
Dartmouth College
Dartmouth Digital Commons

Open Dartmouth: Faculty Open Access Articles

1-2014

From Map to Dist: the Evolution of a Large-Scale
Wlan Monitoring System
Keren Tan
Dartmouth College

Chris McDonald
The University of Western Australia

Bennet Vance
Dartmouth College

Chrisil Arackaparambil
Dartmouth College

Sergey Bratus
Dartmouth College

See next page for additional authors

Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by Dartmouth Digital Commons. It has been accepted for inclusion in Open Dartmouth: Faculty
Open Access Articles by an authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

Recommended Citation
Keren Tan, Chris McDonald, Bennet Vance, Chrisil Arackaparambil, Sergey Bratus, and David Kotz. From MAP to DIST: the
evolution of a large-scale WLAN monitoring system. In IEEE Transactions on Mobile Computing, January 2014. 10.1109/
TMC.2012.237

https://digitalcommons.dartmouth.edu?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3333&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3333&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3333&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3333&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Authors
Keren Tan, Chris McDonald, Bennet Vance, Chrisil Arackaparambil, Sergey Bratus, and David Kotz

This article is available at Dartmouth Digital Commons: https://digitalcommons.dartmouth.edu/facoa/3333

https://digitalcommons.dartmouth.edu/facoa/3333?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3333&utm_medium=PDF&utm_campaign=PDFCoverPages

From MAP to DIST: The Evolution of a
Large-Scale WLAN Monitoring System

Keren Tan, Chris McDonald, Bennet Vance, Chrisil Arackaparambil,

Sergey Bratus, and David Kotz, Fellow, IEEE

Abstract—The edge of the Internet is increasingly becoming wireless. Therefore, monitoring the wireless edge is important to

understanding the security and performance aspects of the Internet experience. We designed and implemented a large-scale WLAN

monitoring system, the Dartmouth Internet security testbed (DIST), at Dartmouth College. It is equipped with distributed arrays of

“sniffers” that cover 210 diverse campus locations and more than 5,000 users. In this paper, we describe our approach, designs, and

solutions for addressing the technical challenges that have resulted from efficiency, scalability, security, and management

perspectives. We also present extensive evaluation results on a production network, and summarize the lessons learned.

Index Terms—Network measurement, optimization, wireless network, 802.11, WLAN, security, scalability

Ç

1 INTRODUCTION

THE edge of the Internet is increasingly becoming
wireless. Therefore, monitoring the wireless edge is

important to understanding the security and performance
aspects of the Internet experience. This is especially
necessary for enterprise-wide wireless local-area networks
(WLANs) as organizations increasingly depend on WLANs
for mission-critical tasks. For the past decade, our research
team at Dartmouth College has continuously devoted effort
to developing new technologies, software tools and
systems to measure large-scale WLANs [1], [2], [3], [4]
and to carry out extensive security analysis on these
networks [5], [6], [7].

Monitoring a WLAN, especially a large-scale one, is a

difficult undertaking. Our previous work [1], [2] and many

other WLAN measurement studies [8], [9] have monitored

the wired side of access points (APs) in infrastructure

WLANs using SNMP, syslog, and packet sniffing. These

techniques monitor the traffic that has been bridged from

the wireless edge to the wired core of a network. The views

offered by such techniques are often incomplete because

they only characterize how the monitored WLAN and its

users behave, and have provided little insight about why the

network and its users behave in such a manner [10]. We

were among the first to explore the feasibility of using

distributed arrays of air monitors (AMs) to passively

monitor the IEEE 802.11 link layer and higher layers [6].

Since then, via passive monitoring, many WLAN traces

have been collected in conference events, a building floor
and even a whole building; several distributed WLAN
monitoring systems, such as DAIR [11], Jigsaw [10], MAP
[6], and AirLab [12] have been successfully built and used
for WLAN security and management research.

This paper describes our experience gained during the
design, implementation, and management of a distributed
large-scale WLAN monitoring system, the Dartmouth
Internet security testbed (DIST). As one of the largest
WLAN monitoring systems, DIST is equipped with
420 radio interfaces on 210 AMs, and covers 11 buildings
and more than 5,000 users. In the MAP project [6], the
predecessor of the DIST project, we implemented a
building-wide WLAN monitoring system. However, when
we attempted to scale the deployment to a campus, the
MAP system could no longer meet the required levels of
efficiency, scalability, security, and manageability. Our new
monitoring system was designed to address these chal-
lenges. We made three major contributions in designing
and building DIST.

Saluki. A high-performance Wi-Fi sniffing system.
Compared to our previous implementation and to other
available sniffing programs, Saluki has many advantages:

1. its small memory and computation footprint makes
it suitable for a resource-constrained Linux platform,
such as those in commercial Wi-Fi access points;

2. all traffic between the sniffer and the back-end
server is secured using 128-bit encryption;

3. the frame-capture rate has increased more than
threefold with minimal frame loss;

4. under the same frame-capture rate, the traffic load on
the backbone network is reduced to only 30 percent
of that in our previous implementation.

DISTSANI. An online network trace sanitization and
distribution program. It receives the network trace captured
by Saluki, sanitizes several fields in the frame/packet
headers, and distributes the sanitized network trace to
different destinations simultaneously. The implemented

216 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 1, JANUARY 2014

. K. Tan, B. Vance, C. Arackaparambil, S. Bratus, and D. Kotz are with
the Institute for Security, Technology, and Society, Dartmouth College,
7 Maynard Street, Hanover, NH 03755.
E-mail: keren@outlook.com, {bennet, cja, sergey, kotz}@cs.dartmouth.edu.

. C. McDonald is with the School of Computer Science and Software
Engineering, The University of Western Australia, 35 Stirling Highway,
Crawley, WA 6009, Australia. E-mail: chris.mcdonald@uwa.edu.au.

Manuscript received 12 Dec. 2011; revised 27 July 2012; accepted 25 Oct.
2012; published online 20 Nov. 2012.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-2011-12-0670.
Digital Object Identifier no. 10.1109/TMC.2012.237.

1536-1233/14/$31.00 � 2014 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

sanitization process is highly efficient, processing up to
three million addresses per second.

MAPmaker. A tool for configuring, launching, monitor-
ing, and terminating an experiment. A running experiment
consists of interacting processes distributed across many
hosts, including both servers and AMs. MAPmaker pushes
master executables for these processes to the hosts that need
them, remotely starts them, and keeps track of their process
id numbers (pids) both for monitoring purposes and so that
the experiment can be shut down in an orderly fashion.
MAPmaker runs multiple independent experiments con-
currently without interference among them.

2 BACKGROUND

MAP [6] aimed to build a security-focused WLAN
monitoring system while DIST has broader goals. The
architecture of the MAP system is shown in Fig. 1. Between
2005 and 2007, we deployed 20 Aruba AP70s [13] flashed
with OpenWrt Linux [14] in the computer science depart-
ment building at Dartmouth College. We used Aruba AP70s
as air monitors (AMs) to capture the MAC-layer headers of
wireless frames, then extract and forward the desired frame
features to the merger process, which creates a unified
stream on a coherent timeline. The analysis engine includes
plug-in detectors that analyze the traffic, producing alerts to
the protection system and feedback to the measurement
system. The adoption of Aruba AP70s enabled our work on
IEEE 802.11b/g networks, but not on 802.11n, which was
only standardized 4 years later.

MAP includes several advanced features for WLAN
measurement: AM feature extraction, AM channel sampling
and refocusing, and multisource trace merging. AM feature
extraction is designed to reduce the volume of forwarded
traffic. It works as a user-configurable filter that extracts
user-requested information from each captured frame/
packet, and only forwards the extracted information to the

server in a frame format named AMEX. AM channel
sampling and refocusing are two complementary strategies
to deal with the multichannel-monitoring problem in
WLAN. The unlicensed bands used for IEEE 802.11 net-
works have multiple channels, and a single-radio AM can
only listen to one channel at any time. One could attach
multiple radios to one device, or place multiple single-radio
devices at one location. Either way, the hardware required
is bulky or prohibitively expensive. The AMs in MAP
monitor multiple channels by periodically assigning the
radio to each channel, dynamically adjusting and coordi-
nating the schedule to maximize capture [4], [15]. This
technique is named channel sampling, as it collects only a
sample of the frames passing through all the channels. MAP
supports multiple sampling strategies, including equal-time
sampling, which spends the same amount of time on each
channel, proportional sampling, which spends more time on
the busiest channels, and coordinated sampling, which
minimizes channel overlap between neighboring AMs.
However, AM channel sampling will inevitably lose
information because the AM only visits each channel for a
limited time. To compensate for this loss, MAP allows the
analysis components to dynamically refocus the measure-
ment system after observing some user-defined suspicious
behaviors, by gathering more frames from a client, AP, or
region, or by extending the set of features collected about
the traffic of interest [3]. In the event of an ongoing network
attack, the higher fidelity stream of frames may allow MAP
to confirm the attack or locate the attacker. We refer
interested readers to our previous work [6] for more
thorough information about MAP and its comparison to
Jigsaw [10], DAIR [11], DOMINO [16], and Wit [17].

For DIST, we aimed to cover a large portion of the
Dartmouth College campus with AMs. Dartmouth College
was among the first universities in the world to provide
campus-wide WLAN coverage. In 2001, more than 500 Cisco
350 APs were installed, to provide campus-wide IEEE
802.11b service. In 2006, this WLAN migrated to an Aruba
Networks solution that provides IEEE 802.11a/b/g services
simultaneously. More than 1,300 Aruba AP70 access points
were installed to cover 1.8 square miles of campus
populated by over 6,000 students and 2,500 faculty and staff.

3 CHALLENGES

We faced many challenges when designing and implement-
ing DIST: performance and scalability, security and privacy,
and management and monitoring. We address each group
in turn.

3.1 Performance and Scalability

Table 1 compares the scale of MAP and Jigsaw [10] to
DIST. It can be seen that DIST’s scale is much larger than
that of either MAP or Jigsaw. DIST deploys over 10 times
as many AMs, covering 11 buildings in approximately a 1:1
ratio to the access points that provide 802.11a/b/g
connectivity in those buildings. The density and placement
of the DIST AMs are intended to enable capture of traffic
both from the access points they shadow and from those
access points’ clients. In a typical 24-hour span, the

TAN ET AL.: FROM MAP TO DIST: THE EVOLUTION OF A LARGE-SCALE WLAN MONITORING SYSTEM 217

Fig. 1. MAP architecture.

210 AMs capture and forward more than 500 gigabytes of
IEEE 802.11 MAC layer headers.

We use the Aruba AP70 [13] flashed with OpenWrt
Linux [14] as our AM’s hardware platform. The advantage
of the Aruba AP70 is that it fully complies with IEEE 802.3af
standard for Power over Ethernet (simplifying installation),
provides diverse interfaces (USB, serial, and Ethernet), and
has a compatible appearance to other devices in our
deployment environment. Because the Aruba AP70 was
originally designed to be a commercial AP instead of a
wireless AM, its processing capability is limited: 266-MHz
MIPS 4Kc CPU, 28-MB RAM, and 8-MB flash memory
storage. Indeed, just to put it in context, modern cellphones
have more memory and CPU power. In our previous MAP
project, we developed a sniffing system named dingo [3],
[4]; it supports several advanced features, such as channel
sampling, data aggregation, dynamic filtering, and refocus-
ing. However, dingo’s performance deteriorates quickly
when dealing with high-volume traffic. The significantly
increased deployment scale and dingo’s limited perfor-
mance compelled us to design and implement a new high-
performance Wi-Fi sniffing program for DIST.

Because DIST is distributed across campus, the whole
system works in a client/server mode: the sniffing programs
run on the remote AMs, capturing and forwarding traffic to
our servers via the campus backbone network. The expected
high volume of captured data also drove us to consider its
impact on the backbone network. DIST servers are located in
the computer science department. Since these servers share
a 1-Gbps link with more than 200 other machines in the
department, more than 500 gigabytes per day through this
link would negatively affect other machines’ network
performance. To efficiently use the available bandwidth,
and to alleviate the pressure on the shared medium,
effective data aggregation and compression are features
essential to DIST.

3.2 Security and Privacy

Since DIST is monitoring Dartmouth’s production WLAN,
used daily by thousands of students and staff, the collected
traces contain sensitive information related to the activities
of humans and their devices; identifiers such as MAC
addresses may identify individuals and their location.

We conducted an extensive security analysis and built
detailed threat models of the DIST system in our previous
work [18]. In this paper, we focus on two kinds of threats
that may jeopardize the data flow transmitted inside the
DIST system. First, an adversary may intercept the traffic
between the AM and server. Second, an adversary may
have access to the server that stores captured traces.
To protect against the first threat, we require all data
exchanged between AMs and the servers, including both

captured traces and control messages, to be encrypted to
ensure data confidentiality. As a further step, we im-
plemented a hash-based message authentication code
(HMAC) to ensure both the data integrity and the
authenticity of all data exchanged between AMs and the
servers. To protect against the second threat, we require all
received data to be sanitized before being written to
persistent storage (such as hard drives) or sent to data
subscribers (including the merger and users’ analysis
components, except for real-time attack detection). As
our AMs capture and forward only MAC-layer headers to
the servers, there is no higher layer data, such as TCP/IP
headers and payloads, to sanitize. Fig. 2 shows the types
of information flows inside DIST. We adhered to a strict
guideline when transferring and storing captured data: if it
is not encrypted, then it must be sanitized.

3.3 Management and Monitoring

It is a challenging task to seamlessly and continuously
configure, run and monitor DIST’s diverse devices and
software components—its 210 AMs together with the
sanitizers, mergers, and other processes running on the
four DIST servers.

Although there are a small number of infrastructure
monitoring tools available, such as Nagios [19] and Cacti
[20], they do not fit the needs of DIST for several reasons.
First, most of the devices in DIST are Aruba AP70s,
which are resource-constrained embedded Linux devices.
Installing and running the software that is used to monitor
more traditional Linux infrastructure is not economical and
exhausts the limited resources on such embedded devices.
Second, to seamlessly and continuously run the whole
system, DIST needs not only the monitoring functionality
but also “automatic-configuring” and “self-resetting” func-
tionalities. As implied by its name, DIST is a large-scale
general-purpose testbed that should be able to run what-
ever experiments DIST can support. The duration of these
experiments may range from several hours to several
days, weeks, or even months. We need the “automatic-
configuring” functionality so that we can create diverse
experiment configurations intuitively and efficiently. We
need the “self-resetting” functionality so that in the event of
some exception, the system can reset, reconfigure, and
rerun the affected devices and applications.

218 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 1, JANUARY 2014

Fig. 2. DIST information flows.

TABLE 1
Deployment Scale Comparison of MAP, Jigsaw, and DIST

4 APPROACH

In this section, we detail how DIST addresses the above
performance and scalability, security and privacy, manage-
ment and monitoring challenges.

4.1 Saluki

While Saluki shares many of the same features as other
passive network sniffing software tools, its design has been
driven by our past experience and the special needs of the
DIST project (performance, scalability, security, and priv-
acy). Table 2 provides a detailed comparison between
Saluki and other well-known passive network sniffing
programs, such as tcpdump [21], wireshark [22], Kismet
[23], dingo [6], and Jigdump [10]. In this table, only Saluki
provides the complete feature set to address DIST’s
efficiency, scalability, and security challenges. It is worth
noting that Jigdump is also a highly efficient sniffing
program but, because of its dependence on Atheros chipset
and a specific old version of MadWifi driver [24], it lacks
the portability of other sniffing programs. We describe
Saluki in detail in a workshop paper [25] and dissertation
[26] and summarize it here.

4.1.1 Capture Interface

We use a raw socket with PACKET_MMAP enabled as the
capture interface. The raw socket lets us bypass the protocol
stacks (the link layer and above) inside the Linux kernel,
and the memory mapping provides for efficient commu-
nication between kernel space and user space. This interface
avoids inefficiencies introduced by abstractions in the
libpcap library.

In the Linux kernel, PACKET_MMAP is specifically
designed to facilitate the network traffic capturing task.
Without this socket interface, capturing each network
packet requires a system call. PACKET_MMAP implements
a configurable circular buffer between the user and the
kernel space—capturing a packet in the user space becomes
a simple read operation on the shared circular buffer [27].
This interface proved highly efficient on the AP70s. In one
test (simply capturing frames and counting, nothing else),
this interface was able to capture 7,063 frames per second
(fps) with 25-35 percent CPU usage and 3.3 percent frame
loss. As a comparison, tcpdump with libpcap 0.9.8 under
the same traffic load froze the AMs.

4.1.2 Data Aggregation

Saluki uses UDP packets to forward the captured traffic
back to our central servers. We observed that if we pack

only one frame in each UDP packet, the 100-Mbps Ethernet
connection on the Aruba AP70 could not keep up when
there was a high volume of wireless traffic. We measured
the maximum throughput under different UDP datagram
sizes; for example, 10-byte UDP datagrams achieved only
45-KBps throughput whereas 1,500-byte datagrams
achieved 5,327 KBps (where KBps = 1,000 bytes per second).
Small UDP packets degrade the Ethernet throughput
greatly. Given that small frames, like a 14-byte ACK frame,
are widely used in the IEEE 802.11 MAC layer, it is much
more efficient to aggregate multiple frames and then send
them as a “combo” frame. A DIST combo frame has two
sections: the header contains metainformation about the
combo frame, and the data section holds multiple captured
frames. When a new frame is captured, Saluki appends the
frame size and the frame content to the DIST combo frame’s
data section.

It is worth noting that there is a tradeoff between the size
of the combo frame and the frame-receipt delay at the server
side. While a bigger combo frame will use the Ethernet
connection more efficiently, bigger is not always better,
especially for time-critical applications, like wireless-
network intrusion detection. For this reason, we defined
two adjustable criteria to decide when a combo frame
should be sent: when the payload size of a combo frame
exceeds a size threshold, or when the time difference
between the first enclosed IEEE 802.11 frame and the
current system clock exceeds a time threshold. In our
current implementation, we set these two parameters to
14 KB and 1 s, respectively.

4.1.3 Data Compression

The DIST combo frame increases Saluki’s network effi-
ciency, but we need to do better to more efficiently use
the shared 1-Gbps backbone Ethernet bandwidth, so we
compress a combo frame before sending it. Given the Aruba
AP70’s limited processing power, instead of pursuing the
maximum compression ratio, we aimed to find a lossless
compressor that has a good balance between processing
speed and compression ratio.

After some background study, we focused on two
variants of the Lempel-Ziv (LZ) compression method [28]:
QuickLZ [29] and FastLZ [30]. Compared to the standard
LZ compressor, these two variants trade compression
ratio in favor of speed. It is important to note that a
compressor’s performance (compression ratio and speed)
may vary when dealing with different data. We chose
QuickLZ because it had a more consistent performance on
our captured network data. In our experiments, a 14-KB

TAN ET AL.: FROM MAP TO DIST: THE EVOLUTION OF A LARGE-SCALE WLAN MONITORING SYSTEM 219

TABLE 2
Comparison of Passive Network Sniffing Programs

combo frame was compressed to 2.8-3.6 KB by QuickLZ.
The use of compressed combo frames saved more than
70 percent of the load on the backbone network, compared
with sending individual uncompressed frame headers in
each UDP packet.

4.1.4 Data Encryption

As a basic security measure to protect the privacy of the
network users whose traffic we capture, we employ a fast
stream cipher to encrypt all traffic between each AM and
the central servers. The stream cipher employs a 128-bit IV
to significantly mitigate the opportunity for commonly
appearing Radiotap and IEEE 802.11 headers to be
enumerated by an adversary. Although our communication
between AM and servers is carried in UDP/IP datagrams,
we have consciously chosen not to employ a standard
datagram transport layer security (DTLS) protocol, as there
is no reverse channel between servers and AMs to carry
acknowledgments. To support rapid frame capture and
collection in an environment where many frames are
knowingly missed on channels not being monitored, we
are willing to tolerate lost UDP/IP datagrams.

We evaluated all stream ciphers from the eSTREAM
project [31] and the SNOW 2.0 cipher [32]. The best two
ciphers were Rabbit and SNOW 2.0, which have been
accepted as ISO standard stream ciphers (ISO/IEC 18033-4).
Both of them support 128-bit encryption and are much
faster than RC4 and AES in counter mode [31].

We evaluated an assembly language implementation of
the Rabbit cipher optimized for the MIPS 4Kc processor,
whereas SNOW 2.0 is implemented in the C language and
was not specifically optimized for this processor. Since our
goal was to transmit the protected data most efficiently, we
tried the ciphers both without compression and in
combination with compression. We observed the following:

1. For stream ciphers, Rabbit emerged as a winner on
the Aruba AP70, surpassing SNOW 2.0. When
executing 5,000 loops on 14-KB data, Rabbit took
5.33-5.55 s, whereas SNOW 2.0 took 7.42-7.73 s.

2. Adding compression decreases the total processing
time, because there were fewer bytes to encrypt. In
effect, compression was computationally “free.”

Securely transmitting 5,000 14-KB combo frames
(each combo frame may contain tens to hundreds of
captured Radiotap and IEEE 802.11 frames) to a DIST
server took 6.2-6.4 s, which encompassed two operations:
encryption and UDP forwarding. The load on the network
averaged 14 KB per combo frame. If we compressed these
combo frames first, however, handling them took less time,
namely, 5.3-5.4 s for three operations: compression +
encryption + UDP forwarding. The required network
bandwidth was also reduced by more than 70 percent
(from 14 KB per combo frame to 2.8-3.4 KB per combo
frame). This result illustrates that efficient compression not
only saves network bandwidth, but also reduces CPU time
needed for encryption and UDP forwarding. If needed, we
could set the size of the uncompressed DIST combo frame
to be larger than 14 KB. Although this change might
improve the network throughput, it would increase the
delay at the server.

4.1.5 Data Authenticity and Integrity

Encryption provides data confidentiality but does not
ensure data authenticity and integrity. To achieve a higher
level of security, we integrated an optional HMAC-SHA256
component into Saluki’s communication.

HMAC-SHA256 is one type of HMAC that uses a SHA-
256 cryptographic hash function [33], [34]. The input to
HMAC has two parts: the data to be processed, and a
secret key. HMAC’s strength depends on the size of the
secret key. Currently we use a 128-bit secret key, but this
key can be lengthened to 256 bits to improve HMAC’s
security against a brute-force attack. The output of HMAC-
SHA256 is a 256-bit message authentication code (MAC).
For the collected network traces transmitted from AMs to
servers, this 256-bit MAC is generated by Saluki running
on AMs and verified by the receiver program, DISTSANI,
running on servers.

To accurately quantify HMAC-SHA256’s performance
impact, we developed a benchmark program derived from
Olivier Gay’s HMAC-SHA2 implementation [34]. The
program was executed 50,000 times for a variety of data
block sizes between 1,000 and 5,000 bytes. The HMAC-
SHA256 implementation had a constant overhead of 0.1 ms
per block, and a near-linear throughout of 1.33 MBps. From
this, we estimate that when the frame capture rate is
5,500 fps, capture length is 192 bytes for each frame, and an
uncompressed DIST combo frame is 14,000 bytes, HMAC-
SHA256’s CPU usage on AP70s will be 5.24, 7.53, and
9.82 percent for 2,000, 3,000, and 4,000 bytes of compressed
DIST combo frames, respectively.

4.1.6 Multithreading

So far we have introduced four core components of the
Saluki sniffing program: capture interface, data aggrega-
tion, compression, and encryption. The final important task
is to assemble them efficiently. Each of these components is
relatively self-contained and can work independently from
other components. For example, capturing frames from the
Wi-Fi interface and forwarding DIST combo frames via
Ethernet are I/O-intensive operations, while data compres-
sion and encryption are CPU-intensive operations. This
observation inspired us to fit these components into a
multithreading pipeline. We experimented with several
combinations of component and thread placement, and
Fig. 3 shows our final and optimal configuration.

From Fig. 3, we see that Saluki has three threads.
Threads 1 and 2 undertake data capturing, processing, and
forwarding. Thread 3 is the control thread, managing
scheduling and channel-hopping tasks (as in dingo [3],
[4]). Two ring buffers are used in this program. The top ring
buffer is responsible for mapping the captured frames from
kernel space to user space and is emptied by Thread 1. The
second ring buffer connects Thread 1 with Thread 2. From
the perspective of multithreaded programming, the com-
munication through these two ring buffers follows the
classic writer/reader programming model.

Instead of putting compression, encryption and UDP
forwarding all in Thread 2, we had planned to divide
them between two threads: compression and (optional)
HMAC computation in one thread; encryption and UDP

220 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 1, JANUARY 2014

forwarding in the other. In the test run, however, we
observed that Thread 1 was the bottleneck here: its CPU
usage was about 1.5-2 times that of Thread 2 even when
HMAC was turned on in Thread 2. Due to this observa-
tion, we did not split Thread 2 further.

Fig. 4 shows the data flow inside Saluki when all the
features (data aggregation, encryption, compression and the
optional HMAC computation) are turned on.

4.2 DISTSANI

As noted above, we take the position that if our captured
data is not encrypted then it must be sanitized. In DIST, the
transformation from encrypted data to sanitized data
happens inside DISTSANI. As the “sanitizer” in Fig. 2,
DISTSANI is responsible for parsing the received DIST
combo frames, sanitizing each 802.11 frame, and distribut-
ing sanitized 802.11 frames to their correct destinations.
These three functionalities are implemented as three
components in DISTSANI.

4.2.1 Parsing and Distributing Components

The parsing component receives the DIST combo frames
sent by Saluki and mirrors the operation of Saluki: decrypt a
DIST combo frame using the Rabbit algorithm, decompress
it using the QuickLZ algorithm, and split this combo frame
into individual 802.11 frames. The distributing component
packs the processed 802.11 frames using pcap format and
outputs them to different destinations, according to user
specifications—either to a trace file on local hard drives or
to a live UDP stream forwarded to data subscribers. For the
same input traffic, different users may receive different
outputs from DISTSANI because they can choose different
ways to sanitize the same captured data.

4.2.2 Sanitizing Component

DIST policy requires that all data available to data
subscribers (except for real-time attack detection) or stored
to persistent storage must be sanitized. This dictates that
the DIST sanitization process must be online and be fast
enough to keep up with the data capturing speed;
otherwise, much captured data will be lost. Although many
sanitization algorithms have been proposed, few of them
have an online version capable of performing at line speed

[35], [36]. We developed a network trace sanitization library
called libdistsanitize that incorporates different sanitization
methods. Of note, our sanitization scheme only sanitizes
MAC and SSID addresses [18], and not any other addresses
or identifiers that appear in frame payloads, such IP
addresses, TCP ports, or email addresses. The primary
reason for this is that DIST only captures and stores MAC
layer headers together with physical-layer interface details,
such as channel frequency and signal strength. Moreover,
most contemporary wireless networks encrypt everything
above the MAC layer, making sanitization both impossible
and unnecessary.

Each MAC address consists of 48 bits. Our sanitization
scheme preserves the two most significant bits, which
indicate if an address is used for unicast or multicast
communication and if the address is globally or locally
administered. These two bits are simply copied from each
raw address to its sanitized equivalent. The other 46 bits are
handled as follows.

We employ an SHA-2-based cryptographic hash function
to produce a stream of 256-bit hash values, each providing
eight 32-bit pseudorandom integers. A per-trace sanitiza-
tion key seeds the random number generation. These
random numbers are employed to generate two large
mapping tables—one providing a one-to-one mapping
between each address’s 22-bit IEEE-assigned organization-
ally unique identifier (OUI) field and a distinct 22-bit value,
and the other similarly mapping the 24-bit vendor supplied
SERIAL number field to a distinct 24-bit value. Thus, for
each invocation of DIST, each possible 48-bit raw MAC
address has a corresponding, unique, 48-bit sanitized
address. Depending on the experiments being undertaken,
sanitization of either field is optional and selected at
runtime. When sanitizing only the 22-bit OUI field, the
field indexes the OUI table producing the 22-bit sanitized
OUI field, and the 24-bit SERIAL field is copied, verbatim,
to produce the output SERIAL field. When sanitizing a full
MAC address, we consider the 46 significant bits as 23 odd
bits and 23 even bits. We use the 22 least significant odd bits
to form a 22-bit OUI index, and the 23 even bits and the
remaining odd bit to form a 24-bit SERIAL index. These
indices locate the sanitized values in the mapping tables.

Our sanitization is a deterministic one-to-one process, so
that each MAC address is consistently mapped to a distinct
MAC address within the same trace. The generation of the
mapping tables needs to be performed only once per
experiment, has a fixed memory footprint of 80 MB, and
executes in 4.3 s on our 3-GHz servers. This memory
footprint, and the need to securely distribute and then
discard the sanitization key, preclude the sanitization being
performed on the AMs. As the process of sanitizing a MAC
address simply involves extracting its OUI and SERIAL

TAN ET AL.: FROM MAP TO DIST: THE EVOLUTION OF A LARGE-SCALE WLAN MONITORING SYSTEM 221

Fig. 4. The data flow inside Saluki.

Fig. 3. The Saluki architecture.

fields, two function calls and two array accesses, the
process is extremely fast. On our 3-GHz servers, “pass-
through” sanitization (i.e., a no-op) takes 0:078 �s per
address, sanitization of just the OUI or SERIAL fields takes
0:281 �s per address, and sanitization of both fields takes
0:382 �s per address (each time averaged over 10 million
addresses).

4.3 MAPmaker

MAPmaker is our tool for configuring, launching, monitor-
ing, and terminating an experiment. MAPmaker also
generates and distributes the keys required for Saluki’s
cipher. MAPmaker runs on the experiment’s master host
and uses secure channels (ssh) to control the DIST activity
on all the DIST servers and AMs.1

A running experiment consists of interacting processes
distributed across many hosts, including both servers and
AMs. Rather than keep these processes’ executables
permanently resident on all the hosts—which would
necessitate pushing any updates to all affected hosts when
new executables were built—we instead maintain master
executables on only one master host.

At experiment start-up time, MAPmaker pushes the
required executables to the hosts that need them, starts
them as background processes, furnishes them with keys,
and keeps track of their process id numbers (pids). While
the experiment proceeds, MAPmaker periodically checks
that the registered pids are still alive and, if not, takes
remedial action (restarting a failed executable, restarting the
entire experiment, or shutting it down, depending on the
nature of the failure). At the conclusion of the experiment,
MAPmaker kills all participating processes on all hosts in
an orderly fashion.

The master executables are neither signed nor verified.
Because we push all files to AMs and servers through an
ssh connection, with firewalls to limit inbound access to the
DIST server, we consider this precaution unnecessary. We
have considered, but not implemented, mechanisms by
which our AMs could receive and verify encrypted
executables pushed from the DIST master server. However,
as the AMs are not in a physically controlled environment,
and the chosen hardware does not include trusted hard-
ware able to verify executables, we can have no assurance
that the AMs are not executing untrusted software. We have
also considered the dual challenge of having the DIST
master server remotely verify the AMs’ running software
through a challenge-response protocol, but similar difficul-
ties exist.

4.3.1 Approach to Configuration

Part of MAPmaker’s mission is to distribute configuration
information to the participating processes. For example,
processes communicating through sockets need to agree on
the port numbers to use, and need to know each other’s IP
addresses. The various processes also need to refer to paths
in the experiment’s timestamped file tree so that they can
cooperatively collect a coherent set of traces, as well as

metadata such as log files. A MAPmaker configuration
uses symbolic names to refer to the experiment’s port
numbers, IP addresses, file paths, and a variety of other
parameters. At experiment start-up, MAPmaker instanti-
ates these symbolic names as concrete values in the
command-line parameters and helper files for individual
processes. In this way, the same symbolic configuration
information can be shared by multiple instances of the
same executable; for example, all 210 of our AMs typically
use the same helper file, which is instantiated with
appropriate variations at the different AMs. MAPmaker’s
systematic use of symbolic parameters and its tracking of
pids also make it possible to run concurrent, independent
instances of nearly identical experiment configurations
without any interference among them.

4.3.2 Implementation

MAPmaker is implemented as a collection of Python
scripts. An individual DIST configuration must provide
MAPmaker enough information to infer the concrete values
for the configuration’s parameters. Rather than defining
parameters through a file containing name-value pairs,
which would limit the structural complexity of the para-
meters, or through a structured document format such as
XML, which would have required us to write code to
translate the XML definitions into variable values that could
be used by the Python scripts, we let parameters be defined
directly as Python variables in a small Python program that
serves as a MAPmaker configuration and works in concert
with the MAPmaker scripts. This approach gives the
parameter definitions the full expressive power of the
Python language.

The parameter definitions are grouped into a hierarchy
of Python classes, with each leaf class representing a DIST-
system component that MAPmaker must be able to start,
monitor, and stop. For example, our configurations include
a class Merger that provides the definitions that MAP-
maker needs to manage a configuration’s mergers. We
typically divide the 210 AMs into seven merging regions,
each of which is served by its own merger instance. This
approach allows mergers to run in parallel on servers
physically close to areas of heavy traffic collection. The
Merger class contains six class-variable definitions, two of
which look like this:

instance_name=“@role_name-@region_name”

master_exec_path=“/net/dist/bin/merger”

The instance_name definition assigns the name that
MAPmaker will use to refer to a given merger instance in
diagnostic logs and status reports. The right-hand side of
this assignment refers to two other parameters, role_name
and region_name, which MAPmaker expands when
instantiating a merger instance. As a result, each merger
instance is given a name with a suffix that identifies the
region served. The master_exec_path tells MAPmaker
the Linux path on the master host where the merger’s
master executable can be found. The merger class definition
also includes a constructor that initializes four variables
obtained from data structures external to the merger—for
example, it is through the constructor that the name of the
merging region is supplied. This example illustrates how
the same class definitions can apply to multiple instances of

222 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 1, JANUARY 2014

1. The only DIST communications outside these ssh channels are the
traffic forwarded by Saluki (see Section 4.1) and the feedback channel that
updates Saluki’s sampling policies, for example, channel-sampling and
refocusing. Both are encrypted.

a program even in the case of parameters whose concrete
values vary from one instance to the next.

5 EVALUATION

We undertook two classes of experiments to evaluate DIST:
first, a controlled-environment evaluation, in which we
evaluated Saluki’s extreme performance; second, a real-
world in-production evaluation, in which we ran the
complete DIST system to monitor Dartmouth’s production
WLAN.

5.1 Controlled Environment Evaluation

In this section, we evaluate Saluki in terms of memory
usage, CPU usage, frame-capture rate, and frame-loss ratio.
Because tcpdump, Kismet and dingo are all built on
libpcap, and tcpdump is the simplest (and should also be
the fastest) among them, we used tcpdump as the baseline
for comparison. To release tcpdump’s maximum potential
[37], we directed its output to /dev/null instead of the
screen or a file.2 We set the capture size for tcpdump and
Saluki to 192 bytes.

We set up two laptops (each a Thinkpad T42 with 1.6-GHz
Pentium M CPU and 1.5-GB RAM) to act as the IEEE 802.11g
access point and the client, respectively. These two laptops
were placed about 2 m (6 feet) from each other, and
one Aruba AP70 sniffer was placed halfway between
them. We used Iperf [38] as the traffic generator running
on two laptops.

We used the Linux command “top” to query memory
usage. During execution, Saluki occupied 660-KB RAM, and
tcpdump used 740-KB RAM. Note that, since tcpdump is
dynamically linked with libpcap, its actual memory usage
would be larger than 740 KB if the memory used by libpcap
were counted. Of the 660-KB RAM consumed by Saluki, a
substantial amount was allocated to various buffers for
better performance. For example, the size of the second ring
buffer (connecting Threads 1 and 2) was about 90 KB, and
the sizes of the compression and encryption buffers were
about 30 KB each. If needed, one can reduce Saluki’s
memory usage by shrinking these buffers.

Figs. 5, 6, and 7 show the performance in terms of
frame-capture rate, frame-loss ratio, and CPU usage. The

frame-capture rate measures the speed that a sniffing
program captures frames in fps. The frame-loss ratio is the
ratio of the number of lost frames reported by the OS kernel to
the sum of the number of captured frames and lost frames. Since
Saluki is a multithreaded program, its CPU usage in Fig. 7
is the sum of all its threads’ usage.

We used Iperf to generate constant-bit-rate UDP traffic
with 500B (500-byte) and 1,000B (1,000-byte) datagrams
under five UDP bandwidth settings: 10, 15, 20, 25, and
30 Mbps. Three things are worth noting. First, our purpose
was to explore each system’s response to various traffic
loads; 30 Mbps is close to the maximum possible through-
put. Second, these five bandwidth numbers are the
parameters given to Iperf; in reality, the actual bandwidth
could be a bit lower than the setting because of noise and
collisions in the (usually quiet) Wi-Fi channel. Third, for a
given bandwidth setting, Iperf needed to generate many
more small-size packets than large ones to achieve that
bandwidth. Due to the limited CPU power on the laptop,
we could not generate sufficient 500B UDP packets to reach
30 Mbps. Thus, we do not provide a result for that setting.
Each experiment ran for 200 s.

Fig. 5 shows that Saluki captured frames much faster
than tcpdump under all settings even though Saluki needed
to complete much more work (data compression, data
encryption, and UDP forwarding) than tcpdump. Saluki’s
advantage became more obvious when dealing with high-
speed traffic. When Saluki captured 5,488 fps, tcpdump

TAN ET AL.: FROM MAP TO DIST: THE EVOLUTION OF A LARGE-SCALE WLAN MONITORING SYSTEM 223

2. That is, tcpdump -i ath0 -n -s 192 -w/dev/null.

Fig. 5. Comparison of frame-capture rate. Fig. 6. Comparison of frame-loss ratio.

Fig. 7. Comparison of CPU usage.

only captured 1,802 fps. In this case, Saluki captured more
than three times as many frames as tcpdump did.

Fig. 6 demonstrates that Saluki’s frame-loss ratio was
significantly lower than tcpdump’s. For UDP traffic with
1,000B datagrams, Saluki’s frame-loss ratio was nearly
always zero (except for 0.028 percent under 30 Mbps),
while tcpdump could lose around 40 percent of frames. For
UDP traffic with 500B datagrams, the disparity was more
obvious (8.6 percent versus 67.4 percent in the worst case).

We make the following interesting observation: by
comparing “tcpdump, 1,000B datagram” to “tcpdump,
500B datagram” in Fig. 5, we can see that tcpdump usually
captured 500B frames at a lower rate than it captured
1,000B frames, even though Iperf sent them at a higher
rate. In Fig. 6, one can see that tcpdump lost a much higher
fraction of 500B frames. We speculate that tcpdump
dropped many “half-processed” frames when new frames
arrived too quickly.

Fig. 7 summarizes Saluki and tcpdump’s CPU usage.
When there was not much traffic, their CPU usages were
comparable. When traffic volume was high, Saluki’s CPU
usage was higher than tcpdump’s. Considering Saluki
captured more than three times as many frames and
included other work, this amount of increased CPU usage,
however, is reasonable.

It is worth noting that the above evaluation results were
achieved when the optional HMAC computation was
turned off. When this feature was turned on, no noticeable
performance changes (frame-capture rate, frame-loss ratio)
were observed except that Saluki’s CPU usage was
increased by about 7 percent (from around 80 to around
87 percent) under the busiest evaluation condition (25-Mbps
UDP, 500B datagram).

5.2 In-Production Evaluation

To evaluate the performance of DIST, we continuously
monitored Dartmouth’s production wireless network for
62 days (from January 4, 2011 to March 6, 2011); 206 out of
210 AMs were used for this evaluation (the remaining
4 AMs were reserved for debugging purposes). We ran
Saluki on both radio interfaces of each AM, in total
providing 412 Saluki instances on 412 radio interfaces. To
cover the 11 IEEE 802.11b/g channels, we configured Saluki
to use equal-time channel sampling. Saluki would jump to a
new channel after dwelling on one channel for 0.2 s, and
thus one iteration took 2.4 s. For this evaluation equal-time
sampling was considered sufficient, although coordinated
sampling is usually employed for longer term monitoring.
To minimize the capturing overlap between two radio
interfaces on the same AM, the two Saluki instances
running were set to listen to different channels at any given
time, leaving a channel distance of six between the radios.
While our Aruba AP70s did not support the many
additional channels provided by IEEE 802.11n, our software
could easily be extended to support these. Table 3
summarizes the experiment configuration.

We ran a single instance of DISTSANI on a server to
receive and process all traffic captured from 412 Saluki
instances. This server has two 3.0-GHz Intel Xeon CPUs and
4-GB RAM. DISTSANI wrote the processed network traces
in pcap file format to a 6-terabyte RAID attached to

this server. It is worth noting that, for privacy reasons,
Dartmouth only allows us to save IEEE 802.11 frame
headers (no IP, TCP/UDP headers) to persistent storage
[18]. In total, 3.7 terabytes of compressed pcap trace files
were generated in this 62-day experiment (in uncompressed
form, these trace files would occupy about 24 terabytes).
DISTSANI’s CPU usage was between 14 percent and
25 percent during the entire experiment. With the HMAC-
SHA256 turned on, an extra 2.40-4.49 percent CPU usage
would be added to the above numbers. Such low CPU
usage validates DISTANI’s online processing capability in a
production environment.

Fig. 8 gives an overall picture about the frames processed
by the DIST system. The top subplot shows the frame rate of
DIST combo frames received by DISTSANI. Since each DIST
combo frame may carry hundreds of IEEE 802.11 frames,
the bottom subplot of Fig. 8 shows the frame rate of the
IEEE 802.11 frames encapsulated in the received DIST
combo frames. In Figs. 8 and 9, we use a “boxplot” style to
project all measurement results in this 62-day experiment
onto a typical 24-hour-calendar-day axis. Each box in a
boxplot depicts 5-number summaries for each nonoverlap-
ping 15-minute time window: the upper quartile (the top
edge of a blue rectangle), the lower quartile (the bottom
edge of a blue rectangle), the median (the red line between
the top and bottom edges), the maximum (the top point of
the black-dotted whisker line), and the minimum (the
bottom point of the black-dotted whisker line). Here we set
the maximum whisker length to 1.5, and thus the red
crosses lying outside of any box are outliers which imply
that they are out of 99.3 percent coverage if the data are
normally distributed.

In Fig. 8, the frame rate of DIST combo frames was
relatively stable over time: mainly between 410 fps (frames
per second) and 440 fps. Since there were 412 Saluki
instances, we observed that each Saluki instance trans-
mitted about one DIST combo frame per second, corre-
sponding well to the preset 1-s frame-holding threshold (see
Section 4.1.2). Most of the time our DIST system worked in a
light-load condition in which most Saluki instances were
not busy and forwarded DIST combo frames to servers
triggered by the 1-s timer instead of a full combo frame.
This result demonstrates our DIST system’s efficiency and
scalability in a practical network monitoring environment.

The frame rate of IEEE 802.11 frames varied more. The
maximum frame rate (42,727 fps) was 1.73 times the
minimum (24,699 fps). Moreover, the distance between
the upper and lower quartiles, that is, the height of the blue
rectangles, varied more than that of DIST combo frames.
It reflected the dynamics of the monitored network and

224 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 1, JANUARY 2014

TABLE 3
In-Production Experiment Configuration

followed a diurnal pattern: fewer frames in the early

morning and more frames during daytime.
Fig. 9 examines the number of live and active APs and

the number of active users over the same period. Each box

summarizes the distribution of average values computed

over non-overlapping 15-minute windows. A live AP is

considered to be one distinct wireless interface (identified

by a distinct MAC address) transmitting beacon frames,

and an active AP is a live AP that is transmitting or

receiving data frames. Because one physical AP can

generate multiple virtual APs and each virtual AP has a

distinct MAC address, the number of live and active APs

summarized in Fig. 9 may be bigger than the number of

physical APs installed on our campus. An active user is a

TAN ET AL.: FROM MAP TO DIST: THE EVOLUTION OF A LARGE-SCALE WLAN MONITORING SYSTEM 225

Fig. 9. Live/active APs and active users.

Fig. 8. Captured 802.11 frames and received DIST combo frames.

wireless card that is exchanging data frames with an AP. It
is possible that a wireless card may have been used in
multiple devices, a device has been used by multiple
people, or a person may have multiple wireless devices, but
we equate “active card” with “active user” for the
simplicity of expression. Two interesting observations can
be drawn from Fig. 9. First, the variation of active users
shown in Fig. 9 followed a diurnal pattern as seen in Fig. 8.
Second, the ratio between the active APs and the live APs
was low. Even at the peak time, only about 60 percent of
APs were actively used. This result implies that Dart-
mouth’s production wireless network has substantial
redundancy for coverage reasons, and in the future it
may be possible to employ some energy-saving manage-
ment strategies without jeopardizing the user experience.

6 APPLICATIONS ENABLED BY DIST

As discussed in Section 4.1, Saluki reduces the CPU
demands on each AM. Each AM can now collect a more
faithful network trace under high traffic loads, or undertake
additional tasks providing more fine-grained monitoring or
protection of the wireless network. Moreover, as our Aruba
AP70 monitors have two radio cards, we can collect traffic
with one while transmitting protective or interrogative
frame sequences with the other.

In this section, we detail two representative applications
of DIST, made possible by the technical improvements of
DIST over MAP.

6.1 Distribution-Based Layer 2 Monitoring

Network traffic monitoring is essential to maintain network
security, and to troubleshoot problems such as those due to
misconfiguration. Hardware manufacturers are beginning
to provide some solutions to enable monitoring, for
example, Cisco CleanAir [39]. Since monitoring each packet
that flows through the network is rather expensive, metrics
measuring aggregate statistics of traffic are used to
summarize the traffic instead. Choosing good metrics that
reveal useful characteristics of the traffic is a hard problem,
requiring a tradeoff between the amount of detail gleaned
about the traffic and the amount of information that can be
considered in a timely manner. Recently, the distribution-
based metric of entropy has received increasing research
attention [40], [41], [42], [43].

Distributional metrics such as entropy are aggregate
functions of the distribution (histogram) of traffic features
(usually frame fields) in any given time interval. Lakhina
et al. [40] and Nychis et al. [41] showed the usefulness of
monitoring the entropy of network traffic for detecting
anomalies such as those due to network intrusion, mal-
function, or user behavior. We show here that monitoring
the relations between pairs of features, via the metric of
conditional entropy, is also useful for anomaly detection in
wireless traffic streams.

We briefly present a summary of our experiment results
of distribution-based approaches to wireless traffic mon-
itoring using the DIST infrastructure. For more detail, see
dissertation [44]. The basic approach is similar to that
applied in previous work [40], [41], [42]. We partition
the observed traffic into successive intervals of equal time

length. Within each interval, we extract values of the feature
in which we are interested (e.g., BSSID) to get a stream
(a sequence) of numbers (BSSIDs). We next consider the
distribution induced by frequencies of values in this stream;
we compute metrics that summarize each time interval of
the stream, and the values of a metric from successive
intervals produce a time series. We then employ threshold-
based change-point detection methods on this time series to
detect anomalies. While we consider several metrics in our
work that capture different aspects of the “shape” of the
distribution, here we present results only using the number
of distinct elements in the distribution. The entropy H of a
distribution on n elements with element i ð1� i� nÞ having
frequency fi is given by H ¼ �

P
1�i�nðfi=mÞ log2ðfi=mÞ,

where m ¼
P

i fi is the length of the stream. The number of
distinct elements, denoted as F0, is the number of elements i
having nonzero frequency fi. It is given by F0 ¼

P
1�i�n f

0
i ,

assuming 00 ¼ 0. Both metrics capture different aspects of
the “shape” of the distribution.

To evaluate this method, we collected a 3-day data set of
wireless traffic between May 2 and May 4, 2010. For this
experiment, we consider data from 52 AMs located in the
Dartmouth College Library. During this period, we injected
four types of anomalous traffic using standard tools from
the BackTrack Linux distribution [45] and the Metasploit
framework [46]. Our tool, Baffle [47], transmits frames with
varying values in the flags field, to fingerprint the chipset,
firmware, and driver combination of a device suspected of
being a rogue AP; Beacon frame fuzzer injects beacon frames
with malformed field values in an attack against wireless
drivers and devices; probe response frame fuzzer injects
malformed fields in probe response frames; FakeAP adver-
tises fake access points using random SSIDs and BSSIDs.

We captured wireless traffic, including the anomalous
traffic, and identified the expected anomalies using several
features: BSSID, source and destination MACs, frame
length, sequence number, flags, and frame type.

We can clearly identify the anomalies in the plots in
Fig. 10. As expected, Baffle results in several new flag
combinations being observed (near 00/Mon), and the
fuzzing and fake AP anomalies result in many new source
MAC addresses (near 06/Sun).

We are continuing to investigate several aspects of this
work, including the choice of specific features and metrics
for monitoring, parameter tuning, criteria for drawing
inferences, and investigating the computational challenges
involved. Monitoring distributional metrics in a computa-
tionally efficient manner is a crucial, nontrivial task given
the high rates of traffic produced by DIST. The problem is

226 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 1, JANUARY 2014

Fig. 10. Timeseries of number of distinct flags, and distinct source
MACs.

exacerbated further due to the fact that monitoring of
multiple traffic features is usually desired. The algorithms
that naturally come to mind are infeasible due to constraints
imposed on both memory and computation time for online
monitoring. Earlier, we developed some strategies to deal
with this computational challenge [42]. The choice of our
metrics is influenced by the availability of recently devel-
oped efficient online algorithms to compute them [48], [49].

6.2 Active Protection System (APS)

As discussed above, Saluki reduces the CPU demands on
each AM. Each AM can now collect a more faithful network
trace under high traffic loads, or undertake additional tasks
providing more fine-grained monitoring or protection of the
wireless network. Moreover, as our Aruba AP70 monitors
have two radio cards, we can collect traffic with one while
transmitting protective or interrogative frame sequences
with the other.

In this section, we detail one representative application:
an APS; details in [26]. While many techniques have been
developed to detect potential security threats on a wireless
network, there are few techniques to protect normal users
against these threats. For a wired network, a network
administrator can block a station’s access to the network by
port blocking, but this is not possible for a wireless network
due to the open medium. An adversary can send whatever
he wants over the air; even if a wireless IDS can detect the
malicious behavior, it cannot stop it. The goal of the DIST
APS is to provide the wireless network administrator with a
tool to mitigate the ongoing security threats.

6.2.1 Implementation

In its first version, our APS focuses on the unauthorized AP
threat. Due to security concerns, an enterprise WLAN
administrator often requires the users to connect only to an
enterprise-controlled AP. However, an unauthorized AP
(either a rogue AP or an impersonation of an AP [50]) can
easily breach this security policy. Our APS uses several
denial-of-service (DoS) attacks in a “benign” way that
prevents users from connecting to an unauthorized AP, or
forces them to break an existing connection. The APS has
two components: a back-end controller and a front-end
agent. The APS controller running on a backbone server
monitors the alerts generated by DIST detectors, each of
which is monitoring the stream of frames captured by AMs,
looking for evidence of unauthorized APs. After an alert is
received, the APS controller takes two steps: 1) it compares
the target MAC address to the whitelist of known-but-not-
ours APs. If the target MAC address is in the whitelist, the
APS assumes this is a legitimate AP and does not take
subsequent steps. Otherwise, APS will proceed to the next
step: 2) it determines the actions (according to predefined
rules) and the set of AMs that should participate. Then it
composes and sends commands to the APS front-end agent
running on each involved AM. An APS command includes
at least the following four fields: target MAC address,
channel, action, and duration (such a command is protected
by the Rabbit cipher and HMAC-SHA256 to ensure
confidentiality, authenticity, and integrity). The APS agent
parses the command, prepares the interface and launches
the attack against the specified target. It is worth noting

that, even though an adversary can move to other channels
or other places when he discovers the APS, it is difficult to
bypass the system entirely because of the full-spectrum
coverage and broad deployment of DIST. Currently, the
APS agents are running on DIST AMs, but technically it is
possible to integrate them into production APs to save cost.

6.2.2 Evaluation

We evaluated the DIST APS using the metrics of response
time and protection effectiveness.

Response time. A quick reaction is important to protect
users from unauthorized APs. The response time is the time
between the moment when the APS controller receives an
alert and the moment when the APS agent transmits its first
attack frame. Because our AMs are deployed around
Dartmouth campus, the response time is the sum of 1) the
APS controller’s processing time, 2) the network delay, and
3) the APS agent’s processing time. The measured average
network delay was 0.372 ms, and the average processing
time for APS controller and agent were 0.025 and 350.347 ms,
respectively. The total response time was thus about 351 ms.

Protection effectiveness. We employed two DoS attacks
to interrupt the operation of an unauthorized AP: a
Queensland DoS attack [51] and a deauthentication attack
[52]. A Queensland DoS attack is a blind-jamming attack
that can disable all Wi-Fi activity on the given channel in the
immediate vicinity. In our lab environment, we observed
that its effective radius reached at least 50 feet. Compared to
the Queensland DoS attack, the deauthentication attack is
more “intelligent” because it will only be effective on the
target device and will not interfere with other devices on
the same channel.

Fig. 11 shows how the deauthentication attack affects
both UDP and TCP traffic under different attack intensities.
The purpose of this experiment is not only to evaluate the
effectiveness with which the deauthentication attack dis-
connects users from unauthorized APs, but more impor-
tantly it is to estimate the cost for APS to successfully
launch such an attack. To simulate a busy channel, we tried
to transmit as much UDP and TCP traffic as possible.
Obviously, UDP traffic was much more robust than TCP
traffic against DoS attack. The attack was launched between
t ¼ 10 and t ¼ 20 in this plot. In Fig. 11, a 200-fps
deauthentication attack completely blocked the TCP traffic
while, for UDP, it required 400 fps to do so. We also

TAN ET AL.: FROM MAP TO DIST: THE EVOLUTION OF A LARGE-SCALE WLAN MONITORING SYSTEM 227

Fig. 11. Evaluation of deauthentication DoS attack.

observed that UDP recovered more quickly than TCP from
the attack: 1 s versus 4-5 s. From the cost perspective,
because one deauthentication frame is only 58 bytes, one
APS agent only occupies 185.6 KBps (�1:5 Mbps) band-
width when sending 400 deauthentication frames per
second. Such an attack can protect all nearby clients from
the unauthorized AP, no matter how many clients.

7 SUMMARY

As an important part of the Internet edge, enterprise-wide
WLANs are increasingly used for many mission-critical
tasks. Monitoring such WLANs is important to under-
standing the performance and security aspects of the
Internet experience. However, monitoring a large-scale
WLAN is a difficult undertaking. In this paper, we
introduce the design, implementation and evaluation of
DIST, a large-scale general-purpose WLAN monitoring
system. As the successor of MAP, DIST has faced many
challenges related to efficiency, scalability, security, and
management. Saluki, DISTSANI, and MAPmaker are our
solutions to these challenges. The combined strength of
these subsystems makes DIST an efficient and scalable
WLAN monitoring system, which has been validated by
both controlled and real-world evaluations. Although
Saluki, DISTSANI, and MAPmaker have been designed to
fit the special needs of DIST, they are also applicable to
general WLAN measurement tasks with variable scales.

DIST provides us a unique platform to study a large-
scale WLAN and its users. DIST’s wide coverage facilitates
community-oriented network research, such as how a large
body of users uses the network and how the users interact
with each other. We also built a system that uses the high-
resolution data captured by DIST to help the computing
service at Dartmouth to diagnose malfunctions, and detect
any abnormal behaviors. Furthermore, we studied the
obstacles and tradeoffs in sanitizing network traces [7].

ACKNOWLEDGMENTS

This paper results from a research program in the Institute
for Security, Technology, and Society (ISTS), supported by
the US Department of Homeland Security under Grant
Award Number 2006-CS-001-000001 and by the NetSANI
project at Dartmouth College, funded by Award CNS-
0831409 from the US National Science Foundation. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or
implied, of the US Department of Homeland Security or
the US National Science Foundation.

REFERENCES

[1] D. Kotz and K. Essien, “Analysis of a Campus-Wide Wireless
Network,” Wireless Networks, vol. 11, nos. 1/2, pp. 115-133, Jan.
2005.

[2] T. Henderson, D. Kotz, and I. Abyzov, “The Changing Usage of a
Mature Campus-Wide Wireless Network,” Computer Networks,
vol. 52, no. 14, pp. 2690-2712, Oct. 2008.

[3] U. Deshpande, C. McDonald, and D. Kotz, “Refocusing in 802.11
Wireless Measurement,” Proc. Passive and Active Measurement Conf.
(PAM ’08), Apr. 2008.

[4] U. Deshpande, C. McDonald, and D. Kotz, “Coordinated Sampling
to Improve the Efficiency of Wireless Network Monitoring,” Proc.
IEEE 15th Int’l Conf. Networks (ICON), Nov. 2007.

[5] Y. Sheng, K. Tan, G. Chen, D. Kotz, and A. Campbell, “Detecting
802.11 MAC Layer Spoofing Using Received Signal Strength,”
Proc. IEEE INFOCOM, Apr. 2008.

[6] Y. Sheng, G. Chen, H. Yin, K. Tan, U. Deshpande, B. Vance, D.
Kotz, A. Campbell, C. McDonald, T. Henderson, and J. Wright,
“MAP: A Scalable Monitoring System for Dependable 802.11
Wireless Networks,” IEEE Wireless Comm., vol. 15, no. 5, pp. 10-18,
Oct. 2008.

[7] K. Tan, G. Yan, J. Yeo, and D. Kotz, “Privacy Analysis of User
Association Logs in a Large-Scale Wireless LAN,” Proc. IEEE
INFOCOM, Apr. 2011.

[8] A. Balachandran, G.M. Voelker, P. Bahl, and P.V. Rangan,
“Characterizing User Behavior and Network Performance in a
Public Wireless LAN,” SIGMETRICS Performance Evaluation Rev.,
vol. 30, no. 1, pp. 195-205, 2002.

[9] M. Afanasyev, T. Chen, G.M. Voelker, and A.C. Snoeren,
“Analysis of a Mixed-Use Urban Wi-Fi Network: When Metro-
politan Becomes Neapolitan,” Proc. ACM SIGCOMM Conf. Internet
Measurement (IMC), 2008.

[10] Y.-C. Cheng, J. Bellardo, P. Benkö, A.C. Snoeren, G.M. Voelker,
and S. Savage, “Jigsaw: Solving the Puzzle of Enterprise 802.11
Analysis,” SIGCOMM Computer Communication Rev., vol. 36, no. 4,
pp. 39-50, 2006.

[11] P. Bahl, R. Chandra, J. Padhye, L. Ravindranath, M. Singh, A.
Wolman, and B. Zill, “Enhancing the Security of Corporate Wi-Fi
Networks Using DAIR,” Proc. ACM MobiSys, 2006.

[12] V. Kone, M. Zheleva, M. Wittie, B.Y. Zhao, E.M. Belding, H.
Zheng, and K. Almeroth, “AirLab: Consistency, Fidelity and
Privacy in Wireless Measurements,” SIGCOMM Computer Comm.
Rev., vol. 41, pp. 60-65, Jan. 2011.

[13] “Aruba Networks,” http://www.arubanetworks.com, 2013.
[14] “OpenWrt,” http://openwrt.org, 2013.
[15] U. Deshpande, T. Henderson, and D. Kotz, “Channel Sampling

Strategies for Monitoring Wireless Networks,” Proc. Second Int’l
Workshop Wireless Network Measurement (WiNMee), Apr. 2006.

[16] M. Raya, J.-P. Hubaux, and I. Aad, “DOMINO: Detecting MAC
Layer Greedy Behavior in IEEE 802.11 Hotspots,” IEEE Trans.
Mobile Computing, vol. 5, no. 12, pp. 1691-1705, Dec. 2006.

[17] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan,
“Analyzing the MAC-Level Behavior of Wireless Networks
in the Wild,” SIGCOMM Computer Comm. Rev., vol. 36, no. 4,
pp. 75-86, 2006.

[18] S. Bratus, D. Kotz, K. Tan, W. Taylor, A. Shubina, B. Vance, and
M.E. Locasto, “Dartmouth Internet Security Testbed (DIST):
Building a Campus-Wide Wireless Testbed,” Proc. Workshop Cyber
Security Experimentation and Test (CSET), Aug. 2009.

[19] “Nagios - The Industry Standard in IT Infrastructure Monitoring,”
http://www.nagios.org, 2013.

[20] “Cacti: The Complete RRDTool-Based Graphing Solution,”
http://www.cacti.org, 2013.

[21] “TCPDUMP/LIBPCAP Public Repository,” http://www.
tcpdump.org, 2013.

[22] “Wireshark,” http://www.wireshark.org, 2013.
[23] “Kismet,” http://www.kismetwireless.net, 2013.
[24] “MadWifi Project,” http://madwifi-project.org, 2013.
[25] K. Tan and D. Kotz, “Saluki: A High-Performance Wi-Fi Sniffing

Program,” Proc. Int’l Workshop Wireless Network Measurements
(WiNMee), May 2010.

[26] K. Tan, “Large-Scale Wireless Local-Area Network Measurement
and Privacy Analysis,” PhD dissertation, Dartmouth College,
http://www.cs.dartmouth.edu/reports/TR2011-703.pdf, Aug.
2011.

[27] “Linux Packet MMap,” http://wiki.ipxwarzone.com/index.
php5?title=Linux_packet_mmap, 2013.

[28] T.A. Welch, “A Technique for High-Performance Data Compres-
sion,” Computer, vol. 17, no. 6, pp. 8-19, 1984.

[29] “QuickLZ,” http://www.quicklz.com, 2013.
[30] “FastLZ,” http://www.fastlz.org, 2013.
[31] M. Robshaw, “The eSTREAM Project,” New Stream Cipher Designs:

The eSTREAM Finalists, 2008.
[32] P. Ekdahl and T. Johansson, “A New Version of the Stream Cipher

SNOW,” Proc. Revised Papers from the Ann. Int’l Workshop Selected
Areas in Cryptography (SAC), 2003.

228 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 1, JANUARY 2014

[33] “The Keyed-Hash Message Authentication Code (HMAC),”
Information Technology Laboratory at NIST, http://csrc.nist.gov/
publications/fips/fips198/fips-198a.pdf, 2011.

[34] O. Gay, “HMAC-SHA2,” http://www.ouah.org/ogay/hmac/,
2013.

[35] K. Tan, J. Yeo, M.E. Locasto, and D. Kotz, “Catch, Clean, and
Release: A Survey of Obstacles and Opportunities for Network
Trace Sanitization,” Privacy-Aware Knowledge Discovery: Novel
Applications and New Techniques, F. Bonchi and E. Ferrari, eds.,
Chapman and Hall/CRC, Dec. 2010.

[36] A.G. Miklas, S. Saroiu, A. Wolman, and A.D. Brown, “Bunker: A
Privacy-Oriented Platform for Network Tracing,” Proc. USENIX
Symp. Networked Systems Design and Implementation (NSDI), Apr.
2009.

[37] “Libpcap with MMAP,” http://public.lanl.gov/cpw, 2013.
[38] “Iperf,” http://sourceforge.net/projects/iperf, 2013.
[39] “Cisco Cleanair,” http://www.cisco.com/go/cleanair, 2013.
[40] A. Lakhina, M. Crovella, and C. Diot, “Mining Anomalies Using

Traffic Feature Distributions,” SIGCOMM Computer Comm. Rev.,
vol. 35, no. 4, pp. 217-228, 2005.

[41] G. Nychis, V. Sekar, D.G. Andersen, H. Kim, and H. Zhang, “An
Empirical Evaluation of Entropy-Based Traffic Anomaly Detec-
tion,” Proc. ACM SIGCOMM Conf. Internet Measurement (IMC),
2008.

[42] C. Arackaparambil, S. Bratus, J. Brody, and A. Shubina,
“Distributed Monitoring of Conditional Entropy for Anomaly
Detection in Streams,” Proc. IEEE Workshop Scalable Stream
Processing Systems (SSPS), 2010.

[43] W. Lee and D. Xiang, “Information-Theoretic Measures for
Anomaly Detection,” Proc. IEEE Symp. Security and Privacy
(S&P), 2001.

[44] C. Arackaparambil, “Anomaly Detection in Network Streams
through a Distributional Lens,” PhD dissertation, Dartmouth
College, http://www.cs.dartmouth.edu/reports/TR2011-707.pdf,
Sept. 2011.

[45] “Backtrack Linux,” http://www.backtrack-linux.org, 2013.
[46] “The Metasploit Project,” http://www.metasploit.com, 2013.
[47] S. Bratus, C. Cornelius, D. Kotz, and D. Peebles, “Active

Behavioral Fingerprinting of Wireless Devices,” Proc. ACM Conf.
Wireless Network Security (WiSec), 2008.

[48] N. Alon, Y. Matias, and M. Szegedy, “The Space Complexity of
Approximating the Frequency Moments,” Proc. Ann. ACM Symp.
Theory of Computing (STOC), 1996.

[49] N.J.A. Harvey, J. Nelson, and K. Onak, “Sketching and Streaming
Entropy via Approximation Theory,” Proc. IEEE Ann. Symp.
Foundations of Computer Science (FOCS), 2008.

[50] R. Beyah and A. Venkataraman, “Rogue-Access-Point Detection:
Challenges, Solutions, and Future Directions,” IEEE Security
Privacy, vol. 9, no. 5, pp. 56-61, Sept./Oct. 2011.

[51] AUSCERT Advisory, “Denial of Service Vulnerability in IEEE
802.11 Wireless Devices,” http://www.auscert.org.au/render.
html?it=4091, 2013.

[52] J. Bellardo and S. Savage, “802.11 Denial-of-Service Attacks: Real
Vulnerabilities and Practical Solutions,” Proc. USENIX Security
Symp., Aug. 2003.

[53] “Community Resource for Archiving Wireless Data at Dartmouth
(CRAWDAD),” http://www.crawdad.org, 2013.

Keren Tan received the PhD degree in compu-
ter science from Dartmouth College in 2011. His
research interests include machine learning and
pattern recognition, network system measure-
ment and optimization, and cloud computing.
Currently, he is working at F5 Networks, Inc.

Chris McDonald received the BSc degree in
computer science and mathematics and the PhD
degree in computer science both from the
University of Western Australia. He currently
holds the appointments of associate professor in
the School of Computer Science and Software
Engineering at the University of Western Aus-
tralia (UWA) and adjunct associate professor in
the Department of Computer Science at Dart-
mouth College, New Hampshire. He has re-

cently taught in the areas of computer networking, security and privacy,
mobile and wireless computing, software design and implementation, C
programming, and operating systems at UWA and Dartmouth. Together
with these areas, his research interests include wireless, ad hoc, and
mobile networking; network simulation; and computer science educa-
tion. He is a member of the ACM.

Bennet Vance received the bachelor’s degree
in mathematics from Yale in 1976 and graduate
degrees in computer science from Stanford and
from the OGI School of Science and Engineering
in 1981 and 1998, respectively. He has worked
as a software developer and consultant and has
held positions at AT&T Bell Laboratories, the
IBM Almaden Research Center, and in several
departments at Dartmouth College.

Chrisil Arackaparambil received the PhD degree in computer science
from Dartmouth College in 2011. He is currently a software engineer
working on the ZFS file system at Oracle, Inc.

Sergey Bratus is a research assistant professor
in the Dartmouth College Computer Science
Department. His primary research interests in-
clude practical defensive and offensive security.

David Kotz received the AB degree in computer
science and physics from Dartmouth in 1986,
and the PhD degree in computer science from
Duke University in 1991. After that, he returned
to Dartmouth to join the faculty. He is the
Champion International Professor in the Depart-
ment of Computer Science and an associate
dean of the Faculty for the Sciences at Dart-
mouth College. During the 2008-2009 academic
year, he was a Fulbright research scholar at the

Indian Institute of Science, Bangalore, India. At Dartmouth, he was the
executive director of the Institute for Security Technology Studies from
2004-2007. His research interests include security and privacy,
pervasive computing for healthcare, and wireless networks. He has
published more than 100 refereed journal and conference papers. He is
a fellow of the IEEE, a senior member of the ACM, a member of the
USENIX Association, and an elected member of Phi Beta Kappa.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

TAN ET AL.: FROM MAP TO DIST: THE EVOLUTION OF A LARGE-SCALE WLAN MONITORING SYSTEM 229

	Dartmouth College
	Dartmouth Digital Commons
	1-2014

	From Map to Dist: the Evolution of a Large-Scale Wlan Monitoring System
	Keren Tan
	Chris McDonald
	Bennet Vance
	Chrisil Arackaparambil
	Sergey Bratus
	See next page for additional authors
	Recommended Citation
	Authors

	untitled

