not networked, the attacker must have phys-
ical access to the device. Nevertheless, there are examples of emerging physical device attacks as 
well. For instance, at the time of this writing there are reports of federal agents demanding those 
seeking entry into the US for their phone password to search or download content from the de-
vice. Therefore, we cannot argue that storing information on physical devices is the ultimate 
solution. Also, it is not possible to archive large amounts of media such as games or high-quality 
movies on wearable or mobile devices, and they are prone to loss or damage as well. A personal 
network-disconnected storage solution such as external hard disk might resolve the need for 
disconnected storage. 

Energy Efficiency 
Two trends are increasing the feasibility of running complex processes on-device in an energy-
efficient manner and reducing the need for transferring data to another machine: hardware per-
formance improvements and miniaturization, and advances in energy-efficient algorithms that 
can run complex tasks. 

Hardware trends have, for decades, provided a steady increase in the capacity and capability of 
mobile, wearable, and other pervasive devices. For example, Kryder’s law states that storage 
media are decreasing in size and increasing in capacity on a logarithmic scale. These ongoing 
trends suggest that ubiquitous devices either already have or soon will have enough capability to 
host their own data for the long term.  
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Table 1. Threats to data repositories, based on the STRIDE model. 

Data storage 
and analysis 
endpoint 

 
Spoofing 
identity 

 
Tampering  
with data 

 
Repudiation 

 
Information 
disclosure 

 
Denial of 
service 

 
Elevation of 
privilege 

Cloud Highly pos-
sible due to 
universal 
web acces-
sibility of 
cloud da-
ta—for ex-
ample, 
fishing web 
addresses. 

Highly 
possible; 
could be 
done by a 
remote 
adversary 
that has 
gained 
accessed 
to the 
cloud. 

Possible; a 
member of 
a cloud 
hosting or-
ganization 
or a sub-
contractor 
who has 
access to 
users’ data 
can misuse 
it. 

Possible if 
an adver-
sary can 
get access 
to cloud 
infrastruc-
ture. 

Highly 
possible 
and similar 
to other 
network 
servers 
that are 
available 
on the In-
ternet. 

Rarely possible, 
since physically 
stealing infra-
structure is 
practically im-
possible and 
such a deep 
cyberattack also 
requires signifi-
cant technical 
superiority.  

 
Local net-
work  

Possible; 
the adver-
sary would 
need to be 
in radio 
range of the 
host to gain 
access to 
the host 
machine. 

Possible; 
an adver-
sary can 
perform 
signal 
jamming in 
near prox-
imity to the 
device and 
inject fake 
data. 

Possible for 
other ad-
versaries 
who have 
direct ac-
cess to the 
servers. 

Possible if 
the adver-
sary is in 
proximity 
to the net-
work. 

Rarely 
possible, 
unless the 
local net-
work has a 
connection 
to the In-
ternet, 
such as a 
hybrid 
cloud; 
neverthe-
less, pos-
sible via 
signal 
jamming. 

Only possible 
by staying in 
close proximity 
to the device 
and its network. 

On-device Only possi-
ble if the 
adversary 
has access 
to the phys-
ical device 
(steals the 
device). 

Only pos-
sible if the 
adversary 
has access 
to the 
physical 
device 
(steals the 
device). 

Only possi-
ble if the 
adversary 
gains direct 
access to 
the device 
(steals or 
destroys the 
device) 

Only pos-
sible if the 
adversary 
has access 
to the 
physical 
device 
(steals the 
device). 

Not appli-
cable 

Highly possible 
due to risk of 
device theft; the 
environment 
where the de-
vice resides is 
usually not as 
secure as cloud 
servers. 

  

Similar advances are applicable in computation; indeed, mobile devices now integrate special-
ized coprocessors for sensor-data processing, encryption, and machine learning. Examples in-
clude the NVIDIA Volta Chip (www.nvidia.com/en-us/data-center/volta-gpu-architecture), 
Huawei Kirin 970 (consumer.huawei.com/en/press/news/2017/ifa2017-kirin970), Apple A11 
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Bionic Neural Engine (en.wikipedia.org/wiki/Apple_A11), Intel Movidius vision processing unit 
(www.movidius.com/solutions/vision-processing-unit), and Qualcomm Snapdragon Neural Pro-
cessing Engine (www.qualcomm.com/news/releases/2016/05/02/qualcomm-helps-make-your-
mobile-devices-smarter-new-snapdragon-machine). 

Meanwhile, developers are trying to reduce the computational complexity of important data-
analysis algorithms. Consider the algorithm used to generate a smartwatch user’s profile,15 which 
is based on a resource-efficient frequent-itemset mining prediction algorithm;16 such algorithms 
are usually too resource-intensive to run on small devices. Figure 1 demonstrates the differences 
between generating the profile on the device itself and transferring the data from the smartwatch 
to a smartphone for further analysis. On-device analysis is more efficient in both response time 
(Figure 1a) and energy use (Figure 1b), especially as the size of the data grows (number of days 
increases). Note that these graphs report the energy cost of the smartwatch only. In the Transfer 
& Prediction scenario, the smartwatch transfers the data to the phone and receives the result, but 
the phone’s energy costs are not included, suggesting that total energy costs are even higher than 
shown. In this case, at least, it is far more efficient to process the data on-device than to send it to 
another device for processing.  

 

 
Figure 1. Latency (a) and energy use (b) of a smartwatch user profiling algorithm when run on the 
smartwatch alone (Prediction) and using a smartphone for data analysis (Transfer & Prediction). 

Network Reliability and Outages 
Many ubiquitous devices require Internet access to host and process device-collected data. 
Communications between geographically distributed nodes require Internet connectivity, and 
usually their webserver is hosted in a cloud. Communications between user devices, however, do 
not necessarily require Internet access (if they are in close physical proximity) and could be es-
tablished in a local network.  

Furthermore, the Internet is not available everywhere at all times, especially in underdeveloped 
regions, where broadband network penetration cannot keep pace with wearable market growth. 
For instance, the wearable market in Africa grew 89.9 percent in the first quarter of 2016.17 Ap-
plications running on wearables could not proliferate in such regions unless they reduce their 
network need. In addition, medical devices that collect health data cannot rely on Internet availa-
bility in many rural areas, and natural disasters can temporarily disrupt Internet access even in 
well-served areas. Indeed, service outages can sometimes occur in enterprises with redundant 
connectivity options.1 Regardless, any device or application that depends on the cloud or the 
Internet would become unusable during network unavailability periods. This dependence, and its 
effects on application availability, are another reason we recommend the NoCloud or local-first 
philosophy as a starting point for system design, wherever possible. 

Response Time 
Many ubiquitous applications involve real-time user interaction, demanding fast response times 
for any data-processing algorithms in the interaction loop. Sending the data to a network could 
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introduce unacceptable delay. Recall Figure 1a, which shows the response-time superiority for 
that particular algorithm by not transferring data to another device. It is notable that the latency 
problem of the cloud for IoT devices has been recognized and concepts such as fog computing 
proposed to resolve it.7 

On the other hand, there are efforts to create lighter algorithms that can run on small devices, 
such as the user-profiling algorithm shown in Figure 1 or an NLP algorithm to query quantified-
self data on the smartwatch.18 Table 2 shows the response-time superiority of an NLP component 
running on a smartwatch compared with sending the data to a smartphone or the cloud. However, 
these queries do not require searching the Internet—they can be performed on-device because 
the information is collected by the device. The table reports the response time of a framework18 
that evaluates parsing queries on-device with Google’s SyntaxNet 
(github.com/tensorflow/models/tree/master/research/syntaxnet) and Apache’s OpenNLP 
(opennlp.apache.org). SyntaxNet requires an external host, but OpenNLP has been implemented 
on smartphones. 

Table 2. Response-time comparison between three libraries to parse quantified-self queries. 

 
 
Method 

 
Host 

Response 
time 
(ms) 

On-device parser Smartwatch 594 

SyntaxNet Remote host (cloud) 3,639 

OpenNLP Smartphone 2,271 

 
Although the quantitative tradeoffs will vary with the specific algorithm, the size and type of 
data, network bandwidth and latency, and the relative processing speed of the local and remote 
hosts, we believe it is not always faster to send the data to the cloud (or even to a nearby server) 
for processing.  

Although we focused here on NLP, Shiraz and his colleagues13 list several computational-
intensive processes that are common among mobile devices including natural language transla-
tion, speech recognition, optical character recognition, image processing, online gaming, and 
video processing. Due to the changing dynamics of emerging pervasive devices such as compan-
ion robots, new algorithms might be required.  

CHALLENGES 
Of course, not every application can use on-device processing and data storage. Here we address 
five potential challenges of avoiding cloud services or favoring a local network server over the 
cloud: data integration, reliability and backup, information access, vendor financial incentives, 
and computational limitations. 

Data Integration 
One promised advantage of connected wearables or other ubiquitous devices is the opportunity 
to fuse the data with other information and thus make better inferences about human behavior 
than is possible with data from a single source. For instance, a wellness app could identify corre-
lations between temperature and a user’s physical activities (measured by a personal wearable 
device with on-premises sensor equipment). The key to the success of these types of algorithms 
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is the integration of data from several sensors. Although we envision many promising applica-
tions, we expect they will be difficult to deploy in the near future because of a lack of standard 
protocols available for communication between devices from different vendors. At this writing, 
there are more than 400 wearable devices available in the market (vandrico.com/wearables/list). 
Data integration will not succeed, we fear, until there are mandated or de facto standards defined, 
and service providers provide data in an open format. Furthermore, device/application vendors 
have many incentives not to enable their devices to interoperate with others: it is easier for them 
to develop integrated devices, apps, and portals in a vertical silo; a closed vendor-specific eco-
system produces “lock-in” that discourages customers from switching to competitors; and, final-
ly, they may find value in secondary use of customer data. Unless or until there is a market 
benefit or legal mandate to interoperate, vendors will not be keen to support integration and 
standardization of their data.  

There are some promising efforts to provide frameworks and standards for health data integra-
tion and device communication, such as Open mHealth (www.openmhealth.org), the Personal 
Connected Health Alliance (www.pchalliance.org), and IEEE 11073. They have not yet achieved 
widespread market adoption, however. Although data integration across devices and vendors and 
data sources is a compelling vision, the lack of interoperability and open protocols has thus far 
kept the market scattered across independent vertical silos. Without a need for data to “meet in 
the cloud,” we again advocate that applications keep data close to their owners. 

Reliability and Backup 
The NoCloud approach encourages developing a local-first default architecture, in which all data 
is stored locally (on the mobile device, if possible) and processed there only. Mobile devices are 
prone to being lost or stolen, of course, requiring some data backup. A secure backup in the 
cloud could be one solution. Key management, however, is problematic: the encrypted backup 
can be stored in the cloud, but where does the consumer reliably and securely store the decryp-
tion key? What about a local backup solution, such as an external hard disk? If disconnected 
from the Internet it is not subject to network attacks, but it might still be vulnerable to malware if 
it is connected to a device that has been connected to the Internet before. Moreover, an external 
hard disk is also prone to theft and damage.  

Both cloud and physical disk backup require the user to configure the system securely; configu-
ration mistakes might expose data to attackers. It is hard to say whether it is easier to securely 
configure a local disk backup device or a remote cloud storage service; in either case, developers 
must ensure that secure configuration is simple for all users. On balance, we cannot recommend 
one solution over the other for all use cases.  

Information Access 
Usually, ubiquitous devices require an interface to present information they collect to the user. In 
many cases, devices either do not provide an interface or the interface is too small and limited to 
easily browse and search for information. Applications thus rely on complimentary devices such 
as a smartphone or web browser to display information to the user. For instance, physical activi-
ty data collected from a wrist-mounted wearable is commonly shown on a smartphone. The lim-
ited user interface of ubiquitous devices shows the importance of transferring data to another 
device, if only for display.  

Many common devices transfer all device data to the cloud, then allow a web portal or mobile 
app to retrieve the cloud-stored data for immediate display to the user. We argue against this 
approach, for the reasons mentioned above; instead, the device should transfer data to the 
smartphone app only when display is required, and the smartphone could then discard the data 
once its display task is complete; the data never moves to the cloud. This method keeps the data 
secure inside the device most of the time, and exports a subset of the data only briefly and only 
when needed. 
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The transfer of data between the device and the display should be accomplished via a secure 
channel and confirmed by the device wearer. Methods have been developed for establishing 
secure, intended relationships between two devices—for example, LightTouch connects a 
smartwatch to an ambient display.19 

Vendor Financial Incentives 
In addition to hardware sales or software services, one of the most profitable assets of service 
providers is their access to user data. Indeed, there is a large market for data about individual 
users. For example, Google offers Gmail for free to users, but it makes profit on their data by 
using it to sell advertisements. With on-device data storage and analysis, such business models 
might not be sustainable due to the lack of access to customer data. This limitation could also 
affect quality of service, because customer data is often used internally by companies to improve 
their quality of service. 

Without cloud storage, the device or service vendor does not have access to customer data, re-
ducing profit opportunities; as a result, the devices or applications might be more expensive. 
Once again, there is a tradeoff; we believe users should have higher priority in making decisions 
about their data, and should be able to choose higher-privacy services even if they cost more. 
Some service providers mitigate this challenge by offering different levels of services, such as a 
discounted or free service that collects consumer data and more expensive services that do not 
provide consumer data to the vendor. 

There is a general lack of privacy awareness among consumers.20 Educating users about the pri-
vacy risks of pervasive devices could force vendors to change their policies and profit less from 
consumers’ data. 

Computational Limitations 
One of the most important reasons for using the cloud is to benefit from access to a larger ma-
chine. Battery capacity (in wireless devices), computational ability, and radio signal strength are 
all affected by device size.21 A smaller device usually means a weaker battery, less computation-
al power, and shorter radio range. Nevertheless, we believe many of the requirements and func-
tionalities of current ubiquitous systems should be implemented on-device and ubiquitous 
devices should move toward network independency. To demonstrate this need, consider deep-
learning algorithms that have revolutionized machine-learning and data-mining applications in 
several domains, including image recognition. Hardware and algorithm improvements are bring-
ing these new capabilities to mobile and wearable devices; as we noted above, GPUs and copro-
cessors are accelerating complex data-processing and machine-learning tasks on many such 
devices. We recommend that developers decide about the data process and storage host based on 
the algorithm’s complexity. If the algorithm is resource intensive and the need for cloud upload-
ing is inevitable, then developers can try dynamic offloading or smart partitioning rather than 
static offloading. 

Another emerging trend is autonomous vehicles, including airborne drones that are disconnected 
from power sources. Drones can collect data, analyze it, and make inferences locally. Image 
recognition is a major task of drones, and image-recognition algorithms are usually computa-
tionally complex. Therefore, we anticipate future drones will be increasingly capable of conduct-
ing on-device data analysis. The popularity of these vehicles—and the wide range of practical 
applications—will drive the rapid improvement of both hardware and software for on-device 
data processing, thus reducing the need to transfer data to another machine for human interven-
tion and decision making.  

CONCLUSION 
In this article, we recommend that system developers and researchers rethink using cloud ser-
vices as a default architecture for mobile, wearable, and other pervasive computing applications 
and prioritize on-device analysis over uploading the data to another host. If on-device analysis is 
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not possible, then designers should favor a local network over the cloud. Our NoCloud proposal 
is motivated by four factors: privacy and trust, energy efficiency, network reliability and outages, 
and response time. Our approach has challenges with respect to data integration, reliability and 
backup, information access, vendor financial incentives, and computational limitations, but we 
outline how these can be overcome. 
Mobile and wearable hardware are becoming increasingly capable as computational platforms, 
and we presented some examples to demonstrate that on-device processing can sometimes im-
prove energy efficiency and response time relative to off-device processing. Moreover, we de-
scribed industrial efforts to integrate computationally complex algorithms (such as deep 
learning) into the hardware, through coprocessors and GPUs. Although the specific tradeoffs are 
different for every application and network setting, NoCloud is a viable option for making deci-
sions about architecture for ubiquitous systems. If there is no chance to host the process on the 
device, the application could send it to local network, and even if the local network is also inca-
pable, developers can consider dynamic offloading methods and need not send data de facto to 
the cloud for further processing. 
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