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Computational Markets to Regulate
Mobile-Agent Systems

JONATHAN BREDIN, DAVID KOTZ, AND DANIELA RUS jbredin@coloradocollege.edu
Department of Computer Science, Dartmouth College, Hanover, NH 03755

RAJIV T. MAHESWARAN, CAGRI IMER, AND TAMER BASAR
Coordinated Science Laboratory, University of Illinois, Urbana, IL 61801

Abstract. Mobile-agent systems allow applications to distribute their resource consumption across the
network. By prioritizing applications and publishing the cost of actions, it is possible for applications to
achieve faster performance than in an environment where resources are evenly shared. We enforce the
costs of actions through markets, where user applications bid for computation from host machines.

We represent applications as collections of mobile agents and introduce a distributed mechanism for
allocating general computational priority to mobile agents. We derive a bidding strategy for an agent
that plans expenditures given a budget, and a series of tasks to complete. We also show that a unique
Nash equilibrium exists between the agents under our allocation policy. We present simulation results to
show that the use of our resource-allocation mechanism and expenditure-planning algorithm results in
shorter mean job completion times compared to traditional mobile-agent resource allocation. We also
observe that our resource-allocation policy adapts favorably to allocate overloaded resources to higher
priority agents, and that agents are able to effectively plan expenditures, even when faced with network
delay and job-size estimation error.

Keywords: mobile agents, market-based control, resource allocation

1. Introduction

We develop self-regulating frameworks for networked applications where users
may have conflicting interests and differing priorities. In particular, we are inter-
ested in market-based structures where software agents compete for computational
resources. In our system, local auctions prioritize agents in a distributed environ-
ment where communication costs may be high. We observe that the cost of our
prioritization is small, and that the algorithms that drive an agent’s bidding strategy
are robust to errors the agent’s job requirements.

1.1. Computational-resource markets

We use a currency-based resource-allocation policy, where agents buy access to
computational resources. The policy has a straightforward ideal: the cost of resource
access is proportional to the quantity allocated. Our allocation policy partitions each
resource independently, to satisfy the demand of all interested agents, such that no
agent could benefit from altering its bid. We propose a mechanism to collect agents’
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bids as functions, and derive a bidding strategy that minimizes the computational
latency in an agent’s execution.
More specifically, we present a model that captures the priority of the various

tasks in a network. The model uses an allocation policy that respects priorities,
and requires that each agent need only know its own preferences regarding task
completion.
Ideas from economics provide solutions to many of the issues related to coordi-

nating access to resources in distributed applications. Market-based resource allo-
cation has been used in various distributed resource-allocation problems including
computing resources, network bandwidth, and manufacturing systems [9]. For
example, auction mechanisms have been used to allocate computer resources [11],
and microeconomic approaches can distributedly allocate resources [16]. There are
many models where servers sell resources to agents. The price of a resource reflects
congestion, and serves as a load-balancing mechanism [7, 27].
Computational markets rely on some form of currency exchange. Currency repre-

sents an agent’s potential to act in the network. It is possible for agents to exchange
electronic legal tender implemented through cryptographic verification [12, 22]. In
this paper, however, we consider operation within a closed environment where the
system administrator uses currency to compute a fair allocation among the users.

1.2. Motivational applications

To study how effective are computational markets techniques for self-regulation,
we focus on applications that require careful latency management. This is a timely
area of investigation, as the proliferation of small-scale computing devices has lead
to large-scale wired and wireless networks, yet progress to reduce network latency
has not kept pace with the developments of high-performance computing, and the
improvement of network bandwidth. As computers have become more economical
and standardized, computation is no longer the constraining factor in distributed-
application performance. Increasingly, communication costs of data access comprise
the bulk of an application’s execution time. The disparity between the advances in
computation and communication latency is exaggerated by the greater use of wire-
less and intermittently connected networks. A technique that reduces an applica-
tion’s end-to-end latency, is to move computation closer to scarcer resources. This
reorganization can avoid latency incurred in network communication.
A mobile agent is a user program with the ability to autonomously move from

one host to resume execution at another. A mobile-agent system provides the mech-
anisms for decentralizing resource allocation by relocating computation represented
by mobile agents. By moving the computation (a mobile agent) to the data, band-
width usage and completion time are optimized. Rapidly evolving networks, where
nodes and features may be added or removed often, are easily implemented using
mobile-agent systems. A challenge involved in implementing applications within a
mobile-agent system is implementing a structure that incorporates the idea that dif-
ferent tasks in a system possess different priorities. The amount and quality of the
resources allocated to an agent should reflect the agent’s priority. Computational
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markets, and especially auctions, are thus naturally suited for controlling resource
access in applications implemented with mobile-agent systems.

1.3. Mobility benefits

Mobile-agent systems provide a decentralized flexible architecture on which to base
network management applications [3] and handle user preferences [15]. Mobile
agents have been used to improve fault tolerance by applying knowledge of the
loads on various resources, and resubmitting tasks to alternate sites [19, 24]. Other
applications for mobile agents are to enhance video-conferencing performance [2];
to allow users to more efficiently operate on remote distributed data on an unreli-
able network [14]; and as an alternative to client-server networking [20].
Mobile agents eliminate much of the need for static protocols and allow networks

to grow and change seamlessly. The acceptance of Java on many platforms, and the
current efforts to standardize mobile agents [21] lead us to believe that a standard
for mobile agents will emerge, facilitating their use on almost any type of network.

1.4. Allocation scenario

In this paper we address an economic system where the players are mobile agents
and resource contention drives a hierarchy of distributed resource-allocation deci-
sions. The mobile agents implement distributed applications. We restrict our atten-
tion to systems such as military and corporate intranets where users have already
passed a higher-level admission procedure. Each user has task sequences to exe-
cute. To carry out a task sequence, the user creates a mobile agent and allocates
some endowment to it, which the agent cannot return to the user. The agent’s job
is to select the set of resources required for execution of its tasks, and to budget its
endowment to negotiate priority for each resource. Its goal is to minimize the time
to complete all of its tasks.
For example, consider the scenario where the network is a subnet of computers at

a research lab, and resources are CPUs at nodes throughout the network. Figure 1
illustrates an example task sequence for a mobile agent. The agent can relocate to
one of several hosts to retrieve an image from a database or device, then jump to
another host to process the image, and finally move to another host to render and
display the results.
The agent must decide which hosts to visit, as well as execution priority at each

host. The focus of this paper, is how an agent can budget its endowment over a
sequence of tasks. For evaluation of our allocation policy, we provide methods to
estimate cost and performance, and an algorithm to choose an agent’s path. Budget
construction requires that each agent negotiates with other agents at the site for
access. To this end, we establish a mechanism that allows each agent to prioritize
its execution to minimize its own completion time, that respects the relative priority
of other agents. Each resource is indifferent to how it is partitioned among the
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Figure 1. An example mobile-agent itinerary. The agent must visit one host from each group and choose
at what priority to execute at each visited host.

agents, as long as it is fully utilized. An agent receives exclusive access for an idle
resource. When multiple agents simultaneously access a resource, agents participate
in a bidding process to divide the resource among themselves.

1.5. Paper organization

The bidding and allocation mechanisms are described in Section 2. In Section 3
we derive a response to our mechanism that optimizes an agent’s execution time
in the absence of market response to the agent’s demand. We extend the strat-
egy in Section 4 to show how to compute an allocation that satisfies all agents’
response functions for a single resource. The resulting allocation is a Nash equilib-
rium among the agents that request access. In Section 5, we prove the uniqueness
of the equilibrium. The price that results from the allocation, serves as an indica-
tor for congestion or demand that prospective consumer agents use to budget their
expenditures.
In Section 6, we discuss how our allocation mechanism would be implemented

in a network. In Section 7, we show simulation results that demonstrate that sys-
tems that use our allocation policy exhibit higher throughput than ones that use a
traditional mobile-agent computation-allocation policy. We also compare our pol-
icy with one that optimizes throughput to show that the cost of prioritizing agents
is small. Finally, we observe that our allocation and planning algorithms are insen-
sitive to agents’ errors in job-size estimation, and are no more sensitive to network
delay than are traditional policies.
We describe some related work in Section 8. In Section 9, we discuss our results

and identify directions for future research. We provide two appendices. One proves
the concavity of the agents’ bid function, and the other is a table of notations used
in the paper.
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2. System model

We study an environment where prioritized agents each have a sequence of com-
putational tasks. In this section, we describe task requirements and how a user pri-
oritizes her agents. We also define the interface that agents use to negotiate access
priority when there is contention among multiple agents.

2.1. Itinerary description

A user creates an agent to complete a task sequence as quickly as possible. Each
task requires access to only one resource, which is possibly replicated at several sites
in the network. We denote the size of the kth task in the ith agent’s itinerary as qik.
For the image retrieval example in Section 1, task size is the expected number of
CPU clock cycles required to complete the task.
An agent chooses a resource immediately prior to execution of the correspond-

ing task. Resource capacity and the agent’s resource-congestion estimates for all
prospective resources influence selection. In our analysis, we assume that network
delay between resource locations is fixed.
Once the agent selects a resource, the agent commits to use the resource to finish

the current task. Let cik denote the fixed capacity of the resource used by the ith
agent’s kth task. With respect to our subnet example, cik is the clock speed of the
CPU at the computer where the ith agent’s kth computation is completed.

2.2. Priority

The user expresses the priority of an agent’s itinerary by endowing it with electronic
currency to compete for network resources. The ith agent’s endowment is ei dollars,
and cannot be returned to the user. We assume that the user determines ei through
a higher-level optimization problem based on knowledge of previous job completion
times given various endowments. We take ei as a given in this paper. If the ith agent
has Ki tasks and qi = ∑Ki

k=1 q
i
k, then �

i = ei/qi, the dollars endowed per-unit job,
is a measure of the agent’s priority, or more accurately, the priority of the task
sequence to its user.
A larger �i represents an ability to purchase larger portions of resources for each

job-unit to be completed, and enables the agent to finish more quickly. It could
indicate that the particular task sequence is more important (emergency messaging
versus routine maintenance), or that the user is of higher priority to the network,
and has more capital to spend.

2.3. Allocation policy

An agent receives exclusive access, without effect to its endowment, to an uncon-
tended resource. When multiple agents request a resource, however, the resource
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decides how to partition its capacity. We assume that access to a resource can be
arbitrarily divided, without switching overhead, among many agents. The resource
recalculates the allocation whenever an agent arrives at or departs.
The mechanism that we present follows the paradigm that all agents that request

access to a resource are charged the same rate per-unit of capacity allocated. Using
our formalism, if the ith agent pays uik dollars per second, and 
k denotes the total
amount that all agents currently pay, then the ith agent will receive service at a rate
vik given by:

vik = cik
(

uik
uik + 
−ik

)
� (1)

where 
−ik = 
k − uik represents the sum of payment rates from all agents except
the ith agent. For example, if a resource accommodates three agents that pay one,
two, and three dollars per second, respectively, the agents will receive access to one
sixth, one third, and one half of the resource capacity.
If the ith agent receives service at rate vik, the time required to execute the kth

task is:

tik =
qik
vik

= qik�u
i
k + 
−ik �
ciku

i
k

� (2)

and the cost of completing the kth task is:

mi
k = uiktik =

qik�u
i
k + 
−ik �
cik

� (3)

Ultimately, the ith agent expresses its request to the kth resource through a bid
that is a function that returns uik, the amount an agent will pay, conditioned on

k, the aggregate amount that all agents pay for access. The class of functions that
ensure that an allocation is feasible and unique is described in Section 5.
The resource owner calculates a price, represented by 
k, that satisfies all agents’

bid functions every time an agent expresses new interest in, or relinquishes access to,
the resource. Each interested agent submits a new bid with updated cost, and per-
formance estimates of resources the agent plans to use in the future. The resource
ignores agents that pay nothing in equilibrium until another chance to reallocate
arises.
In Section 3, we calculate the optimal bidding function for one agent under

the condition that all other agents’ payments are fixed throughout the network.
In Section 4, we show that there exists a Nash equilibrium among agents using bid-
ding functions in the form of the optimal response, and in Section 5 we show that
the equilibrium is unique. Thus, we have an allocation policy that uniquely satisfies
local agents’ response functions.
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3. Single-agent optimization

To determine how an agent should bid, we simplify the problem by fixing the pay-
ments of all the other agents in the network, and we assume that the ith agent has
perfect information regarding 
−ik for all hosts that it will visit. The agent’s objec-
tive is to minimize its total execution time, and it is constrained by its endowment.
Since tik is a strictly decreasing function of uik, we expect that the agent’s expendi-
ture at the solution should be at the boundary of its constraint region, i.e., it will
minimize its completion time if it spends the entire endowment.
We formulate the ith agent’s problem as:

min
Ki∑
k=1
tik s.t.

Ki∑
k=1
mi
k ≤ ei� (4)

which we solve with Lagrangian methods by defining the Lagrangian as:

� =
Ki∑
k=1
tik + �

( K∑
k=1
mi
k − ei

)
� (5)

Substituting for tik and mi
k into Equation 5, and taking partial derivatives with

respect to uik, we arrive at:

��

�uik
= −qik
−ik

ciku
i2

k

+ �q
i
k

cik
= 0 ⇒ � = 
−ik

ui
2

k

� (6)

Since we are dealing with the ith agent’s decision, to simplify notation, we drop
i superscripts, except in 
−ik , which we use to denote the sum of competing agents’
bids at the kth server agent i visits.
Note that 
−ik > 0 implies � > 0 for all but the trivial case when only one agent

bids. Thus, we have the following relationship between any two bids, j and k:

uk = uj
√

−ik

−ij
� (7)

The relationship states that as contention for one resource increases, the agent
spends more for that resource, but the increase is sublinear with respect to the
contention. Combining the inequality constraint and Equation 7, we get

�
��

��
= �

(
K∑
k=1

qk�uk + 
−ik �
ck

− e
)
= 0� (8)

Since � > 0, it follows that the inequality constraint must be satisfied with equal-
ity, which shows that the total expenditure is on the boundary of the constraint
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as we expected. Substituting for �uk�Kk=2 in terms of u1 using the relationship in
Equation 7, we have:

q1
c1
�u1 + 
−i1 �+

∑
k �=1

qk
ck

√

−ik

−i1
u1 +

∑
k �=1

qk
ck

−ik − e = 0� (9)

Solving the previous equation for u1, we get

u1 =
e −∑

k �=1
qk
ck

−ik − q1

c1

−i1

q1
c1
+∑

k �=1
qk
ck

√

−ik

−i1

(10)

which yields the bid for the first job for the ith agent as a function of 
−ik for
k = 1� � � � �Ki, assuming that e is large enough to make the expression in Equa-
tion 10 positive. Thus, given any set of policies by other agents in the network, the
ith agent optimizes its performance by following the bidding strategy defined by
Equation 10. The values of 
−ik represent the total payments of other agents to the
kth resource and serve as indicators for congestion or demand. We describe how
an agent generates �̂−i = �
̂−i2 � � � � � 
̂

−i
K �, the vector of estimated values of 
−ik , in

Section 6, given that the agent may not have yet determined which resources it will
use.
We streamline Equation 10 by using place-holder variables and reinstall the i

superscript for use in future sections:

ui1 = fi�
−i1 � �̂−i� = �i − �i
−i1
�i + �i√


−i1

(11)

where

�i = ei −∑
k �=1

qik
cik

̂−ik � (12)

�i = qi1
ci1
� (13)

�i = ∑
k �=1

qik
cik

√

̂−ik � (14)

Intuitively, �i represents the estimate of the money available for the current job.
If �i is less than zero, the agent cannot afford to purchase service under the current
state of the network. If �i ≤ 0, fi will return a negative value, but we require that
the bids be nonnegative. Thus the agent can only submit a bid if �i > 0. We also
have �i > 0, 
−ik > 0, and �i ≥ 0 with equality only if the agent has one job. The
function fi�
−i1 � �̂

−i� will return a positive value, if and only if, there is a feasible
solution. To capture the possibility that the ith agent will choose not to bid, under



computational markets to regulate mobile-agent systems 243

certain network conditions (which corresponds to fi�
−i1 � �̂
−i� ≤ 0), we express the

bidding strategy as follows:

ui1 = max�0� fi�

−i
1 � �̂

i�� (15)

4. Multiple-agent solution

An agent’s bidding function in the form of Equation 15 returns the agent’s optimal
payment given the actions of the other agents in the network. In this section, we
describe how to find an allocation that satisfies each agents’ bidding strategy. Such
an allocation defines a Nash equilibrium among interested agents—an allocation
from which no agent can gain an advantage by unilaterally changing its actions [1].
We generate a set of bids, characterized by the expression in Equation 15, that
yields a Nash equilibrium with respect to the policies of the N agents at a host:{

ui1 = max
{
0� fi�


−i
1 � �̂

−i�
}}N
i=1� (16)

We assume, without loss of generality, that the agents present are all completing
their first tasks. They may, however, have itineraries of different lengths. Our anal-
ysis holds for the case when agents submit positive real-valued triples, ��i� �i� �i�,
describing their bid functions in the form of Equation 11, but easily generalizes to
a broader class of bid functions that we define in Section 5.
The server collects agents’ bidding functions and calculates the payments for each

agent. To facilitate this computation, we translate each agent’s bid function domain
from 
−i1 to a domain common to all agents, 
1, to reduce our search space. Recall
that we defined 
−i1 = 
1 − ui1 and that 
1 = ∑N

i u
i
1. We modify the policies in

Equation 16 to get an implicit relation between ui1 and 
1:{
ui1 = max

{
0� fi�
1 − ui1� �̂−i�

}}N
i=1� (17)

From Equation 17, we obtain an explicit function gi�
1� �̂−i�  
1 × �̂−i → ui1.
The ratio �i/�i represents agent i’s tolerance for competition for the resource.
Outside the range 
1 ∈ �0� �i/�i�, gi�
1� �̂−i� takes the value of 0. Figure 2 illus-
trates how fi�
1 −ui1� �̂−i� shifts as 
1 varies. The intersection of the line with slope 1
and a curve fi�
1 − ui1� �̂−i� for a particular value of 
−i1 , represents the only stable
solution among the set of agents for that level of congestion.
We now derive gi�
1� �̂−i�. Substituting 
1 − ui1 for 
−i1 in Equation 11, in the

range, 
1 ∈ �0� �i/�i�, we have:

ui1 =
�i − �i�
1 − ui1�
�i + �i√


1−ui1

� (18)

which leads to a quadratic equation in ui1. Dropping the i superscript, we have:

�2u21 + ��− �
1�2u1 − ��− �
1�2
1 = 0� (19)
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Figure 2. Behavior of max�0� fi�
1 − ui1�� �̂−i� for �i/�i = 4.

Taking the positive root of the equation with respect to u1, we have u1 =
g�
1� �̂

−i� where

g�
1� �̂
−i� = ��− �
1�2

2�2

(
−1+

√
1+ 4�2
1

��− �
1�2
)
� (20)

when 
1 ∈ �0� �/��, and u1 = 0 otherwise.
The function g is continuous and zero at 
1 = 0 and 
1 = �/�. Thus, g�
1� �̂−i�

is a continuous function of 
1. We also note that on 
1 ∈ �0� �/��,
�g

�
1
= 2���− �
1�

2�2
+ −2���− �
1�2 + 2�2��− �
1�− 4��2
1

2�2
√
��− �
1�2 + 4�2
1

� (21)

and when 
1 = 0+, we have

�g

�
1

∣∣∣∣

1=0+

= 1
2�2

[
2��+ −2��2 + 2�2�√

�2

]
= 1� (22)

Figure 3 displays the shape of gi�
1� �̂−i�, and how the agent’s best response
changes as an agent becomes wealthier, and as the agent’s future task sizes increase.
Increasing the agent’s endowment allows the agent to submit a larger positive bid
over a larger domain compared with the agent’s initial bid. An agent with a greater
future load, but with the same initial endowment, participates in a smaller set of
congestion levels, and makes smaller bids than under the original budget when it
does participate, since it must allocate more of its capital to later jobs.
Returning to the choice of an equilibrium bid for N agents, we seek 
1 and

�ui1�
N
i=1 to satisfy for all agents, the definition 
1 = ∑N

i=1 u
i
1 and Equation 17.

An equivalent problem is to find a value of 
1 such that
∑N
i=1 u

i
1 − 
1 =∑N

i=1 gi�
1� �̂
−i� − 
1 = h1�
1� = 0. From Equation 22, we know that if N ≥ 2,

�h1/�
1
1=0+ = −1+∑N
i=1 1 > 0, and thus h1 is increasing to the right of zero and
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Figure 3. The comparison of gi�
1� �̂−i� for different conditions. We represent the bid for the initial
itinerary with a solid curve. The dashed curve represents a new bid to complete the same set tasks, but
with a larger endowment. It is scaled out compared to the original bid. The dotted-dashed line represents
a bid when the itinerary has increased future consumption; the curvature is softened, and the range over
which the agent participates is truncated.

h1�0+� > 0. We also know that for the nontrivial case where at least two agents
have �i > 0, h1�maxi��i/�i�� = −maxi��i/�i� < 0. Because h1 is the sum of con-
tinuous functions, h1 is continuous as well, and must be zero for some value of

1 ∈ �0�maxi��i/�i��. We solve for this value by using a bisection search of h1 in
the given range. We sketch a sample of

∑N
i=1 gi�
1� �̂

−i� versus 
1 in Figure 4.
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Figure 4. Sample plot of
∑N
i=1 gi�
1� �̂

−i� versus 
1 for 16 agents. Equilibrium occurs at
∑N
i=1 ×

gi�
1� �̂
−i� = 
1 (i.e., h1�
1� = 0), which we show at the intersection of the dotted line and the plotted

curve.
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If an agent has only one job left to complete, u1 = 
1 for 
1 ∈ �0� ec/q� is its opti-
mal policy, which is equivalent to having � = 0. In this case, gi�
1� �̂−i� is discon-
tinuous. By applying L’Hôpital’s rule to Equation 20, however, we see that

lim
�→0+

g = lim
�→0+

1
2

8
1�
��−�
1�2 ��− �
1�2

4�
√
1+ 4�2
1

��−�
1�2

= lim
�→0+


1√
1+ 4�2
1

��−�
1�2

= 
1�

If we require agents with only one job to submit bid functions with � > 0, agents
may approximate their optimal solutions to arbitrary precision through specifying a
small value for �, and still preserve the structure of gi�
1� �̂−i� to yield a solution.
Since gi�
1� �̂−i� defines an agent’s best response for all values of 
1, we have a
Nash-equilibrium allocation among agents bidding for a common resource under
our scheduling mechanism.

5. Uniqueness

We now show that the equilibrium (i.e., h�
1� = 0) in the previous section is unique
when there are more than two agents bidding at the same host. Let Oi = �0� �i/�i�
be indexed such that O1 ⊃ O2 ⊃ · · · ⊃ ON (i.e., �1/�1 > �2/�2 > · · · > �N/�N �,
where N is the number of agents at a server. We have already shown that a Nash
equilibrium characterized by h1�
1� = 0 has at least one solution on O = ⋃N

i=1Oi =
�0�maxi��i/�i�� = O1. We now further strengthen that result. Let us define hn1�
1�
as follows:

hn1�
1� =
n∑
i=1
gi�
1� �̂

−i�− 
1� (23)

Theorem 1 There is exactly one solution on O where hN1 �
1� = 0.

To prove Theorem 1, we must first prove some other results. In Appendix A, we
show that ��2gi/�
21� < 0 on Oi. From the definition of hn1 in Equation 23 and the
definition of the indices, i and n, it can be seen that

�2gi
�
21

< 0 on Oi ∀ i⇒
�2hn1
�
21

< 0 on On� (24)

�gi
�
1

∣∣∣∣

1=0+

= 1 ∀ i⇒ �hn1
�
1

∣∣∣∣

1=0+

= n− 1� (25)

gi�0� �̂
−i� = 0 ∀ i⇒ hn1�0� = 0� (26)

Also, hn1 is a continuous function of 
1.
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Lemma 1 If a function, h�x�, is twice continuously differentiable on �r� s�,
��2h/�x2� < 0 on �r� s�, h�r� > 0, and h�s� < 0, then there exists a unique
point x0 ∈ �r� s� s.t. h�x0� = 0.

Proof: We prove this lemma by contradiction. The Intermediate Value Theo-
rem states that there is at least one value x0 ∈ �r� s� s.t. h�x0� = 0. Because
��2h/�x2� < 0 on �r� s�, we know that h is strictly concave on �r� s�, i.e.,

ah�x�+ �1− a�h�y� < h�ax + �1− a�y�� (27)

for a ∈ �0� 1� and x� y ∈ �r� s�. Suppose there are two points that satisfy h�x� = 0,
say x1� x2 ∈ �r� s� where x1 < x2. Again, using the Intermediate Value Theorem,
we can show that ∃ r0 ∈ �r� x1� ⊂ �r� s� s.t. h�r0� > 0. Then, we have ah�r0�+
�1− a�h�x2� < h�ar0 + �1− a�x2� which implies ah�r0� < h�ar0 + �1− a�x2�. If a =
�x2 − x1/x2 − r0� ∈ �0� 1�, then we have ah�r0� < h�x1� = 0, which is a contradiction
since a > 0. Thus, there can be at most one point where h�x� = 0. ♦

Proof of Theorem 1: When n = 1, ��h11/�
1�
1=0+ = 0, and ��2h11/�

2
1� < 0 on

O1, which implies that h11�
1� < 0 on O1. When n = 2, ��h21/�
1�
1=0+ = 1 and
h21�0� = 0, thus h21�0

+� > 0. Also, h21��
2/�2� = h11��2/�2� < 0 and ��2h21/�


2
1� < 0 on

O2. Applying Lemma 1, we find that there is a unique point 
0 s.t. h21�
0� = 0 on
O2. But, h21�
1� = h11�
1� < 0 on O1 ∩Oc

2 ; thus 
0 is a unique point where h
2
1�
0� = 0

on O1.
We show uniqueness through an inductive argument. Assume that there is a unique

point 
0 < �i/�i on O1, where hi1�
0� = 0. Also assume ��2hi1/�

2
1� < 0 on Oi and

hi1�
1� < 0 on O1 ∩Oc
i . Along with the continuity of hi1, the previous result implies

the following:

hi1�
1�


> 0 
1 < 
0
= 0 
1 = 
0
< 0 
1 > 
0

� (28)

Rewriting Equation 23, we have hi+11 = hi1 + gi+1. There are two cases to consider:

Case 1. If ��i+1/�i+1� ≤ 
0, then Equation 28 is satisfied for hi+11 , because
gi+1�
1� = 0 for 
1 ≥ 
0 ≥ ��i+1/�i+1� and gi+1�
1� ≥ 0 for 
1 ≤ ��i+1/�i+1�. Thus,
there is a unique point 
0 where h

i+1
1 �
0� = 0 on O1.

Case 2. If 
0 < ��i+1/�i+1� < ��i/�i�, then by Equation 28, hi+11 ��i+1/�i+1� =
hi1��

i+1/�i+1� < 0. We also know hi+11 �0+� > 0, because hi+11 �0� = 0 and ��hi+11 /
�
1�
1=0+ = i > 0. Since ��2hi+11 /�
21� < 0 on Oi+1, we can apply Lemma 1 and arrive
at the result that there is a unique point 
̂0 on Oi+1, where h

i+1
1 �
̂0� = 0. But since

gi+1�
1� = 0 for 
1 > ��i+1/�i+1�, we have that on O1 ∩Oi+1, hi+11 �
1� = hi1�
1� < 0.
Thus, we have a unique point 
̂0 where h

i+1
1 �
̂0� = 0 on O1. ♦
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We have shown that a unique Nash equilibrium exists when agents’ bidding func-
tions are in the form of Equation 20, but we note that the results hold for any set
of functions g�
� �̂−i�, where g�
� �̂−i� > 0 on some set �0� b�, and is zero else-
where, and further, g�
� �̂−i� is concave and twice differentiable on �0� b�.

6. Implementation in a network

In this section, we discuss several issues that concern calculation of an agent’s bid.
Implicit in the calculation are both the agent’s resource choices, and its forecast
of network conditions. We explore the possibility of other bidding strategies and
conclude the section with a discussion of the merits of our function-submission
bidding allocation policy.

6.1. Estimation

In our approach, a resource independently partitions itself as demand changes.
Every time an agent arrives at, or finishes with, a resource, each agent that requires
access submits an updated bidding function characterized by the real-valued positive
triple, ��� �� ��. The parameters � and � depend on �̂−i� the agent’s beliefs about
future demand for resources on its itinerary. These estimates allow an agent to
budget expenditures for the current task.
Two issues that affect the estimations are the particular resources that the agent

chooses to access, and the congestion of resources used later in the itinerary.
A greedy algorithm, which we present in Section 7, chooses an agent’s next resource.
The algorithm defers selection of resources until execution of the corresponding
task. The agent must have an idea of the quality of future resources, it will choose
to budget expenditures for the immediate task, however. For this purpose, an agent
in our model uses the mean of the alternative resources’ capacities to estimate the
capacity of the resource it will use.
Additionally, the budgeting algorithm requires congestion estimates. The agent

forecasts these through calculation of the mean total cash spent by other agents
at the resource alternatives over time. In Section 7.2 we examine the effect of
congestion estimation errors that stem from network delay. We find that the effects
on agents’ performance are limited.

6.2. Alternative bidding strategies

Once agents submit their bidding functions, the resource partitions itself based on
the Nash-equilibrium allocation. Thus, each agent will be satisfied with the amount
and cost of the resource that it receives, as the Nash equilibrium ensures that the
allocation represents a point on the optimal response function of each agent for
that resource at that time given its current beliefs. Each agent continues under
this allocation until its job is complete or the resource state changes, i.e., another
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agent arrives or leaves the resource. Agents that pay nothing under the allocation
are ignored until the state changes again. When an agent completes its task at a
resource, it moves to the next resource in its itinerary and submits a new bidding
function with updated demand forecasts.
It is possible for an agent to “cheat” by submitting a bid that does not represent

its true beliefs. An agent might hope that an altered equilibrium might expedite
itinerary completion. In other applications, agents can gain from such strategic opti-
mization in double auctions [13]. A difference between our allocation problem and
the double-auction research, is that in a double auction there are trade opportuni-
ties while the market searches for equilibrium.
Trade in our system occurs only at equilibrium, so strategic gaming is more dif-

ficult, since an agent has only one chance to manipulate the equilibrium. Because
agents observe only the resulting equilibrium, as opposed to the search for an equi-
librium, there is less information to use and fewer opportunities to steer the equi-
librium in a favorable direction. There are other complications in optimization. One
must consider the feedback of one agent’s actions from its competition’s actions.
The effects of indirect interaction among agents on their beliefs, and bidding behav-
ior is an interesting topic for future research.
Submitting functions as bids ensures an equilibrium allocation that a resource

owner can compute quickly. An alternative solution might be to iteratively col-
lect bids, and let each allocation drive the recalculation of the next iteration. This
sequence does not guarantee a convergence, however. Our policy allows an agent
to calculate and express its actions for every state, and results in efficient trade even
in the presence of fluctuating demand.

7. Simulation

In this section, we present results of simulating our resource-allocation policy from
Section 4. We show that agent performance is highly correlated with endowment;
that when our system is overloaded, poorer agents are ignored to maintain higher
priority agents’ performance; our algorithm is robust to an agent’s errors in job-size
estimation; and that there is a empirical structure to bidding behavior that will aid
us in future research to predict server loads, and guarantee service to agents.
We ran our simulations under the Swarm simulation system [17]. We created

agents at a Poisson rate, each with an exponentially distributed number of jobs
to complete. In our simulations, we used two different distributions for job size:
exponential and Pareto. Both distributions are commonly used to model job sizes,
with Pareto having the more sporadic distribution. Each agent’s start location and
task types were uniformly distributed. We modeled �i, an agent’s endowment size
relative to the sum of its job sizes, as a positive truncated Gaussian random variable.
This parameter expresses an agent’s owner’s preference that the agent completes
tasks quickly.
All of our simulations used a network of 100 hosts where each host offered

one of eight computational services. The service that a host offered was picked
uniformly at simulation initialization. Host capacity was determined by a positive
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truncated Gaussian random variable with positive mean. We chose this distribution
for no other reason than to make the process of host selection more important,
and to show that our expenditure planning process works with heterogeneous host
capability. In the simulation, each host published its fixed capacity and immediate
level of congestion, 
k.
The hosts were connected with a network whose topology we generated with

GT-ITM [6]. In GT-ITM, a network is built from a hierarchical system of transit
domains connecting stub domains. The user specifies the number and average size
of domains in nodes (hosts), and the probability that nodes are connected within
the domain. Our networks had two levels of transit domains connecting another
set of stub domains. The network delay incurred in an agent moving between sites
was chosen at system initialization. We chose job sizes to be large enough so that
network transfer did not dominate an agent’s decision of which hosts to visit, since
we were interested in the effectiveness of our expenditure-planning algorithm and
resource-allocation policy.
Once created, an agent must formulate a route. In the simulation, each agent

chose their route incrementally, by choosing a host for each task after completing
the previous task. For the purpose of expenditure planning, for all but the next
immediate host choice, agents planned to visit hosts of average capacity ck, and
average congestion 
k, among hosts offering the service required for the kth task.
Each agent chose the next site to be the one that minimized the sum of network-
transfer and execution times for the next hop, assuming that the bidding level, 
−ik ,
would not change. Thus, our routing algorithm was greedy and naive. We sketch its
operation in Algorithm 1.
In the simulation, an agent commits to finishing its current job at the host to which

it jumps. To finish its job, an agent submits a bid function defined with parameters
�i� �i� �i defined in Equations 12–14. The host uses bids from agents to form the
bid-response function, g�
� �̂−i�, and uses a bisection search to find the bidding level
where 
 = ∑Nk

i=1 g�
� �̂
−i�. This search is conducted every time an agent arrives or

departs the host. Algorithm 2 sketches the operation.
We compared our game-theoretic resource-allocation method with three other

resource-allocation policies: equally-shared, first-come-first-served (FCFS), and
shortest-remaining-processing-time (SRPT). Under the shared policy, all agents at
a site compute at an equal rate. The shared policy is similar to what is currently
used in many existing mobile-agent systems, so it serves as a good comparison for
performance.
The FCFS policy allocates all of a host’s capacity to the earliest arriving agent,

while the SRPT policy services the agent with the shortest computation remaining.
We examined SRPT because it minimizes the average agent job-completion time,
and serves as a lower bound on the metric. The SRPT policy, however, has another
side effect: it prioritizes jobs by their size, so users have incentive to understate the
size of their jobs and the resulting allocation would resemble FCFS. In our simula-
tions using SRPT, we assumed that agents’ job sizes were known to the host.
An agent operating under the shared-allocation policy chose its next host to be

the one that minimized the sum of network-transfer, and the execution times of the
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next task given the computational share that an additional agent would receive at
the host. Under the FCFS and SRPT policies, each agent chose its next site to be
one that minimized the sum of the network-transfer time to the host, and the host’s
ideal job completion time weighted for the number of agents currently at the host.
For agents to plan their itineraries using each of the policies, sites published the
number of agents visiting them.
We measured an agent’s performance by comparing the actual time taken by

the agent, with performance that it would have achieved in a network with zero
congestion. This idealized measurement is a shortest-path computation from the
start location that visits hosts that offer the appropriate services. In the calculation,
the distance between any two hosts is the sum of the network-transfer time, and
qk/ck, the time an agent would take to complete a job at the second host without
any competition.
We ran three sets of experiments. First we verified that our game-theoretic

resource-allocation policy prioritizes agents by endowment. We compared the
performance agents achieved under the policy with the mean performance achieved
by agents under the other policies. We also examined how over-constrained
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resources are allocated. Second, each of the policies requires agents to compute
routes based upon network state, so we also investigated the effect of network
delay on an agent’s ability to plan its itinerary and budget. Finally, both the SRPT
and the game-theoretic allocation policies rely on agents having knowledge of their
job sizes. In reality, there will be some error in an agent’s estimation of an agent’s
computational requirements, so we looked at the effect of job-size estimation error
on agents’ performance.

7.1. Effectiveness

To test the effectiveness of the game-theoretic resource-allocation policy, we com-
pared agents’ priorities, expressed by �i, with their performance. After the network
reached a steady state, we designated 7% of the agents injected into the system
as test agents. The test agents had identical task-type sequences and a common
start host, but they had differing priorities, expressed by �i, spanning two standard
deviations, ,, around the mean priority, -, and differing task sizes.
Figure 5 shows how endowment relative to task size affects agent performance

in one experiment and how agents performed in separate simulations using the
shared, FCFS, and SRPT policies. The data labeled “GT” show the performance
of agents operating under our game-theoretic allocation policy. We plot the mean
and standard deviations of agents’ performance versus their priority. We also plot
the mean performance of all agents operating under the shared, SRPT, and FCFS
allocation policies in separate simulations. In the experiment, agents’ job sizes had
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Figure 5. Priority versus ideal time relative to actual time. For the game-theoretic (GT) approach, we
plot the observed means in heavy block lines; standard deviations with error bars for agents at each
priority two standard deviations, ,, around the mean priority, -; and a linear fit of the observed means.
We also plot the mean performance of agents under the shared, SRPT, and FCFS resource-allocation
policies.
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a Pareto distribution, but we achieved similar results when agents’ job sizes were
exponentially distributed.
We plot the mean of the ratios of the ideal noncongested itinerary completion

time, and the actual itinerary completion time for agents. A higher number indicates
better performance. In the experiment, agents with higher endowments performed
better on average than those with lower endowments. The mean performance of
agents using the shared policy was 0.33, while agents across all priorities under the
game-theoretic policy achieved a mean performance of 0.39—an improvement of
18%. There was a cost to prioritizing agents, however. Agents under the FCFS pol-
icy performed slightly better (0.40) than under the game-theoretic policy, and the
SRPT experiment showed that ideal performance was 8% better than the mean per-
formance of agents across all priorities operating under the game-theoretic policy.
Neither the SRPT, nor the FCFS policies prioritize agents, however.
One might associate high variance with market-based techniques, but in the plot-

ted simulations, agents using the game-theoretic policy experienced about the same
amount of performance variance as did agents using the shared allocation policy.
In the experiment plotted in Figure 5, the mean standard deviation of test agents’
performance across all priorities was 0.065, while agents using the shared resource-
allocation policy had a performance standard deviation of 0.068. Agents operating
under the FCFS policy experienced even higher variance.
The variance in performance in the game-theoretic simulations depended on the

level of congestion. As congestion increased, endowment became a much stronger
factor in determining an agent’s performance and the variance of the performance
measure increased.
Figure 6 shows how the system prioritized agents when requests exceeded system

capacity. We observed that agents with lower than mean priority were not able to
complete their itineraries at all. The resulting equilibrium allocation pushed prices
beyond the range in which poorer agents’ bids returned positive payments. Among
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Figure 6. Priority versus ideal time relative to actual time when agent requests exceeded capacity. We
plot observations two standard deviations, ,� around the mean priority, -.
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agents with higher than average priority, there was a strong correlation of intended
priority and performance. Again, we achieved similar results when agents had either
Pareto or exponentially distributed job sizes.
Using the other resource-allocation policies, it is not possible to reach a steady

state when agents’ requests exceed capacity. The requests that are completed
are completed more and more slowly as time progresses. The lack of a steady
state in the shared, FCFS, and SRPT policies illuminates another feature of the
game-theoretic policy: because agents are prioritized, the system can decide which
requests to postpone and still provide reasonable service to higher priority requests.
The SRPT policy prioritizes agents, but in an uncontrollable manner, and one that
is not meaningful when the system is overloaded.

7.2. Network delay

We also examined the importance of timely information to our expenditure planning
algorithm. We ran experiments varying the latency incurred in agents jumping from
one site to another. In the model, agents have information on the immediate state
of the world, but there is a delay in acting on the information in the form of the
time required to move to another site. So by varying the agent-transport latency,
we effectively aged the agents’ load information.
Figure 7 shows the results of four experiments that used the game-theoretic

resource-allocation policy with intra-domain transfer times of one, two, four, and
eight time units. Inter-domain transfer times are three, six, 12, and 24 time units.
The experiments all used Pareto job-size distributions, and increased job sizes rel-
ative to server capacity to increase the granularity of network transfer times. We
saw that recent information is valuable to agents and, as their load information
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Figure 7. We plot the effectiveness of prioritization of the allocation policy at different network delays
and levels of endowment. We plot observations two standard deviations, ,, around the mean priority, -.
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Figure 8. The mean performance of agents operating in various allocation policies versus network delay.

aged, ideal/actual performance ratio gradually decayed. The game-theoretic alloca-
tion policy maintained priority stratification as network delay increased.
The degradation of performance was not unique to the game-theoretic policy,

however. In Figure 8 we compare the mean performance of agents at all priori-
ties operating under the game-theoretic policy to the mean performance of agents
operating under the other resource-allocation policies at different network delays.
Under all of the policies, we observed that agents’ performance decayed gradually
as they used more dated information.

7.3. Estimation error

Both the game-theoretic and SRPT policies rely on each agent knowing the number
of instructions involved in its computation before the calculation is commenced. In
practice, the number of instructions will not be known to agents ahead of time.
Furthermore, in most architectures, different instructions require varying amounts
of time to complete. For these two reasons, we investigated the effect of error in
agents’ job-size estimation.
We ran several experiments under the game-theoretic and SRPT allocation poli-

cies, and varied agents’ accuracy in predicting their job sizes. We modeled an agent’s
ability to estimate its job sizes as a truncated Gaussian random variable with mean
one. An agent’s estimation of its job size was the product of the random variable
and the true job size. The standard deviation of the random variable determined
the error in the estimation.
Figure 9 shows how agents’ performance changed as we varied all agents’ job-size

estimation error from perfectly accurate to situations where the standard deviation
of agents’ job-size estimates was five times job size. Within each experiment, all
agents used a common error distribution function to generate an imperfect job size
measurement. We observed a modest reduction in agents’ performance as error
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Figure 9. Agent performance versus the standard deviation of job-size error.

increases. Agents experienced approximately a 3% decrease in performance for
every additional multiple in the standard deviation of their job-size estimation error.

7.4. Bidding patterns

Information concerning the behavior of bid totals, 
, will be useful for more sophisti-
cated planning algorithms. We plot histograms of the logarithm of positive bid totals
with their best-fit log-normal distributions in Figures 10 and 11 for experiments that
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Figure 10. A histogram of bid sum on a log scale, ln�
�, observed at a resource where agents arrived
with exponentially distributed job sizes. For comparison, we plot the best-fit log-normal distribution.
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Figure 11. A histogram of bid sum on a log scale, ln�
�, observed at a server where agents arrived with
Pareto distributed job sizes. For comparison, we plot the best-fit log-normal distribution.

used exponentially and Pareto distributed job sizes, respectively. Both experiments
gave similar results. The bids in the Pareto data were close to log-normally dis-
tributed. The observed cumulative distribution function deviated from the corre-
sponding log-normal cumulative distribution by no more than 0.03. The experiment
that used exponentially distributed job sizes produced a bid total distribution that
visually resembles a log-normal distribution, but it was skewed away from the origin
and produced a poor fit.
The ability to fit bid totals to a known distribution will aid in constructing

predictors for server loads that will allow us to relax assumptions on agents’ knowl-
edge of the state of the network, aid in constructing better expenditure planners,
and give hosts insight that allow them to issue efficient resource-consumption
reservations.

8. Related work

Our earlier work relies on agents submitting demand functions derived to opti-
mize Cobb-Douglas utility functions subject to their budget constraints [5]. Sell-
ers compute equilibrium prices given their preferences for consuming their own
computational resources and buyers’ demand functions. More recently, we inves-
tigated seller-driven markets, where servers supply price curves increasing with
rates of computation from which agents choose their rates of service [18]. Both
works treat agents’ consumption habits as a local problem. As such, expenditure
planning is only indirectly handled through agents’ preferences for savings, and
there is no guarantee of agents’ ability to complete itineraries within preset time
limits.
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We are not the only group to promote the use of markets in mobile-agent systems.
The Geneva Messengers project [26] applies market ideas to allocate CPU usage,
and memory to visiting messengers, lightweight mobile programs implemented in a
Postscript-like language. Host sites heuristically set prices by examining the amount
of resources requested by the present messengers.
Telescript [28] supports a fault-tolerance and security measure where agents

carry “permits” to access specific resources. A permit’s power diminishes over
an agent’s lifetime, thus limiting the agent’s lifetime. A permit for one resource
is not easily converted to a permit for another resource. A more general policy
would be for hosts to issue a common permit, in the form of a verifiable electronic
currency.
POPCORN [23] is a distributed framework where users submit “computelets” to a

computational market that assigns the computelets to anonymous hosts that charge
computelets for execution. The approach is intended for parallel programs where
interaction among threads is limited, and computelets are single-hop programs so
no expenditure planning is necessary. Computation is the sole resource regulated
in POPCORN and computelets may not consider any other information other than
hosts’ prices and computational capabilities in choosing sites. Our system allows
mobile agents to choose their hosts, so agents may weigh the value of hosts’ repu-
tations or network connections or the location of other agents.
The idea of using economics for computational-resource control dates back as far

as the 1960s [25]. Spawn is perhaps the most cited work dealing with computational
economic systems [27]. In Spawn, agents participate in auctions to buy processor
time to run computationally intensive jobs. The pricing system pairs idle processors
with jobs to improve utilization in distributed systems. Double auctions have been
used to allow agents to trade climate-control resources within an office building
[10]. The result is that climate control resources are more effectively allocated with
energy savings of up to 10%.
A similar approach uses sequential auctions [4]. The research overcomes incen-

tive compatibility problems by having each buyer express her preference to an agent
identical to her competitor’s. The agent then participates in iterated auctions until
an equilibrium is found. The method can handle many traditionally difficult assign-
ment problems, where goods may be complements or substitutes to one another.
The technique is centralized and more general than what we model in that it makes
no assumptions on resource values and relations, but it is also computationally more
expensive.
Tatonnement is a resource-allocation method where buyers iteratively adjust pur-

chase amounts in response to sellers’ changing prices. The WALRAS algorithm [8]
is a system for finding equilibrium among several markets. WALRAS assures equi-
librium convergence if participants have convex utility functions, and there is gross
substitutability among goods (goods are not complements for one another), but the
system frequently converges to a solution, even when gross substitutability is vio-
lated.
Our allocation policy makes no connections between markets. It performs allo-

cation on a resource-by-resource basis and allows for operation in disconnected
environments, or where the cost of communication is high.
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9. Summary

We describe a network where agents compete with each other for network resources.
We introduce a scheduling mechanism based on each agent bidding for services,
and receiving a portion of the resource proportional to its payment, with respect to
the sum of all payments for that resource. We use an electronic market, in which
agents are endowed with finite capital to complete a sequence of tasks, and derive
a bidding policy as a function of the total sum of payments for the resource. We
show that when agents submit their optimal response functions based on assuming
fixed payments of other users, the resource can make an allocation that forms a
unique Nash equilibrium among the agents. The equilibrium allocation is flexible
and enforces the priorities dictated by the endowments. When there is heavy com-
petition for a resource, agents with larger endowments receive larger portions of
network resources. Simulations show correlation between endowment per-unit job
and completion time. Our planning and allocation algorithms are no more depen-
dent on the timeliness of information concerning host congestion than the other
allocation policies that we consider. Furthermore, our experiments show that the
results are not sensitive to the distribution of agents’ workloads, and agents only
suffer modest reductions in performance stemming from similar errors in their job-
size estimations.
We compare our allocation policy with an allocation model used in many mobile-

agent system implementations, in addition to SRPT and FCFS models. Simulations
show that agents operating under our policy complete their itineraries faster than
agents operating under a traditional shared-resource environment, with no addi-
tional variance incurred. Our policy is competitive with the FCFS policy. Compared
to SRPT, the policy that minimizes average completion time, our policy provides a
method of prioritizing jobs, and that prioritization typically results in mean agent
performance across all endowment levels that is 92–95% of what is achieved under
SRPT.
There are several areas open for future investigation. One is the user optimization

problem: how to assign capital between various agent task sequences. The solution
depends on the user having information about the correlation between endowment
and performance. Creating tractable models that yield computable solutions to the
endowment-assignment problem and consideration of concurrently-used resources
are open challenges.
Another area for investigation is alternative utility functions for the agents. In

our model, agents only consider execution time and users do not expect any part
of the endowment to be returned. Another option is to have the agent consider
both the execution time and the cost of computing in its utility function. Under
such a model, the user would have an expectation that some of the endowed cash
would be returned unless the network is congested. A comparison of costs and
performance of agents operating under each utility function might lead to insight
about the benefits of giving an agent greater latitude with capital.
At a more general level, there is a need for the development of a theory to

describe the behavior of agents, and network resources acting in a decentralized
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manner, as accurate estimates of load fluctuations and reactions to changes in mar-
ket variables both depend on having useful models that yield tractable results.

Appendix A. Proof of Concavity of gi�
1� �̂−i�

Theorem 2 An agent’s bidding function, gi�
1� �̂−i�, is concave on the interval
�0� �i/�i�.

For the variables �i� �i� �i defined in Equations 12–14, we drop the superscripts
and consider the bidding function of only single agent. Let w�x� be a function
defined as:

w�x� = −x2 +
√
x4 − bx3 + b�x2� (29)

where x ∈ �0� �� and b = �4�2/��.
Then, g1�
1� �̂−i� = �1/2�2�w��− �
1� for 
1 ∈ O1 and

�2g1/�

2
1 = ��2/2�2���2w/�x2�� (30)

To prove the concavity of g1 on O1, it suffices to show that ��2w/�x2� < 0 for
x ∈ �0� ��. We have

�2w/�x2 = �2p�x�p′′�x�− p′�x�2 − 8p�x�
3
2 /4p�x�

3
2 �� (31)

where p�x� = x4 − bx3 + b�x2. Since p�x� > 0 for x ∈ �0� ��, it is sufficient to show

v�x� = 2p�x�p′′�x�− p′�x�2 − 8p�x�
3
2 < 0� (32)

After substituting for p�x� and simplifying, we get

v�b� x� = −4�b2x3 + 12�bx4 + 3b2x4 + 8x6

− 12bx5 − 8�x4 − bx3 + b�x2� 32 � (33)

We note that v�0� x� = 0 ∀ x. Taking the partial derivative of v�x� with respect
to b, we get

��v/�b� = −��− x��6bx3 + 12x20�x��− 2b�x3

0�x� = √
x4 + bx2��− x�− x2�

(34)

hence �v/�b is negative for x ∈ �0� �� and b > 0.
v�b� x� < 0 for all b > 0 for x ∈ �0� ��, which implies ��2w/�x2� < 0 for x ∈

�0� ��, and thus ��2g1/�
21� < 0 on O1. ♦
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Appendix B. Notation

�i = ei −∑
k �=1

qik
cik

−ik , simplifies expression for an agent’s bid.

�i = qi1
ci1
, simplifies expression for an agent’s bid.

�i =∑
k �=1

qik
cik

√

−ik , simplifies expression for an agent’s bid.

cik The computational capacity of the kth host that the ith agent visits.

ei The ith agent’s endowment.

fi�

−i
j � �̂

−i� The ith agent’s optimal bid conditioned on all other agents’ bids
at the jth host sum to 
−ij , 


−1
j ∈ �0� �i/�i�, and the estimate of

future congestion �̂−i.

gi�
j� �̂
−i� The ith agent’s bid conditioned on all agents’ bids at the jth host

sum to 
j , 
j ∈ �0� �i/�i�, and the forecast of future congestion.

hk1�
1� The difference of 
1 and the sum of gi�
1� �̂−i�, where the sum is
over the k agents with the largest positive bidding domains.

Ki The number of tasks in the ith agent’s itinerary.

mi
k The ith agent’s expenditure at the kth host that it visits.

qik The size of the ith agent’s kth job.

�i = ei/∑Ki
k=1 q

i
k. The ith agent’s endowment relative to its task sizes.

tik The time taken to complete the ith agent’s kth task.

�̂−i The vector of the estimates of the values of 
−ik for each task in the
agent’s itinerary.


−ik The sum of the bids of all other agents visiting the kth host that
the ith agent visits.


k The sum of the bids of all agents visiting the kth host.

uij The amount that the ith agent bids at the jth site it visits.

vik The rate at which the ith agent computes its kth job.
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