ANALISIS PENGARUH TEKANAN DAN TEMPERATUR TERHADAP PROSES PENYARINGAN CO₂ DAN H₂O PADA *MOLECULAR SIEVE*

Arifal, Sriyono, Sumijanto

Bidang Pengembangan Reaktor, Pusat Teknologi Reaktor dan Keselamatan Nuklir

ASTRAK

ANALISIS PENGARUH TEKANAN DAN TEMPERATUR TERHADAP PROSES PENYAR-**INGAN CO2 DAN H2O PADA MOLECULAR SIEVE.** RGTT200K adalah reaktor berpendingin gas temperatur tinggi dengan daya 200 MW_{th} kogenerasi, selain untuk menghasilkan listrik, panas yang dihasilkan dapat digunakan untuk mendukung berbagai proses seperti produksi hidrogen, desalinasi, gasifikasi/pencairan batubara, dll. Reaktor RGTT200K menggunakan gas helium sebagai pendingin. Kemurnian helium harus dijaga selama reaktor beroperasi dengan Sistem Pemurnian Helium (SPH). Ada 4 tahapan proses dalam sistem ini yaitu penyaringan partikulat padat, oksidasi gas pengotor, penyaringan molekuler, dan absorbsi kriogenik. Dalam proses pemurnian helium, temperatur dan tekanan mempunyai peran yang sangat menentukan dalam keberhasilan pengambilan pengotor. Makalah ini membahas pengaruh temperatur dan tekanan pada proses penangkapan pengotor pada Molecular Sieve. Pemodelan Molecular Sieve dilakukan dengan bantuan software Super Pro Designer. Hasil analisis menunjukkan bahwa kenaikan temperatur, dari 25°C hingga 100°C meningkatkan kapasitas serap CO₂ dari 0,018686 g/L menjadi 0,019110 g/L. Dan kenaikan tekanan dari 10 bar hingga 50 bar meningkatkan kapasitas serap dari CO₂ dari 0,002169 g/L menjadi 0,010841 g/L. Sedangkan untuk H₂O kapasitas serap dengan kenaikan temperatur yang sama menaikkan kapasitas serap dari 0,001755 g/L menjadi 0,00182 g/L. Dan dengan kenaikkan tekanan yang sama meningkatkan kapasitas serap dari 0,002169 g/L menjadi 0,010841 g/L. Berdasarkan simulasi, dapat disimpulkan bahwa semakin tinggi tekanan dan temperatur maka gas pengotor yang tertangkap dalam Molecular Sieve semakin besar pula. Kenaikan tekanan dan temperatur linier dengan jumlah pengotor yang tertangkap oleh Molecular Sieve.

Kata kunci : penangkapan, gas pengotor, Molecular Sieve, pemurnian, helium, RGTT200K

ABSTRACT

THE ANALYSIS OF GAS IMPURITIES CAPTURE BY MOLECULAR SIEVE ON HELIUM COOLANT PURIFICATION SYSTEM OF RGTT200K. RGTT200K is a 200 MW_{th} hightemperature gas-cooled reactors cogeneration was designed except to generate the electricity; the heat can be used to support hydrogen production process, coal gasification/liquefaction, desalination, etc. RGTT200K uses helium as a coolant. During normal operation, helium coolant must be maintained its purity from various impurities by using Helium Purification System (HPS). There are four main processes in the purification system, i.e. solid particulate filtration, impurities gas oxidation, Molecular Sieve adsorption and cryogenic adsorption. The pressure and temperature is a key point on the Molecular Sieve adsorption. This paper will discuss the effect of pressure and temperature on the sieving process of Molecular Sieve. The Molecular Sieve was modeled using Super Pro Designer software. The analysis showed that the increase in temperature from $25^{\circ}C$ to $100^{\circ}C$ will increased CO₂ absorption capacity from 0.018686 g/L to 0.019110 g/L. And an increase in pressure from 10 bar to 50 bar will increased CO_2 absorption capacity from 0.002169 g/L to 0.010841 g/L. For the H_2O absorption at the same increasing temperature also increases the absorption capacity from 0.001755 g/L to 0.00182 g/L. At the same increasing pressure, the H_2O absorption capacity also increased from 0.002169 g/L to 0.010841 g/L. Based on the simulation, it was known that on the higher pressure and temperature of coolant, the amount of impurities gas which are caught in Molecular Sieve is greater also. The increase in pressure and temperature with the amount of impurities captured by Molecular Sieve is linearly.

Keywords: capture, impurities gas, Molecular Sieve, helium, purification, RGTT200K

PENDAHULUAN

RGTT200K adalah Reaktor Gas Temperatur Tinggi 200 MW_{th} Kogenerasi. Reaktor ini didisain berdaya 200MW_{th}, selain untuk menghasilkan listrik, panasnya dapat dimanfaatkan untuk produksi hidrogen. Reaktor ini menggunakan bahan bakar berbentuk *pebble* (bola) dengan inti kernel yang dilapisi TRISO (*Triple Coated Isotropic*) dengan pendingin menggunakan gas helium^[1].

Pengotor gas helium pada sistem pendingin RGTT200K dapat dikategorikan dalam 2 kategori yaitu pengotor berbentuk partikulat (berbentuk debu karbon dan radionuklida produk fisi), dan pengotor berbentuk gas. Pengotor debu karbon banyak terjadi pada RGTT200K berbahan bakar tipe *pebble* sedangkan pada tipe prismatik relatif sedikit. Hal ini dikarenakan pada bentuk prismatik gesekan antar bahan bakar cenderung minimal atau tidak ada. Pengotor berbentuk partikel radionuklida adalah berasal dari produk fisi (terutama Sr, Cs) dari teras yang terbawa aliran pendingin helium. Jumlah dan konsentrasi produk fisi ini sangat bervariasi tergantung pada keandalan matriks bahan bakar dan umur reaktor. Pada prinsipnya bahwa untuk menjamin keselamatan pengoperasian RGTT200K, maka besar radioaktifitas yang terpancar ke lingkungan selalu dipantau dalam rentang batas aman untuk pekerja dan masyarakat luas^[2].

Pengotor berbentuk gas yang terbawa dalam aliran helium dapat terjadi dari berbagai sumber antara lain : proses *degassing* dari reflektor grafit, menghasilkan pengotor: CO, CO₂, H₂O, H₂ dan N₂; proses *loading* dan *unloading* bahan bakar, menghasilkan pengotor: CO, CO₂, H₂O, H₂ dan CH₄; proses *welding* dan penyambungan sistem pemipaan pada saat perawatan, menghasilkan pengotor O₂, N₂; proses *degassing* dari dalam struktur logam, akan menghasilkan pengotor O₂, H₂O, H₂ dan N₂; proses *degassing* berasal dari insulator thermal akan menghasilkan O₂, CO₂, H₂O, dan N₂. Gas pengotor tersebut harus dibersihkan dari aliran pendingin karena memicu terjadinya proses korosi oksidasi dan karburisasi dan dekarburisasi^[3].

Untuk menjamin bahwa helium bersih dari pengotor, maka di sistem pendingin RGTT200K, didesain Sistem Pemurnian Helium (SPH). Dalam sistem ini terdapat 4 tahapan proses pembersihan pengotor yaitu penyaringan dengan filter HEPA, oksidasi dengan oksidator CuO, penangkapan pengotor dengan kolom Molecular Sieve adsorber, dan cryogenic karbon aktif adsorber temperatur rendah. Filter HEPA berfungsi menyaring debu karbon dan radionuklida produk fisi. Kolom oksidasi CuO untuk mengoksidasi gas CO dan H₂ menjadi CO₂ dan H₂O sehingga mampu diserap pada tahapan berikutnya. Kolom Molecular Sieve adsorber berguna untuk menangkap gas NO_x, CO₂, H₂O, CH₄. Cryogenic karbon aktif adsorber digunakan untuk menangkap gas N₂ dan O₂ yang masih lolos dari Molecular Sieve.

Tujuan makalah ini adalah menganalisis pengaruh tekanan dan temperatur terhadap proses penangkapan CO₂ dan H₂O dengan *Molecular Sieve*. Metodologi yang digunakan adalah dengan memodelkan *Molecular Sieve* dengan *software Super Pro Designer* dan mekanisme penangkapannya disimulasikan dan dianalisis.

TEORI Sistem Pemurnian Helium RGTT200K

Garis besar desain konseptual sistem pemurnian helium RGTT200K ditunjukkan pada Gambar 1. Sistem pemurnian helium ini, akan mengambil sebagian (1%) aliran pendingin utama yang berasal dari teras reaktor. Temperatur aliran adalah sekitar 114°C dan tekanan sekitar 50 bar.

Gambar 1. Desain Konseptual Sistem Pemurnian Helium RGTT200K^[3,4]

Proses Adsorpsi dengan Molecular Sieve Molecular Sieve / Zeolit adalah senyawa zat kimia alumino-silikat berhidrat dengan kation natrium, kalium dan barium. Secara umum, Molecular Sieve memiliki melekular sruktur yang unik, di mana atom Silikon dikelilingi oleh 4 atom oksigen sehingga membentuk semacam jaringan dengan pola yang teratur. Di beberapa tempat di jaringan ini, atom Silikon digantikan degan atom Aluminium, yang hanya terkoordinasi dengan 3 atom Oksigen. Atom Aluminium ini hanya memiliki muatan 3+, sedangkan Silikon sendiri memiliki muatan 4+. Keberadaan atom Aluminium ini secara keseluruhan akan menyebabkan *Molecular Sieve* memiliki muatan negatif. Muatan negatif inilah yang menebabkan *Molecular Sieve* mampu mengikat kation, dalam hal ini pengotor gas helium.

Tahapan ketiga dari proses pemurnian helium adalah penangkapan gas pengotor dengan menggunakan *Molecular Sieve*. *Molecular Sieve* yang umum digunakan adalah *Zeolit Tipe 5A*. Gas pengotor yang dapat ditangkap dengan Zeolit adalah NO_x, CO₂, H₂O, CH₄. Spesifikasi Zeolit yang digunakan seperti ditunjukkan pada Tabel 1.^[4,5] Pada desain kolom *Molecular Sieve* ini, biasanya kolom dibuat menjadi 2 macam, kolom pertama untuk kolom adsorpsi (penjeraban), yaitu penyaringan molekul, sedangkan kolom ke dua digunakan untuk regenerasi. Proses ini dilakukan secara bergantian. Proses regenerasi sangat dibutuhkan untuk membersihkan kembali Zeolit dari gas pengotor yang ditangkap sehingga dapat digunakan kembali.

Pada proses adsorpsi ini tidak semua gas pengotor dapat diserap, melainkan masih ada kemungkinan gas N₂ dan O₂ yang terlepas, karena ukuran molekulnya lebih kecil dari 5A. Kedua gas ini akan ditangkap menggunakan Activated Carbon Bed^[6,7]

Karakteristika Molecular Sieve

Molecular Sieve adalah unit material yang memiliki pori-pori kecil/halus di mana ukurannya sudah sangat terstandarisasi dan seragam. Poripori tersebut dapat dengan selektif "melanjutkan" atau "menangkap" molekul-molekul yang lewat berdasarkan ukuran molekul. Material yang dapat digunakan sebagai *Molecular Sieve* antara lain Zeolit dan Karbon. *Molecular Sieve* mempunyai banyak tipe, yaitu antara lain Tipe 3A, Tipe 4A, Tipe 5A dan Tipe 13X. Struktur kristal *Molecular Sieve* seperti ditunjukkan pada Gambar 2.

Tabel 1. Spesifikasi Zeolit Tipe 5A yang digunakan pada SPH

Parameter	Nilai
Volume pori per gram	$0,3 \text{ cm}^3$
Diameter pori	5 Å
Ukuran partikel	1,6 mm
Luas permukaan per gram	700 s/d 800 m ²
Porositas internal	50 %

Gambar 2. Struktur Kristal Molecular Sieve^[8,9]

Molecular Sieve Tipe 4A, mempunyai komposisi 1,0 Na₂O: 1,0 Al₂O₃: 2,0 SiO₂ : 9/2 H₂O, rasio Si dan Al adalah SiO₂/Al₂O₃ =3,0. Diameter poros jenis ini adalah 4Å. Sodium yang terikat dalam struktur Zeolit menunjukkan keluarga tipe 4A ini. *Molecular* jenis ini banyak diaplikasikan untuk dehidrasi gas atau cairan tertentu sehingga menghasilkan gas atau cairan dengan tingkat kemurnian tertentu. Jenis ini juga digunakan untuk mendehidrasi aliran minyak hidrokarbon sehingga mampu menyerap SO₂, CO₂, H₂S, C₂H₄, C₂H₆, and C₃H₆ yang terbawa dalam aliran tersebut.

Molecular Sieve Tipe 3A, mempunyai komposisi $0.4 \text{ K}_2\text{O} : 0,60 \text{ N}_2\text{O} : 1,0 \text{ Al}_2\text{O}_3 : 2,0 \text{ SiO}_2 : 4,5 \text{ H}_2\text{O}$, dibuat dengan cara mensubtitusi kation potassium dari ion sodium yang ada pada struktur 4A, sehingga mampu mereduksi porositas efektif sampai dengan 3Å. *Molecular Sieve* jenis ini dapat digunakan pada banyak aplikasi baik penyerapan media polar ataupun non polar seperti proses dehidrasi minyak hidrokarbon seperti *propylene, butadiene, acetylene,* mengeringkan fluida polar seperti *methanol, etanol.* Penyerapan molekul seperti NH₃, H₂O dari campuran N₂/H₂.

Molecular Sieve Tipe 5A, mempunyai komposisi ³/₄ CaO: 1/4 Na₂O : 1,0 Al₂O₃ : 2SiO₂ : 9/2 H₂O. Divalensi ion Kalsium dalam struktur Zeolit menggantikan kation Sodium sehingga diameter pori menjadi 5Å. Diameter poros jenis ini adalah 5Å. *Molecular Sieve* jenis ini banyak digunakan untuk menghilangkan gas H₂S (ukuran molekul 120pm > 5Å), dan CO₂ (ukuran molekul 112,8 pm) dan mercaptan pada gas alam (*natural gas*).

Mekanisme penangkapan gas pengotor ke dalam matriks *Molecular Sieve* ditunjukkan pada Gambar 3. Mekanisme proses penangkapan partikel yang terjadi pada *Molecular Sieve* ada 3 kemungkinan, yaitu *molecular sieving* (diameter partikel <5Å), *selective surface* (5Å < dP < 12Å) dan *Knudsen diffusion* (dP > 20Å).

Gambar 3. Mekanisme penangkapan pengotor menggunakan Molecular Sieve^[10]

Proses Adsorpsi dengan *Molecular Sieve* Sistem *adsorpsi* dapat dilakukan dengan 2 cara : **a. Proses** *Batch*

Proses ini menggunakan bejana, gas helium yang akan dimurnikan dialirkan sehingga tercampur bersama adsorben dengan kecepatan dan waktu tertentu. Selanjutnya proses adsorpsi dibiarkan sampai mencapai kesetimbangan. Sistem *Batch* sering digunakan apabila gas helium yang akan diolah volumenya relatif tidak terlalu besar, oleh karena gas helium dalam volume besar tentunya membutuhkan bejana yang besar pula. Sistem ini sering digunakan untuk proses penjernihan air.

b. Proses Kolom

Proses cara Kolom adalah menggunakan silinder vertikal atau horizontal. Gas/air kotor yang akan diolah dialirkan secara terusmenerus ke dalam suatu kolom adsorpsi. Sistem kolom ini luas penggunaannya, terutama untuk pengolahan limbah cair industri, pemakaian sistem kolom ini sangat cocok untuk air limbah dalam volume besar.

Software Super Pro Designer

Software Super Pro Designer dibuat dan didistribusikan oleh Intelligen Inc. Amerika Serikat. Perangkat lunak ini dapat digunakan untuk melakukan analisis dan pemodelan pada berbagai proses industri seperti pabrik kimia, proses biokimia, farmasi, rekayasa lingkungan dll. Software Super Pro Designer dapat melakukan perhitungan kesetimbangan energy dan massa pada berbagai unit operasi. Selain itu software ini dapat pula digunakan untuk melakukan analisis biaya dan manfaat (cost and benefit analysis) terhadap kelayakan suatu proses/pabrik yang akan dibangun. *Software Super Pro Designer* juga handal apabila digunakan untuk melakukan analisa mengenai dampak lingkungan (AMDAL).

METODOLOGI

Proses adsorpsi dengan Molecular Sieve dimodelkan dengan software SuperPro Designer. Tipe Molecular Sieve yang dimodelkan adalah Molecular Sieve 5A. Molecular Sieve tipe 5A dipilih, karena pengotor-pengotor gas helium, yaitu CO, CO₂, H₂O, H₂ dan CH₄, yang akan ditangkap berukuran lebih besar dari 5A. Pada pemodelan ini, unit operasi GA (Gas Adsorption) dibuat dengan 2 unit, satu unit untuk menangkap CO₂ sedangkan unit ke 2 digunakan untuk menangkap H₂O. Hasil pemodelan Molecular Sieve ditunjukkan pada Gambar 4. Setelah dioperasikan pada rentang waktu tertentu, maka Molecular Sieve akan mengalami kejenuhan sehingga harus diregenerasi. Tekanan dan temperatur masuk ke unit adsorpsi dapat divariasikan menggunakan Cooler dan Expander. Analisis neraca masa pada Molecular Sieve dilakukan dengan asumsi: konsentrasi gas pengotor masuk dalam Molecular Sieve adalah keluaran dari kolom oksidator CuO, dan konsentrasi gas pengotor keluar kolom *Molecular Sieve* (H₂,CO,CH₄,CO₂ dan H₂O) masing-masing 40 ppmV. Nilai ini diasumsikan sepuluh kali nilai batas maksimum konsentrasi pengotor yang masih diijinkan dalam pendingin RGTT200K.

HASIL DAN PEMBAHASAN

Pengaruh temperatur terhadap kemampuan proses adsorpsi *Molecular Sieve*

Pada kolom *Molecular Sieve*, gas pengotor dalam pendingin helium yang akan diserap adalah CO₂ dan H₂O. Kedua gas ini terbawa aliran helium akibat adanya *water ingress/air ingress*. Aliran pendingin helium dari teras mempunyai laju 120 kg/s, sedangkan aliran yang masuk ke sistem purifikasi adalah 1%, atau sekitar 1,2 kg/s. Tekanan pada pendingin primer adalah 50 bar, dan temperatur 116°C. Tekanan pendingin menurun menjadi 10 bar, setelah melalui proses filtrasi dan kolom oksidator CuO. Temperatur pendingin diturunkan menggunakan *Cooler*, dari temperatur input 116°C menjadi temperatur kamar 25°C untuk mengoptimalkan proses penangkapan. Sedangkan tekanan 10 bar, berasal dari tekanan keluaran kolom Oksidator CuO.

Pada analisis ini, digunakan kinetika

pertama dengan kapasitas adsorpsi untuk Molecular Sieve 5A terhadap gas CO₂ ditentukan adalah 22%. Pengaruh temperatur terhadap jumlah pengotor CO₂ yang terserap pada Molecular Sieve dapat ditunjukkan oleh Tabel 2 dan Gambar 5.

Dari Tabel 2, dapat diketahui bahwa semakin tinggi temperatur (sampai dengan 100°C) maka jumlah CO₂ yang terserap juga semakin besar. Hal ini dimungkinkan karena pada temperatur yang semakin tinggi maka pergerakan gas semakin dinamis dan juga terjadi pemuaian molekul gas. Dengan pemuaian ini maka ukuran partikel gas akan menjadi lebih besar dan mudah tertangkap oleh *Molecular Sieve*.

Gambar 4. Pemodelan Unit Operasi Molecular Sieve dengan SuperPro Designer

Tabel 2. Pengaruh temperatur terhadap penyerapan CO₂ pada Molecular Sieve

Sedangkan pengaruh temperatur terhadap H₂O mudah tertangkap ke dalam pori-pori Mojumlah pengotor H₂O yang terserap pada Molecu- lecular Sieve seiring dengan kenaikan temperatur. lar Sieve dapat ditunjukkan oleh Tabel 3 dan . Pada temperatur yan lebih tinggi, maka gerak Gambar 6. Seperti halnya gas CO₂, gas H₂O (uap dinamik senyawa H2O menjadi lebih cepat seair) mempunyai ukuran senyawa yang relatif be- hingga dengan ukuran pori Molecular Sieve yang sar, yang merupakan hasil kolom oksidator CuO. 5A akan mudah tertangkap.

Tabel 3. Po	engaruh temperatur terhadap penyerapan H ₂ O pada <i>Molecular Sieve</i>
	ЦО(Л)

	H ₂ O (g/L)			
T (°C)	S-101 (aliran input, g/L)	H ₂ O terserap dalam Molecular Sieve (g/L)	S-107 (sisa H ₂ O dalam aliran, g/L)	
25	0,00208	0,001755	0,000325	
50	0,00208	0,00178	0,000300	
75	0,00208	0,001801	0,000279	
100	0,00208	0,00182	0,00026	

Gambar 6. .Hubungan Temperatur dan Konsentrasi Gas Pengotor H₂O yang Terserap dalam Molecular Sieve

Pengaruh Tekanan terhadap kemampuan adsorpsi *Molecular Sieve*

Pengaruh tekanan terhadap jumlah gas CO₂ dan H₂O dapat dilihat pada Tabel 4, Tabel 5, Gambar 7 dan Gambar 8. Ketika proses disimulasikan dengan input pengotor 40 ppmV, maka konsentrasi pengotor ini akan berubah sesuai besar kecilnya tekanan yang ada pada sistem seperti ditunjukkan pada aliran S-103..

	CO ₂ (g/L)			
P (bar)	S-103 (aliran input ke <i>Mo-</i>	CO ₂ terserap dalam Molecular Sieve (g/	S-107 (sisa CO ₂ dalam	
	lecular Sieve, g/L)	<i>L</i>)	aliran, g/L)	
10	0,00271	0,002169	0,000542	
20	0,00542	0,004337	0,001084	
30	0,00813	0,006505	0,001626	
40	0,01084	0,008674	0,002168	
50	0.01355	0.010841	0.002711	

Pengaruh tekanan terhadap pengambilan pengotor CO_2 dan H_2O sangat besar. Pada tekanan yang lebih tinggi maka gas-gas pengotor ini akan dipaksa untuk masuk ke dalam pori-pori *Molecular Sieve* melalui fenomena PSA (*Pressure Swing Adsorption*). Ketika tekanan semakin bertambah maka jumlah gas pengotor juga semakin besar, apabila dilihat dari grafik hubungan tekanan dan jumlah zat terserap membentuk garis linear. Setelah mengalami kejenuhan, proses regenerasi Molecular Sieve dilakukan dengan menurunkan tekanan system, sehingga gas-gas yang tertangkap akan terlepas kembali.

	H ₂ O (g/L)			
P (bar)	S-101 (Aliran masuk ke cooler)	S-103 (aliran input, g/ L)	H ₂ O terserap dalam <i>Molecu-</i> <i>lar Sieve</i>	S-107 (sisa H ₂ O dalam aliran, g/L)
10	0,00208	0,00208	0,002057	0,000023
20	0,00208	0,00415	0,004104	0,000046
30	0,00208	0,00623	0,006161	0,000069
40	0,00208	0,00830	0,008208	0,000092
50	0,00208	0,01038	0,010266	0,000114

Tabel 5. Pengaruh tekanan terhadap H₂O yang terserap

Gambar 8. Hubungan Tekanan dan Konsentrasi Gas Pengotor H2O yang terserap dalam Molecular Sieve

KESIMPULAN

Pemodelan proses penangkapan gas pengotor telah dilakukan dengan software Super Pro Designer. Hasil analisis menunjukkan bahwa kenaikan temperatur, dari 25°C hingga 100°C meningkatkan kapasitas serap CO₂ dari 0,018686 g/L menjadi 0,019110 g/L. Dan kenaikan tekanan dari 10 bar hingga 50 bar meningkatkan kapasitas serap dari CO2 dari 0,002169 g/L menjadi 0,010841 g/L. Sedangkan untuk H₂O kapasitas serap dengan kenaikan temperatur yang sama menaikkan kapasitas serap dari 0,001755 g/L menjadi 0,00182 g/L. Dan dengan kenaikkan tekanan yang sama meningkatkan kapasitas serap dari 0,002169 g/ L menjadi 0,010841 g/L. Berdasarkan simulasi, diketahui bahwa semakin tinggi tekanan dan temperatur maka gas pengotor yang tertangkap dalam Molecular Sieve semakin besar pula. Kenaikan tekanan dan temperatur linier dengan jumlah pengotor yang tertangkap oleh Molecular Sieve.

DAFTAR PUSTAKA

- DHANDHANG PURWADI, M., *"Desain Konseptual Reaktor Daya Maju Kogenerasi Berbasis RGTT"*, Prosiding Seminar TKPFN-16, ITS Surabaya, 2010.
- SUMIJANTO, dkk., "Desain Konseptual Sistem Kontrol Inventori Helium Pendingin Primer RGTT200K", Seminar Nasional TKPFN-17, Universitas Negeri Yogyakarta, 1 Oktober 2011
- 3. SRIYONO, dkk "Desain Konseptual Sistem Pemurnian Helium Pada

RGTT200K Untuk Menjamin Keselamatan Pengoperasiannya", Majalah Ilmiah Teknologi Keselamatan Nuklir Sigma Epsilon, Volume 15 Nomor 2, Agustus 2011.

- SUMIJANTO, "Kajian Dampak Gas Pengotor Pendingin Primer Terhadap Integritas Material Struktur RGTT", Majalah Ilmiah Teknologi Keselamatan Nuklir Sigma Epsilon, Volume 14 Nomor 2, Mei 2010.
- 5. DAVISON GRACE, "Zeolite : Molecular Sieve Structures and Properties", EUSILICA, USA, 2011
- INTELLIGEN. INC., "SuperPro Designer User's Guide", Morse Avenue, USA, 2012
- SW RUTHERFORD, et.al "Adsorption Dynamics of Carbon dioxide on a Molecular Sieve 5A", Dept of Chemical Engineering, The University of Queensland, Australia, 1999
- 8. UOP HONEYWELL Inc., "An Introduction to Molecular Sieve: Dry Purify Separate", Honey Company, USA, 2006
- FLANIGEN, EM., "Molecular Sieve Zeolite Technology The First Twenty Five Years", Pergamon Press, Union Carbide Corporation, Tarrytown, New York, USA, 1991
- RASTELLI H., et.al., "Extending Molecular Sieve Life in Natural Gas Dehydration Units" UOP Honeywell Company, USA, 2006