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Effects of network trace sampling methods
on privacy and utility metrics

Phil Fazio, Keren Tan, and David Kotz

Dartmouth College

Abstract—Researchers choosing to share wireless-network
traces with colleagues must first anonymize sensitive informa-
tion, trading off the removal of information in the interest of
identity protection and the preservation of useful data within the
trace. While several metrics exist to quantify this privacy-utility
tradeoff, they are often computationally expensive. Computing
these metrics using a sample of the trace could potentially
save precious time. In this paper, we examine several sampling
methods to discover their effects on measurement of the privacy-
utility tradeoff when anonymizing network traces. We tested the
relative accuracy of several packet and flow-sampling methods
on existing privacy and utility metrics. We concluded that, for
our test trace, no single sampling method we examined allowed
us to accurately measure the tradeoff, and that some sampling
methods can produce grossly inaccurate estimates of those values.
We call for further research to develop sampling methods that
maintain relevant privacy and utility properties.

I. INTRODUCTION

Wireless-network researchers depend on the availability of

traffic traces collected from live production networks. It is

difficult to collect such traces, requiring permission from

network operators and installation of extensive infrastructure.

Due to this scarcity of data, it becomes extremely important

for the community of network researchers to share available

traces among several research projects; this has resulted in the

creation of data archive resources such as CRAWDAD [1].
Those that choose to share trace data with their colleagues

encounter the additional burden to remove or otherwise

anonymize sensitive information (e.g., identities of network

users or details of the network topology). This “sanitization”

naturally involves a tradeoff between the removal of infor-

mation to fulfill privacy requirements and the preservation of

information that may be useful in later analysis. To streamline

the process of trace sanitization and to better analyze this

tradeoff, we proposed the NetSANI (Network Trace Sani-

tization and ANonymization Infrastructure) framework and

API [2]. Using either existing or user-defined metrics, the

framework is designed to allow the researcher to analyze an

anonymized trace to determine whether it meets pre-specified

privacy and utility goals. In computing the metrics, NetSANI

works with a sample of the collected trace with the goal

of saving precious time and resources when developing an

anonymization scheme.
Trace sampling is hardly a new concept; the benefits of

various sampling techniques have been analyzed with respect

to anomaly detection [3], [4], [5], [6], computation of traffic

flow statistics [7], [8], network management [9], and sample

space efficiency [10]. However, little or no attention has been

paid to the effects of sampling when analyzing anonymized

network traces.

In this paper, we apply several well-known sampling meth-

ods to wireless-network traces and analyze their effect on some

existing privacy and utility metrics. By comparing these results

to the same analysis on the unsampled traces, we seek to

discover which sampling methods produce the most accurate

estimates of the tradeoff between privacy and utility and exam-

ine any trends in the experiments. We concluded that, for our

test trace, no single sampling method we examined allowed

us to accurately measure the tradeoff, and that some sampling

methods produce inaccurate estimates of those values.

In the following section, we test a few existing sampling

methods on an anonymized TCP/IP network trace to determine

their effect on analysis of the privacy/utility tradeoff on

that trace, and present the results of these experiments in

Section III. Finally, we discuss related and future work in

Section IV and conclude in Section V. Readers who wish to

review our sampling methods and metrics, or explore details

of our methods and results, may see Fazio’s thesis [11].

II. EXPERIMENTS

In this section, we present the results of our analysis of

the effects of several sampling methods on privacy metrics

and utility measurements on a wireless-network trace. This

trace was collected over a nine-hour over-night period on the

Dartmouth College campus wireless network in December

2003 and contains 1,651,553 IP packets with either TCP

or UDP headers. It was collected using 18 wireless sniffers

located in 14 buildings across campus.

A. Trace preparation

Prior to sampling the trace, we used the open-source

anontool [12] program to produce a sanitized version of our

trace. We configured anontool to use a prefix-preserving

mapping for IP addresses, a random one-to-one mapping

for port numbers, and hashing for the payload. With this

configuration, the number of packets and flows remained the

same in the raw and sanitized trace, and the distributions of

features remained constant, which allows us to measure the

changes incurred upon these distributions by the sampling

methods.

B. Sampling configuration

For this analysis, we implemented deterministic and uniform

random packet sampling, stratified packet sampling, determin-978-1-4673-0298-2/12/$31.00 c© 2012 IEEE



istic and uniform random flow sampling, smart sampling, and

selective sampling. Details are available in Fazio [11].

To perform packet-based sampling on our traces in pcap

format, we used a custom Python wrapper for the C library

libpcap [13] to count the number of TCP and UDP packets

contained within the trace and collect field information as

necessary (e.g., src values when performing a stratified sample

on that field), performed the selected sampling method on the

input trace, and constructed a new pcap trace containing only

the packets selected for the sample.

For flow-based sampling, we used the tool tcptrace [14]

on default settings. We first constructed a list of the distinct

connections (flows) present within our packet trace, and de-

termined the total number of TCP and UDP connections in

the trace. With the detailed output from tcptrace, we were

then able to collect the appropriate data needed about the trace

(e.g., each flow’s size in bytes, for smart sampling) – using

this data, we wrote a Python program to perform the selected

sampling method on the trace. Given the set of flows to be

included in the sample, we again used tcptrace to filter

the trace and determine the packets belonging to those flows;

as before, we then constructed a new pcap trace containing

the packets selected for the sample.

We chose parameters so that trends in privacy or utility

measurements could be best distinguished, with a secondary

goal that the sample trace sizes are roughly comparable

between sampling methods. While deterministic and random

sampling can decrease the sample size to 0, the opportunistic

sampling methods’ sample size converges towards a non-zero

value, making direct comparison difficult between individual

traces produced by differing sampling methods.

C. Metric configuration

We explored three privacy and one utility metrics; details

can be found in Fazio [11].

k-anonymity [15]. When calculating k-anonymity of the trace,

we consider one feature to be “sensitive” and the others to be

quasi-identifiers, leading to four cases:

Sensitive Field Quasi-identifiers
src {dst, srcprt, dstprt}
dst {src, srcprt, dstprt}
srcprt {src, dst, dstprt}
dstprt {src, dst, srcprt}

L1-similarity [16]. The L1-similarity metric requires us to

define the network objects that are to be protected with

anonymity. Because we were using a packet trace the most

natural network object is a host. A host is a unique IP address

which is either a sender or receiver of data in the packet trace,

represented in either the src or prt features. In other words,

a host is either a sender or a receiver of data during the time

period in which the trace was collected.

Formally, each host object A consists of records from a trace

T with values on features F drawn from the set of fields above,

such that A = {t ∈ T | tsrc = h∨tdst = h}, where h is the IP

address for A. To measure the similarity between two objects,

we first calculate the distributions of distinct values on each

feature for the records contained within the host object.
We measured the L1-similarity between an unanonymized

host Ar and an anonymized host As. For each feature f ∈ F ,

we defined Arf and Asf as the distribution of distinct values

over f for each packet represented in Ar and As, respectively.

We then compared the distribution of distinct values in Arf

and Asf . Due to trace sanitization, these distinct values

cannot be compared directly (e.g., IP address “67.23.134.45”

anonymizes to “123.145.167.189”) and we were thus forced to

indirectly compare the distributions. We did this in our analysis

by considering the most frequently occurring value in Asf

to represent the most frequently occurring value in Arf , the

second most frequently values in Asf and to Arf to be the

same, and so on. The maximum value for sim(Arf , Asf ) is 2,

which indicates that the two objects have identical distributions

on the feature f , and it is likely that Ar = As [11].

Entropy anonymity degree (EAD) [17]. The EAD metric

requires one to define a probability mass function Pr for a

given analysis. We implemented a function used by Coull

et al. [18] as a portion of their analysis to measure privacy

over several iterations of adversary deanonymization, defined

as follows:

Pr(Arf = Asf ) =
sim(Arf , Asf )∑

ar∈AR,as∈AS
sim(arf , asf )

. (1)

where AR is the set of all hosts in the raw trace and AS is

the set of all hosts in the sanitized trace.
This definition of the probability mass function assigns the

highest masses where similarity between two objects is rela-

tively high compared to the total similarity measured between

all pairs of objects. For example, let sim(Arf , Asf ) = 1.8;

if the average similarity between a raw object and sanitized

object is 0.5, Pr(Arf = Asf ) would be much higher than if

the average similarity were 1.7.
We then calculated Shannon’s entropy on the set of values in

Pr on each feature to calculate the EAD at the field level. At

the host level, the EAD is the sum of the field-level entropies;

to calculate the normalized EAD, whose value is between 0

and 1, we divided the field-level EAD and host-level EAD by

log
2
|AS | and |F | log

2
|AS |; |F | is the number of fields.

Snort [19]. To perform our experiments, we obtained the core

Snort Engine and installed it on our test machine. Because the

Snort intrusion-detection system depends on an updated set of

rules to test traces against, we updated our rules to the set

current as of 2011-04-27.
To collect alert logs, we then ran Snort with these rules

on each input sampled trace, filtering for alerts on IP packets

only but otherwise run on default settings. (Alerts generated by

packets with protocols other than TCP or UDP were present in

our log files; we discuss this effect when examining the results

of our analyses below. After collection, we used a script to

further parse and process these logs to obtain counts of each

unique alert type for our sampled traces. We then calculate a

utility metric by summing the number of alerts, weighted by

relative severity.



D. Results

In this subsection, we present the results of our experiments

on the sample traces described above.

a) L1-similarity and EAD: The potential resource ben-

efits of sampling are clear upon examination of our cho-

sen algorithm to calculate L1-similarity between raw and

anonymized objects. Because we compare each raw object to

each anonymized object, use of this metric requires O(n2)
time and space; reducing the input size, even by a small

amount, would therefore result in tangible performance gains.

Due to our implementation of the L1-similarity metric as the

core for our EAD metric, we were able to directly examine

whether similarity values were changed by the sampling

process, and if so, whether entropy values based on that metric

were also affected.

Calculating these metrics on our original unsampled trace

served as a baseline by which we could compare the accuracy

of the same calculations when run on sampled raw and

sanitized traces; these baseline values are located in Table I.

Note that in this and all other L1-similarity calculations in

our experiments, the value listed represents the average of the

L1-similarity values across all sanitized objects.

TABLE I
L1-SIMILARITY AND EAD FOR THE UNSAMPLED SANITIZED TRACE.

Unique hosts 1679
L1-similarity src dst srcprt dstprt

1.5314 1.4925 0.9112 1.4503
host: 1.3463

EAD src dst srcprt dstprt

0.99530 0.99513 0.97028 0.99486
host: 0.98889

These results indicate that, over the 1,679 unique hosts

located in the trace file, the average similarity of hosts across

the src and dst objects are roughly the same and that the

distributions of these similarities are also comparable; the

entropy values for both src and dst were approximately 0.995

in the unsampled trace. Lessened similarity and EAD in the

srcprt feature indicates an increased probability that a host

may be uniquely identified using external information about

srcprt distributions. Clients who send TCP requests over a

wide range of ports could be responsible for this result (as

opposed to external servers, which typically respond over well-

known ports). We may, therefore, consider the srcprt field to

be the “least private” field when measuring anonymity of hosts

in the unsampled trace.

Figure 1 presents the results of our calculations of the L1-

similarity of two features src,dst. We explored other features,

too, and larger plots are available in Fazio’s thesis [11].

We chose the number of distinct hosts as our x-axis in these

plots because they reveal a clear trend in similarity values for

all features as the sampled trace size decreases; L1-similarity

measurements become artificially high even at low sampling

rates and then begin to decrease again as the sample trace

size approaches 0. None of the sampling methods tested here

alters or mitigates this trend towards an overestimation of L1-

Fig. 1. Relationship between number of distinct hosts in a sampled trace
and the corresponding L1-similarity of each feature.
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similarity values. Were there an end-user who attempted trace

sampling in conjunction with an L1-similarity metric, that user

could be led to believe, in error, that the anonymized trace is

more secure than it actually is.

Relationships in similarity between features are also dis-

torted (or lost entirely) in every sampling method tested. For

example, the similarity of field src is slightly greater than the

similarity of field dst in our non-sampled trace, but as the

sample size decreases, this situation quickly reverses itself.

Distortions such as this make developing an effective saniti-

zation strategy more difficult, as they can alter the perception

of which fields are most insecure.

The results in Figure 1 are likely a result of the bias of

the sampling methods to select packets from larger “elephant”

flows and more prominent hosts in the trace – even selective

sampling fails to correct this bias; the resulting decreased

diversity in feature distributions would cause the similarity

values to increase. As sample size approaches zero, similarity

values are much more varied and scattered – especially when



Fig. 2. Relationship between number of distinct hosts in a sampled trace
and the corresponding EAD of each feature.

using flow-sampling methods. This variation is due to the fact

that as the sampled trace shrinks, the removal of additional

packets or flows could just as easily increase the similarity

(as the sample becomes relatively more homogeneous) or de-

crease it (if the sample becomes less saturated with dominant

“elephant”-sized flows).

Figure 2 shows the calculation of entropy anonymity degree

using the same input traces and our similarity metric from

Figure 1 at its core. (We explore more fields in [11]; for most

fields the behavior of anonymity calculations is similar.) As

the sample size (measured in distinct network hosts) shrinks,

entropy calculations remain at or slightly above the accurate

value. When the sample size decreases beneath approximately

800 distinct hosts, or about half the unsampled trace size,

entropy begins to decrease across the board, with this decrease

accelerating as the sample size approaches zero.

Entropy decreases when fewer network hosts are present in

the sample because the unanonymized and anonymized objects

are more easily placed in a one-to-one mapping than may have

occurred in a larger sample set; each sanitized object is more

likely to have a unique distribution of features that can be

matched with an equivalent unsanitized object, whereas in a

larger trace, there may be several unanonymized objects with

a similar distribution of features.

b) k-anonymity: The effects of sampling on k-anonymity

are less clear, however, due to the fact that k for the sanitized

trace is equal to 1 on all fields. This is to be expected, as our

sanitization configuration did not involve the truncation of any

data. By not truncating data, we do not make any alterations

to the equivalence classes present in the unsanitized trace, and

the presence of just one quasi-identifier with one instance in

the dataset is enough to make k = 1 for the entire field.

The sole use of k-anonymity as a privacy metric is difficult,

however, due to the inability to identify sensitive attributes

with certainty. In our experiments, we attempted to judge each

field as sensitive, using the other three tested fields as quasi-

identifiers, as described in Section II-C, with mixed results.

While an increase in k-anonymity in one of our samples, such

that k > 1, would indicate an inaccurate value that could give

a researcher a false sense of security, we did not see this result

in any of the sampled traces on any field.

c) Snort alerts: Our investigation of the effects of sam-

pling on intrusion and anomaly detection was similarly diffi-

cult because of the tendency of sampling to reduce substan-

tially the number of alerts that Snort detects, which adversely

affects the ability to accurately predict the utility of the

whole trace. A summary of the 2068 alerts triggered by the

unsampled trace is contained in Table II.

TABLE II
SNORT ALERTS FROM THE UNSAMPLED TRACE.

Alert type Frequency

ICMP unreachable host 1
ICMP unreachable port 206
ICMP ping 285
TCP reset 1012
TCP window close 564
total 2068

utility 568.4
utility (without ICMP included) 371.6

Fully half of our sample traces (129 of 257) failed to

trigger any Snort alerts, while those that did trigger alerts only

triggered a small fraction of the utility total on its own; the

results are plotted in Figure 3. While the overall utility of

the sanitized trace was measured by Snort to be 568.4, this

figure includes ICMP packets that were filtered out in all of

the sampling processes – the sans-ICMP utility measure of the

unsampled anonymized trace was thus 371.6.

Only when using smart sampling, whose sample sizes

all contained greater than 1200 unique hosts, were utility

measurements somewhat reliable and followed a basic trend,

decreasing sharply in a somewhat-linear fashion until reaching

the smallest smart sample (z = 9503, 1231 unique hosts,

utility = 0.46). When sample size shrinks further, alert gen-

eration becomes hit-or-miss regardless of sampling method –

because different random samples can behave differently at

the same parameter settings – with no sample registering a

utility of greater than 11.4 (which occurred with deterministic

flow sampling, n = 211). Because of the unreliability (or

total lack) of alert counts, it is difficult to conclude that

any particular sampling method outperforms another. With the

possible exception of smart sampling, none of the sampling

methods tested would have allowed an accurate measurement

of utility; all would have severely underestimated the utility

of the trace, as defined by our metric.

E. Limitations

The tests and measurements that we performed were con-

ducted on a single, relatively small (200MB) trace, which pre-
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Fig. 3. Relationship between sample size (in distinct hosts) and the utility
measured by Snort alerts.

cludes us from making broad-reaching conclusions about the

applicability of trace sampling to measure the privacy-utility

tradeoff in most circumstances or use cases. Nonetheless, the

results show that sampling often has a substantial impact on

the privacy and utility metrics we studied, and that conclusion

is likely to occur for larger traces. Because only TCP and

UDP headers were examined in our experiments, there may

be other types of records or protocols that are more amenable

to sampling. Finally, our experiments themselves may not

provide a comprehensive summary of sampling methods to

measure privacy and utility, as we have focused on a small

number of distinct metrics and did not test any adaptive

sampling methods, which may or may not outperform the

conventional methods tested here.

III. DISCUSSION

For the trace used in performing the above analyses, it is

apparent that none of the sampling methods tested would have

yielded accurate information about the privacy and utility of

the sanitized trace that could aid a researcher in the task of

releasing a network trace to the community. This result does

not rule out the ability of trace sampling to allow an accurate

estimation of the privacy-utility tradeoff, as the trace used

for these experiments was relatively small and the sampling

methods used here may differ in behavior on larger or more

diverse traces.

But these results suggest that either additional research

into new sampling algorithms is needed, or that it may be

inappropriate to pursue a one-size-fits-all approach to sampling

traces when measuring the privacy-utility tradeoff without a

more intimate knowledge of the metrics being used to measure

that tradeoff.

Metrics relying on entropy, such as entropy anonymity de-

gree, seemed more able to absorb the changes in successively-

smaller sampled traces and produce somewhat accurate mea-

surements despite the noted changes in the L1-similarity

metric values that EAD was itself based on. Attempts to distill

EAD values for individual features down to a single per-host

privacy value could be misleading, however, as the behavior

of one field (srcprt) largely defines the EAD for the entire

host object in our experiments.

Because flow-based sampling did not definitively outper-

form packet-based sampling in any of our experiments, and

given its increased resource requirements, it would be difficult

to recommend its use over packet-based sampling based on

these results. Were we to recommend a sampling strategy

for the trace tested in our experiments, a potential sampling

strategy to yield minor performance gains without significant

loss of accuracy could include:

1) limited deterministic (sample rate ≈ 2) packet sampling

to perform L1-similarity and EAD tests at a feature level,

as they are the most performance-intense metrics and

least susceptible to disturbance by sampling,

2) measuring k-anonymity without sampling, as the results

(while somewhat unhelpful in this case) are relatively

easy to calculate and equivalence class sizes degrade

quickly with even limited sampling, and

3) measuring utility using Snort without sampling, as any

sampling can seriously affect the number of alerts trig-

gered (and thus the inferred utility).

IV. RELATED AND FUTURE WORK

Related work on packet sampling and its effects on network

traffic characterization was conducted by Claffy et al. [7] and

Hernandez et al. [9], the latter introducing adaptive methods

to equal or outperform non-adaptive packet sampling while

reducing hardware or storage requirements to collect the

relevant traces.

Brauckhoff et al. [4] specifically examined the impact of

packet sampling on flow statistics and the ability to detect

the Blaster worm by examining changes in entropy. Mai

et al. [5], [6] demonstrated the ability to detect a range

of anomalies using a number of packet and flow-sampling

methods, and Androulidakis et al. [3] used flow-sampling

methods to specifically target anomalies dependent on changes

in entropy across fields. Tune and Veitch [20] examined the

relative benefits of using sampling and sketching techniques

to measure flow size distributions.

Kelly et al. [16] gathered a list of existing privacy metrics,

including metrics based on information entropy described

by Diaz et al. [17]. Coull et al. [18], [21] examined the

sensitive information that can be inferred from traces, methods

to measure privacy using a combination of entropy and L1-

similarity of feature distributions, and described an iterative

strategy to simulate an adversary’s attempt to deanonymize

data using externally available information.

Lakkaraju and Slagell [22] examined the use of Snort to

measure utility of a network trace. Research from Pang et

al. [23] and Slagell and Yurcik [24] discuss the inherent trade-

off between privacy and utility when sanitizing network traces.

Finally, Fazio et al. [2] outlined a framework to streamline



the process of sanitizing traces for researchers looking to best

address this tradeoff.

To the best of our knowledge, however, there is no existing

work that measures the effect of packet sampling (or flow

sampling) on the simultaneous measurement of privacy and

utility of a network trace, the so-called privacy-utility tradeoff.

Additionally, this work treats trace sampling as one of a series

of steps to best utilize the resources of a researcher seeking

to anonymize and release a network trace with the specific

goal of allowing colleagues to conduct useful research on the

anonymized traces.

Future directions in work related to sampling and its effect

on measuring the privacy-utility tradeoff in network traces

include research towards more generally effective sampling

methods, and their specific effects on privacy and utility

metrics, and the ability to accurately “correct” measurements

using sampled traces to their unsampled equivalents. More

rigorous mathematical casting of the privacy-utility tradeoff

could lead to increased usage of formal methods to determine

a representative subset of the trace, leading to metric calcula-

tions substantially similar to the same metrics calculated over

the original trace. Finally, future research could also examine

multi-stage sampling methods, or processes that combine one

or more distinct sampling methods based on context, and their

effects on privacy and utility compared to using a broadly-

applicable sampling method.

V. SUMMARY

In this paper, we examine several simple non-adaptive sam-

pling methods to discover their effects on measurement of the

privacy-utility tradeoff when sanitizing network traces prior to

their sharing or publication. The results will be applied to the

recently-introduced NetSANI framework for trace sanitization

that seeks to ease the burden on researchers to adequately

sanitize their network traces (while preserving useful data)

and share them with their colleagues. While packet and flow

sampling have been used and analyzed in the past for such

applications as anomaly detection and traffic measurement,

little or no research has been done to sampling’s direct effect

on measuring both privacy and utility at the same time.

After sanitizing a small sample trace collected from the

Dartmouth College wireless network, we tested the relative

accuracy of a variety of previously-implemented packet and

flow-sampling methods when measuring privacy with micro-

data, similarity, and entropy-based metrics, and on utility by

use of the Snort intrusion-detection system. The results of this

analysis led us to conclude that, for the test trace, no single

sampling method we examined was able to accurately measure

privacy and utility, and that some sampling methods can

produce grossly inaccurate estimates of those values. We also

found it unlikely that a single “universal” sampling method

could be used to perform this analysis accurately on a trace of

any size. We were unable to draw conclusions on the use of

packet versus flow sampling in these instances, nor were we

able to gauge the accuracy of experiments on larger traces.
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APPENDIX

There are two types of metrics used in the analysis of

network traces: privacy metrics, which measure the degree

to which a sanitization method fulfills its predetermined re-

quirements, and utility metrics, which measure the usefulness

of data preserved after the sanitization of a trace.

A. Privacy metrics

A privacy metric (also known as an anonymity metric),

is defined by Kelly et al. [16] as a quantification of how

well an anonymization strategy hides the identity of sensitive

information or users against a particular attack.
Individual privacy metrics may be sensitive to the underly-

ing types or structure of the dataset to be analyzed or may

be generic enough to apply to a wider range of data formats.

In our work, we classify anonymity metrics into two broad

models: those that are microdata-based and those that are

network-based. Microdata-based metrics assume the dataset

is organized like a relational database in which certain fields

may be designated as “sensitive” a priori; network-based

metrics use statistical and probabilistic information about the

dataset to simulate an adversary’s knowledge. The NetSANI

framework [2] is designed to accommodate both models, and

our experiments here use examples of both types of metrics.
a) k-anonymity: We begin with a well-known and simple

microdata-based metric, k-anonymity [15]. When preparing to

release a dataset that contains fields known to contain “sensi-

tive” information, we must recognize that the adversary may

use some non-sensitive fields in conjunction with externally

available information to identify sensitive data; this set of

attributes are called quasi-identifiers [15]. An adversary may

have external information that maps quasi-identifiers to actual

identities, and thus may be able (with the released dataset) to

map identities to sensitive values. The microdata-based metric

of k-anonymity states that for each combination of values of

quasi-identifiers, that combination can be matched to at least

k identities.
The dataset presented in Table III is an example of an

anonymized dataset that achieves 2-anonymity with the set

TABLE III
SAMPLE DATASET FOR A SEARCH-ENGINE LOG ANONYMIZED FOR

2-ANONYMITY IS ACHIEVED [16].

IP address Date Time Query

96.234.69.* 2008-10-2* 234* AIDS medicine
96.234.69.* 2008-10-2* 234* AIDS medicine
222.154.155.*** 2008-10-** 23** m-invariant
222.154.155.*** 2008-10-** 23** l-diversity
96.234.68.2* 2008-10-** 23** cook book
96.234.68.2* 2008-10-** 23** skin rash
96.234.68.2* 2008-10-** 23** filling station
96.234.68.2* 2008-10-** 23** winter coats
129.170.111.1** 2008-10-2* 235* tan salon
129.170.111.1** 2008-10-2* 235* mcdonalds jobs

TABLE IV
k-ANONYMITY PRIVACY METRIC [16].

Privacy level Metric level = z

Preserved k ≥ z

Degraded k < z

Eliminated k = 1

of sensitive attributes S = query. This means that for each

individual record in the dataset, there exist at least 2 instances

of a single quasi-identifier Q = ip, date, time that could be

associated with that record’s sensitive value. In our sample

dataset, this means that the sensitive query of “skin rash” could

have originated from at least 2 records with the quasi-identifier

(96.234.68.2*, 2008-10-**, 23**).

k-anonymity is quite limited in its scope, and does not

attempt to measure the variety of sensitive values associated

with each quasi-identifier; for instance, all records within

the quasi-identifier (96.234.69.**, 2008-10-2*, 234*) in the

sample dataset can be associated with the sensitive query

“AIDS medicine”. Additional microdata-type metrics such as

l-diversity and t-closeness attempt to address this and other

shortcomings [16].

We can define k-anonymity as a simple ternary privacy

metric, as shown in Table IV; it measures privacy at three

levels: preserved, degraded, or eliminated. By specifying a

threshold value z, we measure whether the network trace is k-

anonymous such that k ≥ z. If so, then privacy is considered

to be preserved; else privacy is considered degraded, or in the

case of k = 1, eliminated [16].

b) L1-similarity: Prior to introducing the next metric, we

introduce the concept of a network object [18], [2]. A network

object is an entity whose identity a trace publisher seeks to

protect and/or retain utility, such as a host, subnet, or web

page. It is important to note that an object may be defined by

more than one record in a trace (multiple packets may be from

the same host); the converse holds, as a record may belong

to one or more network objects (for example, a TCP packet

refers to both the src host and the dst host).

L1-similarity [16] estimates the anonymity of an object by

computing a distance between the distribution of values of

an anonymized object X and the distribution of values of an



TABLE V
L1-SIMILARITY ANONYMITY METRIC [16].

Privacy level Metric level = sim(X,Y )
Preserved sim(X,Y ) = 2
Degraded 0 < sim(X,Y ) < 2

Eliminated sim(X,Y ) ≈ 0

unanonymized object Y , defined as

sim(X,Y ) = 2−
∑

z∈X∪Y

|P (X = z)− P (y = z)|. (2)

The maximum value of sim(X,Y ) is 2, which represents

an identical distribution of features between the two objects.

This notion is somewhat counterintuitive, representing the

maximum preservation of anonymity because an attacker fails

to gain additional knowledge from the anonymized dataset.

Conversely, if the distributions of the two objects are totally

disjoint, the similarity is 0, and the attacker gains “complete

or substantial knowledge of identities and relationships” [16].

This metric is summarized in Table V.

c) Entropy anonymity degree (EAD): Consider a situa-

tion of an adversary attempting to discern the author of each of

several messages sent across a network. The adversary knows

the set of all the possible authors, but at the onset, it appears

equally likely that any author may have sent a given message.

However, upon learning additional information, such as how

prolific each author is, the adversary is able to guess with more

certainty which author may have written a given message. The

metric of entropy anonymity degree uses entropy to measure

how much information the adversary has gained, and thus, the

degree of anonymity that the author of a message retains after

the attack [17].

Mathematically, let I be the set of distinct values that are

represented in a probability distribution X; in this case, each

i ∈ I represents an author ai in the set of all possible authors

A. Let pi represent the probability that ai is responsible for

a message. Therefore, pi = Pr(X = i), where Pr is a

probability mass function.

The entropy of this probability distribution is defined as

follows, where N is the size of the sample space [18], [17]:

H(X) = −

N∑

i=1

pi log2(pi) (3)

Entropy anonymity degree (noted Dr) normalizes the result

of H(X) above, dividing it by the maximum entropy Hmax =
log

2
N of the system:

Dr =
H(X)

Hmax

, (4)

where 0 ≤ Dr ≤ 1 [25].

Logically, the maximum degree of anonymity is achieved

when the attacker finds it equally likely that any author is

responsible for sending a given message; likewise, anonymity

has been eliminated when the attacker is certain or near-certain

of the author of that message. This may be represented in

an anonymity metric as follows (summarized in Table VI):

TABLE VI
EAD PRIVACY METRIC [16].

Privacy level Metric level = Dr

Preserved Dr = 1
Degraded 0 ≤ Dr < 1

Eliminated Dr ≈ 0

when Dr = 1, all values across the attribute are equally

likely, and privacy is fully preserved. As Dr decreases, privacy

becomes increasingly degraded until, when Dr = 0, privacy

is considered fully eliminated.

Note that the value of EAD, Dr, is specific to the probability

mass function Pr of the sample space X , which is dependent

on the type of information the attacker possesses.

B. Utility metrics

Quantified measurement of utility is difficult, because those

looking to use trace data (researchers) often have specific

use cases. Therefore, unlike the privacy metrics, developing

an overarching utility metric is a much more challenging

endeavor [26]. Almost all metrics to date center on the concept

of anomaly detection as a measure of utility, because often

the search for anomalous traffic (e.g., DoS attack, portscan)

requires a wide range of useful data from the trace. For

example, several important anomalies may be mined from

examining the entropy of traffic features [3], [27]:

• DDoS attack: a distributed denial of service attack

attempts to target a service to make its resources unavail-

able to others; it may come from many sources.

Fields affected: large decrease in H for dst and dstprt.

• Portscan: in a portscan attack, a single sender sends

packets to a host over a wide range of ports, with the

intent to identify services available at the host.

Fields affected: large decrease in H for src, dst, and

srcprt, slight increase in H for dstprt, and slight de-

crease in H for Fx, the flow size.

• Worm propagation: a program that replicates itself in

an attempt to exploit and infect other machines.

Fields affected: large decrease in H for src and dstprt,

slight increase for dst and srcprt, and slight decrease in

H for Fx.

While it is possible to implement separate metrics measur-

ing detection of the attacks above, the open-source intrusion-

detection tool Snort [19] contains the tools necessary to deter-

mine the type and extent of a wide range of anomalies during

either live packet capture or post-capture analysis [22, for

example]. Because Snort contains rules designed to discover

instances of all three attacks described above, we assign a

weight 0 ≤ w ≤ 1 to each alert based on the number and

severity of alerts when running a TCP/UDP network trace

through the intrusion-detection tool; alerts with higher severity

or lower frequency are assigned higher utility value.

Because a trace theoretically has no measurable utility limit,

we compare the values of the utility metric of the raw trace

against the same analysis run on the sanitized trace.
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