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TASK SCHEDULING IN NETWORKS∗

CYNTHIA PHILLIPS† , CLIFFORD STEIN‡ , AND JOEL WEIN§

SIAM J. DISCRETE MATH. c© 1997 Society for Industrial and Applied Mathematics
Vol. 10, No. 4, pp. 573–598, November 1997 004

Abstract. Scheduling a set of tasks on a set of machines so as to yield an efficient schedule is
a basic problem in computer science and operations research. Most of the research on this problem
incorporates the potentially unrealistic assumption that communication between the different ma-
chines is instantaneous. In this paper we remove this assumption and study the problem of network
scheduling, where each job originates at some node of a network, and in order to be processed at
another node must take the time to travel through the network to that node.

Our main contribution is to give approximation algorithms and hardness proofs for fully general
forms of the fundamental problems in network scheduling. We consider two basic scheduling objec-
tives: minimizing the makespan and minimizing the average completion time. For the makespan,
we prove small constant factor hardness-to-approximate and approximation results. For the aver-
age completion time, we give a log-squared approximation algorithm for the most general form of
the problem. The techniques used in this approximation are fairly general and have several other
applications. For example, we give the first nontrivial approximation algorithm to minimize the
average weighted completion time of a set of jobs on related or unrelated machines, with or without
a network.

Key words. scheduling, approximation algorithm, NP-completeness, networks

AMS subject classifications. 68M10, 90B12, 68Q10, 68Q22, 68Q25, 90B35, 68M20

PII. S0895480194279057

1. Introduction. Scheduling a set of tasks on a set of machines so as to yield
an efficient schedule is a basic problem in computer science and operations research.
It is also a difficult problem, and hence, much of the research in this area has incorpo-
rated a number of potentially unrealistic assumptions. One such assumption is that
communication between the different machines is instantaneous. In many application
domains, however, such as a network of computers or a set of geographically scattered
repair shops, decisions about when and where to move the tasks are a critical part
of achieving efficient resource allocation. In this paper we remove the assumption of
instantaneous communication from the traditional parallel machine models and study
the problem of network scheduling, in which each job originates at some node of a
network, and in order to be processed at another node must take the time to travel
through the network to that node.

Until this work, network scheduling problems had either loose [2, 4] or no ap-
proximation algorithms. Our main contribution is to give approximation algorithms
and hardness proofs for fully general forms of the fundamental problems in network
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574 CYNTHIA PHILLIPS, CLIFFORD STEIN, AND JOEL WEIN

scheduling. Our upper bounds are robust, as they depend on general characteristics
of the jobs and the underlying network. In particular, our algorithmic techniques
to optimize average completion time yield other results, such as the first nontrivial
approximation algorithms for a combinatorial scheduling question: minimization of
average weighted completion time on unrelated machines. They also give the first ap-
proximation algorithm for a problem motivated by satellite communication systems.
(To differentiate our network scheduling models from the traditional parallel machine
models, we will refer to the latter as combinatorial scheduling models.)

Our results not only yield insight into the network scheduling problem, but also
demonstrate contrasts between the complexity of certain combinatorial scheduling
problems and their network variants, shedding light on their relative difficulty.

An instance N = (G, `,J ) of the network scheduling problem consists of a net-
work G = (V,E), |V | = m, with nonnegative edge lengths `; we define `max to be
the maximum edge length. At each vertex vi in the network is a machine Mi. We
are also given a set of n jobs, J1, . . . , Jn. Each job Jj originates, at time 0, on a
particular origin machine Moj and has a processing requirement pj ; we define pmax to
be max1≤j≤n pj . Each job must be processed on one machine without interruption.
Job Jj is not available to be processed on a machine M ′ until time d(Moj ,M

′), where
d(Mi,Mk) is the length of the shortest path in G between Mi and Mk. We assume
that the Mi are either identical (Jj takes time pj on every machine) or that they are
unrelated (Jj takes time pij on Mi, and the pij may all be different). In the unrelated
machines setting, we define pmax = max1≤i≤m,1≤j≤n pij . The identical and unrelated
machine models are fundamental in traditional parallel machine scheduling and are
relatively well understood [3, 10, 11, 12, 15, 17, 25]. Unless otherwise specified, in
this paper the machines in the network are assumed to be identical.

An alternative view of the network scheduling model is that each job Jj has a
release date, a time before which it is unavailable for processing. In previous work on
traditional scheduling models, a job’s release date was defined to be the same on all
machines. The network model can be characterized by allowing a job Jj ’s release date
to be different on different machines; Jj ’s release date on Mk is d(Moj ,Mk). One can
generalize further and consider problems in which a job’s release date can be chosen
arbitrarily for all m machines and need not reflect any network structure. Almost all
of our upper bounds apply in this more general setting, whereas our lower bounds all
apply when the release dates have network structure.

We study algorithms to minimize the two most basic objective functions. One
is the makespan or maximum completion time of the schedule; that is, we would like
all jobs to finish by the earliest time possible. The second is the average completion
time. We define an α-approximation algorithm to be a polynomial-time algorithm
that gives a solution of cost no more than α times optimal.

1.1. Previous work. The problem of network scheduling has received some at-
tention, mostly in the distributed setting. Deng et al. [4] considered a number of
variants of the problem. In the special case in which each edge in the network is of
unit length, all job processing times are the same, and the machines are identical,
they showed that the off-line problem is in P. It is not hard to see that the problem
is NP-complete when jobs are allowed to be of different sizes; they give an off-line
O(log(m`max))-approximation algorithm for this. They also give a number of results
for the distributed version of the problem when the network topology is completely
connected, a ring or a tree.

Awerbuch, Kutten, and Peleg [2] considered the distributed version of the prob-
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TASK SCHEDULING IN NETWORKS 575

lem under a novel notion of on-line performance, which subsumes the minimization of
both average and maximum completion time. They give distributed algorithms with
polylogarithmic performance guarantees in general networks. They also characterize
the performance of feedback-based approaches. In addition they derived off-line ap-
proximation results similar to those of Deng et al. [2, 20]. Alon et al. [1] proved an
Ω(logm) lower bound on the performance of any distributed scheduler that is trying
to minimize schedule length. Fizzano et al. [5] give a distributed 4.3-approximation
algorithm for schedule length in the special case in which the network is a ring.

Our work differs from these papers by focusing on the centralized off-line prob-
lem and by giving approximations of higher quality. In addition, our approximation
algorithms work in a more general setting, that of unrelated machines.

1.2. Summary of results. We first focus on the objective of minimizing the
makespan and give a 2-approximation algorithm for scheduling jobs on networks of
unrelated machines; the algorithm gives the same performance guarantee for identical
machines as a special case. The 2-approximation algorithm matches the best-known
approximation algorithm for scheduling unrelated machines with no underlying net-
work [17]. Thus it is natural to ask whether the addition of a network to a combi-
natorial scheduling problem actually makes the problem any harder. We resolve this
question by proving that the introduction of the network to the problem of scheduling
identical machines yields a qualitatively harder problem. We show that for the net-
work scheduling problem, no polynomial-time algorithm can do better than a factor
of 4

3 times optimal unless P = NP, even in a network in which all edges have length
one. Comparing this with the polynomial approximation scheme of Hochbaum and
Shmoys [10] for parallel machine scheduling, we see that the addition of a network
does indeed make the problem harder.

Although the 2-approximation algorithm runs in polynomial time, it may be
rather slow [21]. We thus explore whether a simpler strategy might also yield good
approximations. A natural approach to minimizing the makespan is to construct
schedules with no unforced idle time. Such strategies provide schedules of length a
small constant factor times optimal, at minimal computational cost, for a variety of
scheduling problems [6, 7, 15, 24]. We call such schedules busy schedules, and show
that for the network scheduling problem their quality degrades significantly; they can

be as much as an Ω
(√

logm
log logm

)
factor longer than the optimal schedule.

This is in striking contrast to the combinatorial model (for which Graham showed
that a busy strategy yields a 2-approximation algorithm [6]). In fact, even when re-
lease dates are introduced into the identical machine scheduling problem, if each
job’s release date is the same on all machines, busy strategies still give a (2 − 1

m )-
approximation guarantee [8, 9]. Our result shows that when the release dates of the
jobs are allowed to be different on different machines busy scheduling degrades signifi-
cantly as a scheduling strategy. This provides further evidence that the introduction of
a network makes scheduling problems qualitatively harder. However, busy schedules

are of some quality; we show that they are of length a factor of O
(

logm
log logm

)
longer

than optimal. This analysis gives a better bound than the (O(logm`max)) bound
of previously known approximation algorithms for identical machines in a network
[2, 4, 20].

We then turn to the NP-hard problem of the minimization of average completion
time. Our major result for this optimality criterion is a O(log2 n)-approximation
algorithm in the general setting of unrelated machines. It formulates the problem
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576 CYNTHIA PHILLIPS, CLIFFORD STEIN, AND JOEL WEIN

Table 1
Summary of main algorithms and hardness results. The notation x < α ≤ y means that we

can approximate the problem within a factor of y, but unless P = NP we cannot approximate the
problem within a factor of x. Unreferenced results are new results found in this paper.

Combinatorial Network
min. makespan, identical machines α < (1 + ε)[10] 4/3 < α ≤ 2

min. makespan, identical machines, α = 2− 1
m

[6] O
(

logm
log logm

)
,Ω
(√

logm
log logm

)
Busy schedules
min. makespan, unrelated machines 3/2 < α ≤ 2 [17] 3/2 < α ≤ 2
min. avg. completion time
unrelated machines α = 1 [12] 1 < α ≤ O(log2 n)
min. avg. wtd. completion time 1 < α[16]
unrelated machines, release dates α ≤ O(log2 n) 1 < α ≤ O(log2 n)

as a hypergraph matching integer program and then approximately solves a relaxed
version of the integer program. We can then find an integral solution to this relaxation,
employing as a subroutine the techniques of Plotkin, Shmoys, and Tardos [21]. In
combinatorial scheduling, a schedule with minimum average completion time can be
found in polynomial time, even if the machines are unrelated.

The techniques for the average completion time algorithm are fairly general,
and yield an O(log2 n)-approximation for minimizing the average weighted comple-
tion time. A special case of this result is an O(log2 n)-approximation algorithm for
the NP-hard problem of minimizing average weighted completion time for unrelated
machines with no network; no previous approximation algorithms were known, even
in the special case for which the machines are just of different speeds [3, 15]. Another
special case is the first O(log2 n)-approximation algorithm for minimizing the aver-
age completion time of jobs with release dates on unrelated machines. No previous
approximation algorithms were known, even for the special case of just one machine
[15]. The technique can also be used to give an approximation algorithm for a problem
motivated by satellite communication systems [18, 26].

We also give a number of other results, including polynomial-time algorithms for
several special cases of the above-mentioned problems and a 5

2 -approximation for a
variant of network scheduling in which each job has not only an origin, but also a
destination.

A summary of some of these upper bounds and hardness results appears in
Table 1.

A line of research which is quite different from ours, yet still has some similarity
in spirit, was started by Papadimitriou and Yannakakis [19]. They modeled commu-
nication issues in parallel machine scheduling by abstracting away from particular
networks and rather describing the communication time between any two processors
by one network-dependent constant. They considered the scheduling of precedence-
constrained jobs on an infinite number of identical machines in this model; the issues
involved and the sorts of theorems proved are quite different from our results.

Although all of our algorithms are polynomial-time algorithms, they tend to be
rather inefficient. Most rely on the work of [21] as a subroutine. As a result we will
not discuss running times explicitly for the rest of the paper.

2. Makespan. In this section we study the problem of minimizing the makespan
for the network scheduling problem. We first give an algorithm that comes within a
factor of 2 of optimal. We then show that this is nearly the best we can hope for, as
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TASK SCHEDULING IN NETWORKS 577

it is NP-hard to approximate the minimum makespan within a factor of better than
4
3 for identical machines in a network. This hardness result contrasts sharply with
the combinatorial scenario, in which there is a polynomial approximation scheme
[10]. The 2-approximation algorithm is computationally intensive, so we consider
simple strategies that typically work well in parallel machine scheduling. In another
sharp contrast to parallel machine scheduling, we show that the performance of such

strategies degrades significantly in the network setting; we prove an Ω
(√

logm
log logm

)
lower bound on the performance of any such algorithm. We also show that greedy
algorithms do have some performance guarantee, namely O( logm

log logm ). Finally we
consider a variant of the problem in which each job has not only an origin but also a
destination, and give a 5

2 -approximation algorithm.

2.1. A 2-approximation algorithm for makespan. In this section we de-
scribe a 2-approximation algorithm to minimize the makespan of a set of jobs sched-
uled on a network of unrelated machines; the same bound for identical machines
follows as a special case. Let U ′ = (G, `,J ′) be an instance of the unrelated network
scheduling problem with optimal schedule length D. Assuming that we know D, we
will show how to construct a schedule of length at most 2D. This can be converted,
via binary search, into a 2-approximation algorithm for the problem in which we are
not given D [10].

In the optimal schedule of length D, we know that the sum of the time each job
spends travelling and being processed is bounded above by D. Thus, job Jj may run
on machine Mi in the optimal schedule only if

d(Moj ,Mi) + pij ≤ D.(1)

In other words, the length of an optimal schedule is not altered if we allow job Jj to
run only on the machines for which (1) is satisfied. Formally, for a given job Jj , we
will denote by Q(Jj) the set of machines that satisfy (1). If we restrict each Jj to only
run on the machines in Q(Jj), the length of the optimal schedule remains unchanged.

Form combinatorial unrelated machines scheduling problem (Z) as follows:

p
′
ij =

{
pij if Mi ∈ Q(Jj),
∞ otherwise.

(2)

If the optimal schedule for the unrelated network scheduling problem has length
D, then the optimal solution to the unrelated parallel machine scheduling problem
(2) is at most D. We will use the 2-approximation algorithm of Lenstra, Shmoys and
Tardos [17] to assign jobs to machines. The following theorem is easily inferred from
[17].

Theorem 2.1 (see [17]). Let Z be an unrelated parallel machine scheduling prob-
lem with optimal schedule of length D. Then there exists a polynomial-time algorithm
that finds a schedule S of length 2D. Further, S has the property that no job starts
after time D.

Theorem 2.2. There exists a polynomial-time 2-approximation algorithm to
minimize makespan in the unrelated network scheduling problem.

Proof. Given an instance of the unrelated network scheduling problem, with
shortest schedule of length D, form the unrelated parallel machine scheduling problem
Z defined by (2) and use the algorithm of [17] to produce a schedule S of length
2D. This schedule does not immediately correspond to a network schedule because
some jobs may have been scheduled to run before their release dates. However, if we
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578 CYNTHIA PHILLIPS, CLIFFORD STEIN, AND JOEL WEIN

allocate D units of time for sending all jobs to the machines on which they run, and
then allocate 2D units of time to run schedule S, we immediately get a schedule of
length 3D for the network problem.

By being more careful, we can create a schedule of length 2D for the network
problem. In schedule S, each machine Mi is assigned a set of jobs Si. Let |Si| be
the sum of the processing times of the jobs in Si and let Smax

i be the job in Si with
largest processing time on machine i; call its processing time pmax

i . By Theorem 2.1
and the fact that the last job run on machine i is no longer than the longest job run,
we know that |Si| − pmax

i ≤ D. Let S
′
i denote the set of jobs Si − Smax

i . We form the
schedule for each machine i by running job Smax

i at time D − pmax
i , followed by the

jobs in S
′
i .

In this schedule the jobs assigned to any machine clearly finish by time 2D; it
remains to be shown that all jobs can be routed to the proper machines by the time
they need to run there. Job Smax

i must start at time D − pmax
i ; conditions (1) and

(2) guarantee that it arrives in time. The remaining jobs need only arrive by time D;
conditions (1) and (2) guarantee this as well. Thus we have produced a valid schedule
of length 2D.

Observe that this approach is fairly general and can be applied to any problem
that can be characterized by a condition such as (2). Consider, for example the
following very general problem, which we call generalized network scheduling with
costs. In addition to the usual unrelated network scheduling problem, the time that
it takes for job Jj to travel over an edge is dependent not only on the endpoints of
the edge but also on the job. Further, there is a cost cij associated with processing
job Jj on machine Mi. Given a schedule in which job Jj runs on machine Mπ(j), the
cost of a schedule is

∑
j cπ(j),j . Given any target cost C, we define s(C) to be the

minimum length schedule of cost at most C.
Theorem 2.3. Given a target cost C, we can, in polynomial time, find a schedule

for the generalized network scheduling problem with makespan at most 2s(C) and of
cost C if a schedule of cost C exists.

Proof. We use similar techniques to those used for Theorem 2.2. We first modify
condition (1) so that d(·, ·) depends on the job as well. We then use a generalization of
the algorithm of Lenstra, Shmoys, and Tardos for unrelated machine scheduling, due
to Shmoys and Tardos [25] which, given a target cost C, finds a schedule of cost C and
length at most twice that of the shortest schedule of cost C. The schedule returned
also has the property that no job starts after time D, so the proof of Theorem 2.2
goes through if we use this algorithm in place of the algorithm of [17].

2.2. Nonapproximability.
Theorem 2.4. It is NP-complete to determine if an instance of the identi-

cal network scheduling problem has a schedule of length 3, even in a network with
`max = 1.

Proof. For the proof see the appendix.
Corollary 2.5. There does not exist an α-approximation algorithm for the

network scheduling problem with α < 4/3 unless P = NP, even in a network with
`max = 1.

Proof. Any algorithm with α < 4/3 would have to give an exact answer for a
problem with a schedule of length 3 since an approximation of 4 would have too high
a relative error.

It is not hard to see, via matching techniques, that it is polynomial-time decidable
whether there is a schedule of length 2. We can show that this is not the case when the
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TASK SCHEDULING IN NETWORKS 579

machines in the network can be unrelated. Lenstra, Shmoys, and Tardos proved that
it is NP-complete to determine if there is a schedule of length 2 in the traditional
combinatorial unrelated machine model [17]. If we allow multiple machines at one
node, their proof proves Theorem 2.6. If no zero length edges are allowed, i.e., each
machine is forced to be at a different network node, this proof does not work, but we
can give a different proof of hardness, which we do not include in this paper.

Theorem 2.6. There does not exist an α-approximation algorithm for the un-
related network scheduling problem with α < 3/2 unless P = NP, even in a network
with `max = 1.

2.3. Naive strategies. The algorithms in section 2.1 give reasonably tight bounds
on the approximation of the schedule length. Although these algorithms run in poly-
nomial time, they may be rather slow [21]. We thus explore whether a simpler strategy
might also yield good approximations.

A natural candidate is a busy strategy: construct a busy schedule, in which, at
any time t there is no idle machine Mi and idle job Jj so that job Jj can be started on
Mi at time t. Busy strategies and their variants have been analyzed in a large number
of scheduling problems (see [15]) and have been quite effective in many of them. For
combinatorial identical machine scheduling, Graham showed that such strategies yield
a (2 − 1

m ) approximation guarantee [6]. In this section we analyze the effectiveness
of busy schedules for identical machine network scheduling. Part of the interest of
this analysis lies in what it reveals about the relative hardness of scheduling with and
without an underlying network; namely, the introduction of an underlying network
can make simple strategies much less effective for the problem.

2.3.1. A lower bound. We construct a family of instances of the network
scheduling problem, and demonstrate, for each instance, a busy schedule which is

Ω
(√

logm
log logm

)
longer than the shortest schedule for that instance. The network

G = (V,E) consists of ` levels of nodes, with level i, 1 ≤ i ≤ `, containing ρi−1 nodes.
Each node in level i, 1 ≤ i < ` − 1, is connected to every node in level i + 1 by an
edge of length 1. Each machine in levels 1, . . . , `− 1 receives ρ jobs of size 1 at time
0. The machines in level ` initially receive no jobs. The optimal schedule length for
this instance is 2 and is achieved by each machine in level i, 2 ≤ i ≤ `, taking exactly
one job from level i− 1. We call this instance I; see Figure 1.

The main idea of the lower bound is to construct a busy schedule in which machine
M always processes a job which originated on M , if such a job is available. This
greediness “prevents” the scheduler from making the much larger assignment of jobs
to machines at time 2 in which each job is assigned to a machine one level away.

To construct a busy schedule S, we use algorithm B, which in Step t constructs
the subschedule of S at time t.
Step t:
Phase 1: Each machine M processes one job that originated at M , if any such jobs
remain. We call such jobs local to machine M .
Phase 2: Consider the bipartite graph G∗ = (X,Y,A), where X has one vertex
representing each job that is unprocessed after Phase 1 of time t, Y contains one
vertex representing each machine which has not had a job assigned to it in Phase
1 of Step t, and (x, y) ∈ A if and only if job x originated a distance no more than
t− 1 from machine y. Complete the construction of S at time t by processing jobs on
machines based on any maximum matching in G∗. It is clear that S is busy.

When we apply algorithm B to instance I, the behavior follows a well-defined
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580 CYNTHIA PHILLIPS, CLIFFORD STEIN, AND JOEL WEIN

ρ

ρ

ρ

ρ

ρ

ρ

0

0

0

0

Level 1 Level 2 . . . Level L

Fig. 1. Lower bound instance for Theorem 2.8. Circles represent processors, and the numbers
inside the circles are the number of jobs which originate at that processor at time 0. Levels i and
i+ 1 are completely connected to each other. The optimal schedule is of length 2 and is achieved by
shifting each job to a unique processor one level to its right.

pattern. In Phase 2 of Step 2, all unprocessed jobs that originated in level ` − 1 are
processed by distinct processors in level `. During Phase 2 of Step 3, all unprocessed
jobs that originated in levels `− 2 and `− 3 are processed by machines in levels `− 1
and `. This continues, so that at Step i an additional (i− 1) levels pass their jobs to
higher levels and all these jobs are processed. This continues until either level 1 passes
its jobs, or processes its own jobs. We characterize the behavior of the algorithm more
formally in the following lemma.

Lemma 2.7. Let j(i, t) be the number of local jobs of processor i still unprocessed
after Phase 2 of Step t and let lev(i) be the level number of processor i. Then for all
times t ≥ 2, if ρ ≥ t, then

j(i, t) =

{
0 if lev(i) ≥ `− t(t− 1)/2,
j(i, t− 1)− 1 otherwise.

(3)

Proof. We prove the lemma by induction on t. During Phase 2 of Step 2, the only
edges in the graph G∗ connect levels ` and `− 1. There are ρ`−1 nodes in level ` and
ρ`−2(ρ − 1) remaining jobs local to machines in level ` − 1, so the matching assigns
all the unprocessed jobs in level ` − 1 to level `. Machines in levels 1 to ` − 1 all
process local jobs during Phase 1. As a result, all the neighbors of machines in levels
1 to `− 2 are busy in Phase 1 and cannot process jobs local to these machines during
Phase 2. The number of local jobs on these machines, therefore, decreases only by 1.
Thus the base case holds.

Assume the lemma holds for all t < t′. Then j(i, t′−1) = 0 for levels greater than
b ≡ ` − (t′ − 1)(t′ − 2)/2, and j(i, t′) = 0 for levels greater than b as well. We now
show that j(i, t′) = 0 if lev(i) ≥ ` − t′(t′ − 1)/2. For 1 ≤ x ≤ t′ − 1, level b + x has
ρb+x−1 processors. Level b+x−(t′−1) has at most ρ ·ρb+x−(t′−1)−1 = ρb+x−t

′+1 local
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TASK SCHEDULING IN NETWORKS 581

jobs remaining. If t′ ≥ 2, then there are enough machines on level b + x to process
all the remaining jobs local to level b + x − (t′ − 1). Therefore another t′ − 1 of the
highest-numbered levels have their local jobs completed during time t′. Thus at time
t′ we have j(i, t′) = 0 if lev(i) ≥ `− t′(t′ − 1)/2.

Since we assumed sufficiently large initial workloads on all processors on levels
1 . . . (` − 1), then by the induction hypothesis, for all machines in levels less than
`− t′(t′ − 1)/2, all machines within distance t′ − 1 of them have local jobs remaining
after time t′ − 1 and will be assigned a local job during Phase 1 of Step t′. Therefore
all machines i such that lev(i) < `− t′(t′ − 1)/2 cannot pass any jobs to higher levels
and j(i, t′) = j(i, t′ − 1)− 1.

Depending on the relative values of ρ and `, either the machine in level 1 processes
all of the jobs which originated on it, or some of those jobs are processed by machines
in higher-numbered levels. Balancing these two cases we get the following theorem.

Theorem 2.8. For the family of instances of the identical machine network
scheduling problem defined above, there exist busy schedules whose length exceeds the

optimal length by a factor Ω
(√

logm
log logm

)
.

Proof. The first case in (3) will apply to level 1 when 1 ≥ ` − t(t − 1)/2. This
inequality does not hold when t =

√
2`, but it does hold when t =

√
2`+ 1. Thus, if

ρ >
√

2` then the schedule length is
√

2`, while if ρ <
√

2` then the jobs in level 1 will
be totally processed in their level, which takes ρ time. Therefore the makespan of S
is at most min(

√
2`, ρ). Given that the total number of machines is m = θ(ρ`−1), a

simple calculation reveals that min(c
√
`, ρ) is maximized at ` = θ( logm

log logm ). Thus S

is a busy schedule of length θ
(√

logm
log logm

)
longer than optimal.

Note that this example shows that several natural variants of busy strategies,
such as scheduling a job on the machine on which it will finish first, or scheduling a
job on the closest available processor, also perform poorly.

2.3.2. An upper bound. In contrast to the lower bound of the previous sub-
section, we can prove that busy schedules are of some quality. Given an instance I
of the network scheduling problem, we define C∗

max(I) to be the length of a shortest
schedule for I and CA

max(I) to be the length of the schedule produced by algorithm
A; when it causes no confusion we will drop the I and use the notation C∗

max.

Definition 2.9. Consider a busy schedule S for an instance I of the identical
machines network scheduling problem. Let pj(t) be the number of units of job Jj
remaining to be processed in schedule S at time t, and Wt =

∑j
k=1 pk(t) be the total

work remaining to be processed in schedule S at time t.

Lemma 2.10. WiC∗
max

≤ W0

2i! for i ≥ 1.

Proof. We partition schedule S into consecutive blocks B1, B2, . . . of length
C∗

max(I) and compare what happens in each block of schedule S to an optimal schedule
S∗ of length C∗

max for instance I.

Consider a job Jj that was not started by time C∗
max in schedule S, and let Mj

be the machine on which job Jj is processed in schedule S∗. This means that in
block B1 machine Mj is busy for pj units of time during job Jj ’s slot in schedule
S∗—the period of time during which job Jj was processed on machine Mj in schedule
S∗. Hence for every job Jj that is not started in block B1 there is an equal amount
of unique work which we can identify that is processed in block B1, implying that
WC∗

max
≤ W0/2. Successive applications of this argument yields WiC∗

max
≤ W0/2

i for
i ≥ 1, which proves the lemma for i = 1, 2.

D
ow

nl
oa

de
d 

01
/1

4/
19

 to
 1

29
.1

70
.8

9.
16

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



582 CYNTHIA PHILLIPS, CLIFFORD STEIN, AND JOEL WEIN

MO j

C *

max
C *

max<_

C *

max<_

MO r

r<_

MrMj

Fig. 2. If Jr takes Jj ’s slot in Br, then the machine on which Jj originates, Moj , is at most
a distance of (r + 2)C∗

max from Mr, the machine on which Jr runs in S∗. Thus Jj could have been
run in Jr’s slot in block i, i ≥ (r + 2).

To obtain the stronger bound WiC∗
max

≤ 1
2 (W0/i!), we increase the amount of

processed work which we identify with each unstarted job. Choose i ≥ 3 and consider
a job Jj which is unstarted in schedule S at the start of block Bi+1, namely at time
iC∗

max. Assume for the sake of simplicity that in every block Bk of schedule S, only
one job is processed in job Jj ’s slot (the time during which job Jj would be processed
if block Bk was schedule S∗). Assume also that this job is exactly of the same size as
job Jj ; if multiple jobs are processed the argument is essentially the same. Let Jr be
the job that took job Jj ’s slot in block Br, for r ≤ i− 2. We will show that Jj could
have been processed in Jr’s slot in block Bi for all 1 ≤ r ≤ i− 2. Figure 2 illustrates
the network structure used in this argument.

Assume that job Jj originated on machine Moj , that job Jr originated on ma-
chine Mor , and that job Jj was processed on machine Mj in schedule S∗. Then
d(Moj ,Mj) ≤ C∗

max since job Jj was processed on machine Mj in schedule S∗, and
d(Mor ,Mj) ≤ rC∗

max since job Jr was processed in job Jj ’s slot in block Br. Thus
d(Moj ,Mor ) ≤ (r+1)C∗

max and consequently Jj could have run in job Jr’s slot in any
of blocks Br+2, . . . , Bi. We focus on block Bi. Since Jj was not processed in block
Bi and schedule S is busy, some job must have been processed during job Jr’s slot in
block Bi for 1 ≤ r ≤ (i− 2). We identify this work with job Jj ; note that no work is
ever identified with more than one job.

When we consider the (i − 2) different jobs which were processed in Jj ’s slot in
blocks B1, . . . , Bi−2, and consider the jobs that were processed in their slots in Bi , we
see that with each job Jj unstarted at time iC∗

max, we can uniquely identify (i− 2)pj
units of work that was processed in block Bi. If all these slots were not full in block
Bi, then job Jj would have been started in one of them. Including the work processed
during job Jj ’s slot in block Bi, we obtain

WiC∗
max

≤ 1

i
W(i−1)C∗

max
.

Corollary 2.11. During time iC∗
max to (i+ 1)C∗

max at most m/(2i!) machines
are completely busy.

Proof. We have W0 ≤ mC∗
max. Therefore, by Lemma 2.10, we have WiC∗

max
≤

mC∗
max/(2i!). A machine that is completely busy from time iC∗

max to time (i+1)C∗
max

does C∗
max work during that time and therefore at most m/(2i!) machines can be

completely busy.
To get a stopping point for the recurrence, we require the following lemma.
Lemma 2.12. In any busy schedule, if at time t all remaining unprocessed jobs

originated on the same machine, the schedule is no longer than t+ 2C∗
max.

Proof. Let M be the one machine with remaining local jobs. Let W ∗
Mi

be the
amount of work from machine M that is done by machine Mi in the optimal schedule.
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TASK SCHEDULING IN NETWORKS 583

Clearly
∑

iW
∗
Mi

equals the amount of work that originated on machine M . Because
there is no work left that originated on machines other than M , each machine Mi

can process at least W ∗
Mi

work from machine M in the next C∗
max time steps. If after

C∗
max steps, all the work originating on machine M is done, then we have finished.

Otherwise, some machine Mi processed less than W ∗
Mi

work during this time, which
means there was no more work for it to take. Therefore after C∗

max steps all the jobs
that originated on machine M have started. Because no job is longer than C∗

max,
another C∗

max time suffices to finish all the jobs that have started.
We are now ready to prove the upper bound.
Theorem 2.13. Let A be any busy scheduling algorithm and I an instance of the

identical machine network scheduling problem. Then CA
max(I) = O( logm

log logmC
∗
max(I)).

Proof. If a machine ever falls idle, all of its local work must be started. Otherwise
it would process remaining local work. Thus by Corollary 2.11, in O( lgm

lg lgm )C∗
max time,

the number of processors with local work remaining is reduced to 1. By Lemma 2.12,
when the number of processors with remaining local work is down to one, a constant
number of extra blocks suffice to finish.

2.4. Scheduling with origins and destinations. In this subsection we con-
sider a variant of the (unrelated machine) network scheduling problem in which each
job, after being processed, has a destination machine to which it must travel. Specif-
ically, in addition to having an origin machine Moj , job Jj also has a terminating
machine Mtj . Job Jj begins at machine Moj , travels distance d(Moj ,Mdj ) to machine
Mdj , the machine it gets processed on, and then proceeds to travel for d(Mdj ,Mtj )
units of time to machine Mtj . We call this problem the point-to-point scheduling
problem.

Theorem 2.14. There exists a polynomial-time 5
2 -approximation algorithm to

minimize makespan in the point-to-point scheduling problem.
Proof. We construct an unrelated machines scheduling problem as in the proof

of Theorem 2.2. In this setting the condition on when a job Jj can run on machine
Mi depends on the time for Jj to get to Mi, the time to be processed there, and the
time to proceed to the destination machine. Thus a characterization of when job Jj
is able to run on machine Mi in the optimal schedule is that

d(Moj ,Mi) + pij + d(Mi,Mtj ) ≤ D.(4)

Now, for a given job Jj , we define Q(Jj) to be the set of machines that satisfy (4).
We can then form a combinatorial unrelated machines scheduling problem as follows:

p
′
ij =

{
pij if Mi ∈ Q(Jj),
∞ otherwise.

(5)

We then approximately solve this problem using [17] to obtain an assignment of jobs
to machines. Pick any machine Mi and let Ji be the set of jobs assigned to machine
Mi. By Theorem 2.1 we know that the sum of the processing times of all of the jobs in
Ji except the longest is at most D. We partition the set of jobs Ji into three groups,
and place each job into the lowest numbered group which is appropriate:

1. J 0
i contains the job in Ji with the longest processing time,

2. J 1
i contains jobs for which d(Moj ,Mi) ≤ D/2,

3. J 2
i contains jobs for which d(Moj ,Mi) ≥ D/2.

Let p(J k
i ) be the sum of the processing times of the jobs in group J k

i , k = 1, 2.
As noted above, p(J 1

i ) + p(J 2
i ) ≤ D. We will always schedule J 1

i ∪ J 2
i in a block of
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584 CYNTHIA PHILLIPS, CLIFFORD STEIN, AND JOEL WEIN

D consecutive time steps, which we call B. The first p(J 1
i ) time steps will be taken

up by jobs in J 1
i while the last p(J 2

i ) time steps will be taken up by jobs in J 2
i . Note

that there may be idle time in the interior of the block.

We consider two possible scheduling strategies based on the relative sizes of p(J 1
i )

and p(J 2
i ).

Case 1. (p(J 1
i ) ≤ p(J 2

i )). In this case we first run the long job in J 0
i ; by

condition (4) it finishes by time D. We then run block B from time D to 2D. Since
p(J 1

i ) ≤ D/2, the jobs in J 1
i all finish by time 3D/2 and by condition (4) reach their

destinations by time 5D/2. By the definition of J 2
i , for any job Jj ∈ J 2

i , d(Mi,Mtj ) ≤
D/2. Since every Jj ∈ J 2

i is scheduled to complete processing by time 2D, it will
arrive at its destination by time 5D/2.

Case 2. (p(J 1
i ) ≥ p(J 2

i )). We first run block B from time D/2 to 3D/2. We then
start the long job in J 0

i at time 3D/2; by condition (4) it arrives at its destination
by time 5D/2. Since p(J 2

i ) ≤ D/2, machine Mi need not start processing any job
in J 2

i until time D and hence we are guaranteed that they have arrived at machine
Mi by that time. By definition of J 1

i all of its jobs are available by time D/2; it is
straightforward from condition (4) that all jobs arrive at their destinations by time
5D/2.

We can also show that the analysis of this algorithm is tight, for algorithms in
which we assign jobs to processors using the linear program defined in [17] using the
processing times specified by equation 5. Let D be the length of the optimal schedule.
Then we can construct instances for which any such schedule S has length at least
5/2D − 1. Consider a set of k + 1 jobs and a particular machine Mi. We specify
the largest of these jobs to have size D and to have Mi as both its origin and its
destination machine. We specify that each of the other k jobs are of size D/k and
have distance D(k − 1)/2k from Mi to both their origin and destination machines.
The combinatorial unrelated machines algorithm may certainly assign all of these jobs
to Mi, but it is clear that any schedule adopted for this machine will have completion
time at least ( 5

2 − 1
2k )D.

3. Average completion time.

3.1. Background. We turn now to the network scheduling problem in which
the objective is to minimize the average completion time. Given a schedule S, let
CS
j be the time that job Jj finishes running in S. The average completion time

of S is 1
n

∑
j C

S
j , whose minimization is equivalent to the minimization of

∑
j C

S
j .

Throughout this section we assume without loss of generality that n ≥ m.

We have noted in section 1 that our network scheduling model can be charac-
terized by a set of n jobs Jj and a set of release dates rij , where Jj is not available
on mi until time rij . We noted that this is a generalization of the traditional notion
of release dates, in which rij = ri′j ∀i, i′. We will refer to the latter as traditional
release dates; the unmodified phrase release date will refer to the general rij .

The minimization of average completion time when the jobs have no release dates
is polynomial-time solvable [3, 12], even on unrelated machines. The solution is based
on a bipartite matching formulation, in which one side of the bipartition has jobs
and the other side (machine, position) pairs. Matching Jj to (mi, k) corresponds to
scheduling Jj in the kth-from-last position on mi; this edge is weighted by kpij , which
is Jj ’s contribution to the average completion time if Jj is kth from last.

When release dates are incorporated into the scheduling model, it seems difficult
to generalize this formulation. Clearly it can not be generalized precisely for arbitrary
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TASK SCHEDULING IN NETWORKS 585

release dates, since even the one machine version of the problem of minimizing average
completion time of jobs with release dates is strongly NP-hard [3]. Intuitively, even
the approximate generalization of the formulation seems difficult, since if all jobs are
not available at time 0, the ability of Jj to occupy position k on mi is dependent
on which jobs precede it on mi and when. Release dates associated with a network
structure do not contain traditional release dates as a subclass even for one machine, so
the NP-completeness of the network scheduling problem does not follow immediately
from the combinatorial hardness results; however, not surprisingly, minimizing average
completion time for a network scheduling problem is NP-complete.

Theorem 3.1. The network scheduling problem with the objective of minimum
average completion time is NP-complete even if all the machines are identical and
all edge lengths are 1.

Proof. For the proof see the appendix.

In what follows we will develop an approximation algorithm for the most general
form of this problem. We will follow the basic idea of utilizing a bipartite matching
formulation; however we will need to explicitly incorporate time into the formulation.
In addition, for the rest of the section we will consider a more general optimality
criterion: average weighted completion time. With each Jj we associate a weight

wj , and the goal is to minimize
∑j=n

j=1 wjCj . All of our algorithms handle this more
general case; in addition they allow the nm release dates rij to be arbitrary and not
necessarily derived from the network structure.

3.2. Unit-size jobs. We consider first the special case of unit-size jobs.

Theorem 3.2. There exists a polynomial-time algorithm to schedule unit-size
jobs on a network of identical machines with the objective of minimizing the average
weighted completion time.

Proof. We reduce the problem to minimum-weight bipartite matching. One side
of the bipartition will have a node for each job Jj , 1 ≤ j ≤ n, and the other side
will have a node [mi, t] for 1 ≤ i ≤ m, t ∈ Ti with Ti to be described below. An
edge (Jj , [mi, t]) of weight wj(t+ 1) is included if Jj is available on mi at time t, and
the inclusion of that edge in the matching will represent the scheduling of Jj on mi

from time t to t + 1. Release dates are included in the model by excluding an edge
(Jj , [mi, t]) if Jj will not be available on mi by time t.

To determine the necessary sets Ti, we observe that there is no advantage in
unforced idle time. Since each job is only one unit long, there is no reason to make
it wait for a job of higher weight that is about to be released. It is clear, therefore,
that setting Ti = {t|rij ≤ t ≤ rij +n ∀j} would suffice, since no job would need to be
scheduled more than n time later than its release date. This gives |Ti| = O(n2); this
can be reduced to O(n), but we omit the details for the sake of brevity.

By excluding edges which do not give job Jj enough time to travel between the
machine on which Jj runs and the destination machine Mdj , we can prove a similar
theorem for the point-to-point scheduling problem, defined in section 2.4.

Theorem 3.3. There exists a polynomial-time algorithm to solve the point-to-
point scheduling problem with the objective of minimizing the average weighted com-
pletion time of unit-size jobs.

3.3. Polynomial-size jobs. We now turn to the more difficult setting of jobs
of different sizes and unrelated machines. The minimization of average weighted
completion time in this setting is strongly NP-hard, as are many special cases. For
example, the minimization of average completion time of jobs with release dates on
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586 CYNTHIA PHILLIPS, CLIFFORD STEIN, AND JOEL WEIN

one machine is strongly NP-hard [16]; no approximation algorithms were known for
this special case, to say nothing of parallel identical or unrelated machines, or weighted
completion times. If there are no release dates, namely all jobs are available at time
0, then minimization of average weighted completion time is NP-hard for parallel
identical machines. A small constant factor approximation algorithm was known for
this problem [14], but no approximation algorithms were known for the more general
cases of machines of different speeds or unrelated machines. We introduce techniques
which yield the first approximation algorithms for several other problems as well,
which we discuss in section 3.5.

Our approximation algorithm for minimum average completion time begins by
formulating the scheduling problem as a hypergraph matching problem. The set of
vertices will be the union of two sets, J and M , and the set of hyperedges will be
denoted by F . J will contain n vertices Jj , one for each job, and M will contain mT
vertices, where T is an upper bound on the number of time units that will be needed
to schedule this instance. The time units will range over T = {t|∃rij with rij ≤
t ≤ rij + npmax}. M will have a node for each (machine, time) pair; we will denote
the node that corresponds to machine Mi at time t as [mi, t]. A hyperedge e ∈ F
represents scheduling a job Jj on machine Mi from time t1 to t2 by including nodes
Jj , [mi, t1], [mi, t1 + 1], . . . , [mi, t2]. The cost of an edge e, denoted by ce, will be the
weighted completion time of job Jj if it is scheduled in the manner represented by e.
There will be one edge in the hypergraph for each feasible scheduling of a job on a
machine; we exclude edges that would violate the release date constraints.

The problem of finding the minimum cost matching in the hypergraph can be
phrased as the following integer program I. We use decision variable xe ∈ {0, 1} to
denote whether hyperedge e is in the matching.

minimize
∑
e

xece

subject to ∑
Jj∈e

xe = 1, j = 1, . . . , n,

∑
(i,t)∈e

xe ≤ 1 ∀(i, t) ∈M,(6)

xe ∈ {0, 1}.

Two considerations suggest that this formulation might not be useful. The formu-
lation is not of polynomial size in the input size, and in addition the following theorem
suggests that calculating approximate solutions for this integer program may be dif-
ficult.

Theorem 3.4. Consider an integer program in the form I which is derived
from an instance of the network scheduling problem with identical machines, with
the ce allowed to be arbitrary. Then there exists no polynomial-time algorithm A to
approximate I within any factor unless P = NP.

Proof. For an arbitrary instance of the network scheduling problem construct the
hypergraph matching problem in which an edge has weight W >> n if it corresponds
to a job being completed later than time 3 and give all other edges weight 1. If there
is a schedule of length 3 then the minimum weight hypergraph matching is of weight
n; otherwise the weight is at least W ; therefore an α-approximation algorithm with
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TASK SCHEDULING IN NETWORKS 587

α < W
n would give a polynomial-time algorithm to decide if there was a schedule

of length 3 for the network scheduling problem, which by Theorem 2.4 would imply
P = NP.

In order to overcome this obstacle, we need to seek a different kind of approxi-
mation to the hypergraph matching problem. Typically, an approximate solution is a
feasible solution, i.e., one that satisfies all the constraints, but whose objective value
is not the best possible. We will look for a different type of solution, one that satisfies
a relaxed set of constraints. We will then show how to turn a solution that satisfies the
relaxed set of constraints into a schedule for the network scheduling problem, while
only introducing a bounded amount of error into the quality of the approximation.

We will assume for now that pmax ≤ n3. This implies that the size of program I is
polynomial in the input size. We will later show how to dispense with the assumption
on the size of pmax via a number of rounding and scaling techniques.

We begin by turning the objective function of I into a constraint. We will then
use the standard technique of applying bisection search to the value of the objective
function. Hence for the remainder of this section we will assume that C, the optimal
value to integer program I, is given. We can now construct approximate solutions to
the following integer linear program (J ):

∑
Jj∈e

xe = 1, j = 1, . . . , n,(7)

∑
(i,t)∈e

xe ≤ 1 ∀(i, t) ∈M,(8)

∑
e

xece ≤ C,(9)

xe ∈ {0, 1}.
This integer program is a packing integer program, and as has been shown by

Raghavan [22], Raghavan and Thompson [23] and Plotkin, Shmoys, and Tardos [21],
it is possible to find provably good approximate solutions in polynomial time. We
briefly review the approach of [21], which yields the best running times.

Plotkin, Shmoys, and Tardos [21] consider the following general problem.
The Packing Problem: ∃?x ∈ P such that Ax ≤ b, where A is anm×n nonnegative

matrix, b > 0, and P is a convex set in the positive orthant of Rn.
They demonstrate fast algorithms that yield approximately optimal integral solu-

tions to this linear program. All of their algorithms require a fast subroutine to solve
the following problem.

The Separation Problem: Given an m-dimensional vector y ≥ 0, find x̃ ∈ P such
that cx̃ = min(cx : x ∈ P ), where c = ytA.

The subroutine to solve this problem will be called the separating subroutine.
An approximate solution to the packing problem is found by considering the

relaxed problem

∃?x ∈ P such thatAx ≤ λb

and approximating the minimum λ such that this is true. Here the value λ char-
acterizes the “slack” in the inequality constraints, and the goal is to minimize this
slack.

Our integer program can be easily put in the form of a packing problem; the
equality constraints (7) define the polytope P and the inequality constraints (8,9)
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588 CYNTHIA PHILLIPS, CLIFFORD STEIN, AND JOEL WEIN

make up Ax ≤ b. The quality of the integral solutions obtained depends on the width
of P relative to Ax ≤ b, which is defined by

ρ = max
i

max
x∈P

aix

bi
.(10)

It also depends on d, where d is the smallest integer such that any solution returned
by the separating routine is guaranteed to be an integral multiple of 1

d .

Applying equation (10) to compute ρ for polytope P (defined by (7)) yields a
value that is at least n, as we can create matchings (feasible schedules) whose cost
(average completion time) is much greater than C, the optimal average completion
time.

In fact, many other packing integer programs considered in [21] also, when first
formulated, have large width. In order to overcome this obstacle, [21] gave several
techniques to reduce the width of integer linear programs. We discuss and then use one
such technique here, namely that of decomposing a polytope into n lower-dimensional
polytopes, each of which has smaller width. The intuition is that all the nonzero
variables in each equation of the form (7) are associated with only one particular job.
Thus we will be able to decompose the polytope into n polytopes, one for each job.
We will then be able to optimize individually over each polytope and use only the
inequality constraints (8) and (9) to describe the relationships between different jobs.

We now proceed in more detail. We say that a polytope P can be decomposed
into a product of n polytopes P 1×P 2×· · ·×Pn if the coordinates of each vector x can
be partitioned into (x1, . . . , xn), and x ∈ P if and only if xl ∈ P l for l = 1, . . . , n. If
our polytope can be decomposed in this way, and we can solve the separation problem
for each polytope P l, then we can apply a theorem of [21] to give an approximately
optimal solution in polynomial time. In particular, let λ∗ be the minimum possible
value of λ for which there exists a feasible solution to the relaxed version of J .
The following theorem is a specialization of Theorem 2.11 in [21] to our problem
and describes the quality of integral solutions that can be obtained for such integer
programs.

Theorem 3.5 (see [21]). Let ρl be the width of P l and ρ̄ = maxl ρ
l. Let γ be

the number of constraints in Ax ≤ b, and let λ′ = max(λ∗, (ρ̄/d) log γ). Given a
polynomial-time separating subroutine for each of the P l, there exists a polynomial-

time algorithm for J which gives an integral solution with λ ≤ λ∗+O
(√

λ′(ρ̄/d) log(γnd)
)
.

We will now show how to reformulate J so that we will be able to apply this
theorem. Polytope P (from equation 6) can indeed be decomposed into n different
polytopes, P 1, P 2, . . . , Pn, where P j corresponds to those equality constraints which
include only Jj . In order to keep the width of the P j small, we also include into
the definition of P j the constraint xe = 0 for each edge e which includes Jj and has
ce > C; this does not increase the optimal value of the integer program. We integrate
each of these new constraints into the appropriate polytope P j , and decompose x =
(x1, x2, . . . , xn), where xj consists of those components of x which represent edges
that include Jj . In other words, P l is defined by

∑
Jl∈e

xe = 1,

xe = 0 if ce > C and Jl ∈ e.
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TASK SCHEDULING IN NETWORKS 589

This yields the following relaxation L:

minimize λ

subject to

xl ∈ P l, 1 ≤ l ≤ n,∑
(i,t)∈e

xe ≤ λ ∀(i, t) ∈M,(11)

∑
e

xece ≤ λC,(12)

x = (x1, x2, . . . , xn) ∈ {0, 1}|F | .(13)

To apply Theorem 3.5 we must (1) demonstrate a polynomial-time separating
subroutine and (2) calculate ρ̄, d and γ. The decomposition of P into n separate
polytopes makes this task much easier. The separating subroutine must find xl ∈ P l

that minimizes cxl; however, since the vector that is 1 in the eth component and 0
in all other components is in P l for all e such that Jl ∈ e and ce ≤ C, the separating
routine reduces merely to finding the minimum component ce′ of c and returning the
vector with a 1 in position e′ and 0 everywhere else. An immediate consequence of
this is that d = 1. Recall as well that the assumption that pmax ≤ n3 implies that γ
is upper bounded by a polynomial in n.

To compute ρ̄, recall that we compute ρ̄ relative to the polytope defined by∑
(i,t)∈e xe ≤ 1 and

∑
e xece ≤ C, as the relaxed versions of these constraints ap-

pear in (11) and (12) above. It is thus not hard to see that ρ̄ is 1 and therefore

λ ≤ λ∗ +O
(√

(ρ̄/d) log γ(ρ̄/d) log(γnd)
)

≤ 1 +O(logn) = O(logn).

By employing binary search over C and the knowledge that the optimal solution
has λ = 1, we can obtain an invalid “schedule” in which as many as O(λ) jobs are
scheduled at one time. If pmax is polynomial in n and m then we have a polynomial-
time algorithm; therefore we have proven the following lemma.

Lemma 3.6. Let C∗ be the solution to the integer program I and assume that |M |
is bounded by mn4. There exists a polynomial-time algorithm that produces a solution
x∗ such that

∑
j∈e

x∗e = 1, j = 1, . . . , n,

∑
(i,t)∈e

x∗e = O(logn) ∀(i, t) ∈M,(14)

∑
e

x∗ece = O(C∗ logn),

x∗e ∈ {0, 1}.

This relaxed solution is not a valid schedule, since O(logn) jobs are scheduled
at one time; however, it can be converted to a valid schedule by use of the following
lemma.

D
ow

nl
oa

de
d 

01
/1

4/
19

 to
 1

29
.1

70
.8

9.
16

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



590 CYNTHIA PHILLIPS, CLIFFORD STEIN, AND JOEL WEIN

Lemma 3.7. Consider an invalid schedule S for a set of jobs with release dates on
m unrelated parallel machines, in which at most λ jobs are assigned to each machine
at any time. If W is the average weighted completion time of S, then there exists a
schedule of average weighted completion time at most λW , in which at most one job
is assigned to each machine at any time.

Proof. Consider a job Jj scheduled in S; let its completion time be CS
j . If we

schedule the jobs on each machine in the order of their completion times in S, never
starting one before its release date, then in the resulting schedule

1. Jj is started no earlier than its release date,
2. Jj finishes by time at most λCS

j .
Statement 1 is true by design of the algorithm. Statement 2 is true since at most

λCS
j − pij work from other jobs can complete no later than CS

j in schedule S, and
jobs run simultaneously in schedule S can run back-to-back with no intermediate idle
time in our expanded schedule. Therefore, job Jj is started by time λCS

j − pij and

completed by time λCS
j .

Combining the last two lemmas with the observation that pmax ≤ n3 implies
|M | ≤ mn4 yields the following theorem.

Theorem 3.8. There is a polynomial-time O(log2 n)-approximation algorithm for
the minimization of average weighted completion time of a set of jobs with machine-
varying release dates on unrelated machines, under the assumption that the maximum
job sizes are bounded by pmax ≤ n3.

3.4. Large jobs. Since the pij are input in binary and in general need not be
polynomial in n and m, the technique of the last section can not be applied directly
to all instances, since it would yield superpolynomial-size formulations. Therefore
we must find a way to handle very large jobs without impacting significantly on the
quality of solution.

It is a standard technique in combinatorial scheduling to partition the jobs into
a set of large jobs and a set of small jobs, schedule the large jobs, which are scaled to
be in a polynomially bounded range, and then schedule the small jobs arbitrarily and
show that their net contribution is not significant, (see, e.g., [24]). In the minimization
of average weighted completion time, however, we must be more careful, since the
small jobs may have large weights and can not be scheduled arbitrarily.

We employ several steps, each of which increases the average weighted completion
time by a small constant factor. With more care we could reduce the constants
introduced by each step; however, since our overall bound is O(log2 n) we dispense
with this precision for the sake of clarity of exposition.

The basic idea is to characterize each job by the minimum value, taken over all
machines, of its (release date + processing time) on that machine. We then group the
jobs together based on the size of their minimum rij +pij . The jobs in each group can
be scaled down to be of polynomial size and thus we can construct a schedule for the
scaled down versions of each group. We then scale the schedules back up, correct for
the rounding error, and show that this does not affect the quality of approximation
by more than a constant factor. We then apply Lemma 3.9 (see below) to show that
the makespan can be kept short simultaneously.

The resulting schedules will be scheduled consecutively. However, since we have
kept the makespan from growing too much, we have an upper bound on the start
time of each subsequent schedule and thus we can show that the net disturbance of
the initial schedules to the latter schedules will be minimal.

We now proceed in greater detail. Let m(Jj) = mini(pij + rij), and J i =
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TASK SCHEDULING IN NETWORKS 591

{Jj |ni−1 ≤ m(Jj) ≤ ni}. Note that there are at most n nonempty J i, one for each of
the n jobs. We will employ the following lemma in order to keep the makespan from
growing too large.

Lemma 3.9. A schedule S for J k can be converted, in polynomial time, to a
schedule T of makespan at most 2nk+1 such that CT

j ≤ 2CS
j ∀j ∈ J k.

Proof. Remove all jobs from S that complete later than time nk+1, and, starting
at time nk+1, schedule them arbitrarily on the machine on which they run most
quickly. This will take at most nk+1 time, so therefore any rescheduled job Jj satisfies
CT
j ≤ 2nk+1 ≤ 2CS

j .

We now turn to the problem of scheduling each J l with a bounded guarantee on
the average completion time.

Lemma 3.10. There exists an O(log2 n)-approximation algorithm to schedule
each J l. In addition the schedule for J l has makespan at most 2nl+1.

Proof. Let A be the algorithm referred to in Theorem 3.8. We will use A to find
an approximately optimal solution Sl for each J l. A cannot be applied directly to J l

since the sizes of the jobs involved may exceed n3, so we apply A to a scaled version
of J l.

For all j such that Jj ∈ J l, and for all i, set p′ij = b pij
nl−2 c and r′ij = b rij

nl−2 c. Note

that on at least one machine i , for each job Jj , p
′
ij ∈ [0, n2] and r′ij ∈ [0, n2].

We use A to obtain an approximate solution to the scaled version of J l of average
weighted completion time W . Although some of the p′ij may still be large, Lemma
3.9 indicates that restricting the hypergraph formulation constructed by A to allow

completion times no later than time b 2nl+1

nl−2 c = 2n3 can only affect the quality of
approximation by at most a factor of 2. Therefore |M |, the number of (machine,
time) pairs, is O(mn3). Note that some of the p′ij may be 0, but it is still important
to include an edge in the hypergraph formulation for each job of size 0.

Now we argue that interpreting the solution of the scaled instance as a solution to
the original instance J l does not degrade the quality of approximation by more than
a constant factor. The conversion from the scaled instance to the original instance
is carried out by multiplying p∗ij = nl−2p′ij , r

∗
ij = nl−2r′ij (which has no impact on

quality of approximation) and then adding to each r∗ij and p∗ij the residual amount
that was lost due to the floor operation.

The additional residual amounts of the release dates contribute at most a total
of nl−1 time to the makespan of the schedule, since |rij − r∗ij | < nl−2, and therefore

the entire contribution to the makespan is bounded above by n × nl−2 = nl−1. By
a similar argument, the entire contribution of the residual amounts of the processing
times to the makespan is bounded above by nl−1.

So in the conversion from p∗ij , r
∗
ij to pij , rij we add at most 2nl−1 to the makespan

of the schedule for J l. However, nl−1 is a lower bound on the completion time of
any job in J l. Therefore, even if this additional time were added to the completion
time of every job, the restoration of the residual amounts of the rij and pij degrades
the quality of the approximation to average completion time by at most a constant
factor. Finally, to satisfy the makespan constraint, we apply Lemma 3.9.

We now construct two schedules So and Se. In So we consecutively schedule
S1, S3, S5, . . . , and in Se we consecutively schedule S2, S4, S6, . . . . For the sake of
clarity our schedule will have time of length 2ni+1 dedicated to each Si even if Si has
no jobs.

Lemma 3.11. Let J o be the set of jobs scheduled in So and J e the set of jobs
scheduled in Se. The average weighted completion time of So is within a factor of
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592 CYNTHIA PHILLIPS, CLIFFORD STEIN, AND JOEL WEIN

O(log2 n) of the best possible for J o, and similarly for Se and J e.
Proof. The subschedule for any set J i scheduled in So or Se begins by time

(2 + o(n))ni−1, since J i is scheduled after J i−2,J i−4, . . . , and the makespan of J l

is at most 2nl+1. Since ni−1 is a lower bound on the completion time of any job in
J i, in the combined schedule So or Se, each job completes within a small constant
factor of its completion time in Si.

We now combine So and Se by superimposing them over the same time slots.
This creates an infeasible schedule in which the sum of completion times is just the
sum of the completions times in So and Se, but in which there may be two jobs
scheduled simultaneously. We then use Lemma 3.7 to combine So and Se to obtain
a schedule Sα for all the jobs, whose average weighted completion time is within a
factor of O(log2 n) of optimal.

Theorem 3.12. There is a polynomial-time O(log2 n)-approximation algorithm
for the minimization of average weighted completion time of a set of jobs with machine-
varying release dates on unrelated machines.

3.5. Scheduling with periodic connectivity. The hypergraph formulation
of the scheduling problem can model time-varying connectivity between jobs and
machines; e.g., a job can only be processed during certain times on each machine. In
this section we show how to apply our techniques to scheduling problems of periodic
connectivity under some modest assumptions on the length of the period and job
sizes.

Definition 3.13. The periodic scheduling problem is defined by n jobs, m unre-
lated machines, a period P , and for each time unit of P a specification of which jobs
are allowed to run on which machines at that time.

Theorem 3.14. Let I be an instance of the periodic scheduling problem in which
pmax is polynomial in n and m, and let the optimum makespan of I be L. There exists
a polynomial-time algorithm which delivers a schedule of makespan O(logn)(L+P ).

Proof. As above, we assume that L is known in advance, and then use binary
search to complete the algorithm.

We construct the integer program∑
Jj∈e

xe = 1, j = 1, . . . , n,(15)

∑
(i,t)∈e

xe ≤ 1 ∀(i, t) ∈M,(16)

xe ∈ {0, 1},
where M = {(i, t)|1 ≤ i ≤ m, 1 ≤ t ≤ L}. We include an edge in the formulation
if and only if it is valid with respect to the connectivity conditions. We then use
Theorem 3.8 to produce a relaxed solution that satisfies

∑
j∈e

x∗e = 1, j = 1, . . . , n,

∑
(i,t)∈e

x∗e = O(logn) ∀(i, t) ∈M,

x∗e ∈ {0, 1}.
Let the length of this relaxed schedule be L; L ≤ L. We construct a valid schedule

of length O(logn)(L + P ) by concatenating O(logn) blocks of length L. At the end
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TASK SCHEDULING IN NETWORKS 593

of each block we will have to wait until the start of the next period to begin the next
block; hence we obtain an overall bound of O(logn)(L+ P ).

Note that we are assuming that the entire connectivity pattern of P is input
explicitly; if it is input in some compressed form then we must assume that P is
polynomial in n and m.

One motivation for such problems is the domain of satellite communication sys-
tems [18, 26]. One is given a set of sites on Earth and a set of satellites (in Earth
orbit). Each site generates a sequence of communication requests; each request is
potentially of a different duration and may require communication with any one of
the satellites. A site can only transmit to certain satellites at certain times, based
on where the satellite is in its orbit. The connectivity pattern of communication
opportunities is periodic, due to the orbiting nature of the satellites.

The goal is to satisfy all communication requests as quickly as possible. We can
use our hypergraph formulation technique to give an O(logn)-approximation algo-
rithm for the problem under the assumption that the pj are bounded by a polynomial,
since the rounding techniques do not generalize to this setting.

Appendix.

Proof of Theorem 2.4. The reduction is similar to the techniques used by Lenstra,
Shmoys, and Tardos [17] to show that no algorithm can approximate the optimal
makespan for unrelated parallel machines by better than a factor of 3

2 unless P = NP.

Let A,B,C be disjoint sets, each with n elements, and let T be a set of m triples,
T = {(ai, bj , ck) : ai ∈ A, bj ∈ B, and ck ∈ C}. We say that triple (ai, bj , ck) covers
ai, bj , and ck, and define a perfect matching as a set of n triples that covers every
element of A,B, and C exactly once. The problem of determining whether there
exists a perfect matching given A,B,C, T is known as 3-dimensional matching and is
NP-complete [13]. We will refer to this problem as 3DM.

We will convert an instance M = (A,B,C, T ) of 3DM to an instance (G, `,J ) of
the network scheduling problem that has a schedule of length 3 if and only if instance
M has a perfect matching. We construct N = (G, `,J ) as follows. To construct
G = (V,E), we associate a machine with each triple t ∈ T (the triple machines) and
a machine with each element of sets A, B, and C (the A machines, B machines,
and C machines, respectively). Thus there are 3n + m machines. For each triple
t = (ai, bj , ck), we create three edges: one from machine t to machine ai of length 1,
one from machine t to machine bj of length 1, and one from machine t to machine ck
of length 2 (see Figure 3) This yields a network with 3m edges.

(In order to obtain a construction with only unit-length edges we introduce new
nodes ve, one for each edge of length 2, and replace each edge e from t to ck by a path
t to ve to ck. Each node ve receives a job of size 3 at time 0. Clearly, in a schedule
of length 3 this functions exactly as an edge of length 2, so for ease of exposition we
use edges of length 2.)

The initial job distribution J is defined as follows. For each element ai ∈ A, let
t(ai) be the number of triples which contain element ai. On A machine ai we place
t(ai) jobs:

1. t(ai)− 1 jobs Jj with pj = 2, the dummy jobs,
2. 1 job Jj with pj = 3.

On each B machine, we place 2 jobs:

1. 1 job Jj with pj = 1,
2. 1 job Jj with pj = 3.

On each C machine, we place 2 jobs:
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(i,j,k) (i,q,r) (x,y,k)

i j k q r x y

Fig. 3. Subgraph of N corresponding to two triples (i, j, k) and (p, q, r). Dark edges correspond
to edges of length 2.

1. 1 job Jj with pj = 1,
2. 1 job Jj with pj = 3.

The basic idea behind the construction is that in any schedule of length 3, each
machine corresponding to triple (ai, bj , ck) runs one of only two possible schedules:
either one dummy job from machine ai (a dummy schedule) or the two unit-size
jobs from machines bj and ck, respectively (a matching schedule). Each machine ai
is adjacent to exactly one machine running the latter schedule, and therefore these
machines correspond to a perfect matching. If there is no perfect matching, a schedule
of length 3 cannot exist. We now proceed in more detail.

We first argue that if M has a perfect matching, then the corresponding network
scheduling problem N has a schedule of length 3. Each A, B, and C machine runs
its job of size 3 from time 0 to 3. The remaining m − n jobs of size 2 from the A
machines (t(ai)− 1 from machine ai), the n unit-size jobs from the B machines and
the n unit-size jobs from the C machines are scheduled as follows. Let Tp ⊂ T be the
perfect matching. Each machine corresponding to t ∈ Tp runs a matching schedule,
specifically the unit-size job from machine bj and the unit-size job from machine ck.
Since these jobs are available to their triple machines at times 1 and 2, respectively,
this schedule is feasible, and all jobs starting on B or C machines have been scheduled.
Because the matching Tp contains exactly one triple for each ai, there are t(ai) − 1
unutilized machines adjacent to machine ai. Each such machine runs one of the size-2
jobs from machine ai starting at time 1. Since any job starting on machine ai can
arrive at these machines at time 1, this schedule is feasible and all jobs originating on
the A machines have been scheduled. Therefore we have scheduled every job validly
in 3 units of time.

We now show that if instance N has a schedule of length 3, then 3DM instance
M has a perfect matching. We argue that any schedule of length 3 must have the
form described above where each triple machine runs either a matching schedule or
a dummy schedule; the set of machines running matching schedules correspond to a
perfect matching for instance M .

First observe that in the schedule created above, each machine started processing
a job as early as possible, and then was busy until the schedule completed. We call
this property the nonidleness property. Clearly in any schedule of length 3 each A,
B, and C machine must run only the size 3 job that originates there. In addition, a
simple counting argument shows that the triple machines are idle for one unit of time
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and must be busy the remainder of the time. Thus in any schedule of length 3, all the
m−n size-2 dummy jobs from the A machines, n unit-size jobs from the B machines,
and the n unit-size jobs from the C machines must be run by the triple machines.

We also observe that each job that is not run on its originating machine must run
on an adjacent machine. We call this the locality property. The size 2 dummy jobs
cannot travel more than 1 unit away in a length 3 schedule. Because all edges adjacent
to each C machine have length 2, these unit-size jobs cannot travel more than one
edge in a length-3 schedule. Finally, the unit-size jobs from the B machines must
travel distance at least 3 to reach a nonadjacent triple machine, which is impossible
in a schedule of length 3.

We now argue that each triple machine must run either a dummy schedule or a
matching schedule. Each A machine ai must send all of its t(ai) − 1 size-2 jobs to
the triple machines adjacent to it. In a length-3 schedule, no machine can process
two size-2 jobs. Therefore, the t(ai) − 1 jobs will be sent to t(ai) − 1 distinct triple
machines. They will all run from time 1 through 3, and hence no other jobs can run
on those t(ai)− 1 machines.

There are now exactly n triple machines not running dummy jobs and by con-
struction of the network each has a different first element (the ai’s are all distinct).
There are 2n unit-size jobs remaining to be scheduled, so by the nonidleness prop-
erty, each such machine must run a unit-size job at time 1 and at time 2. Each edge
adjacent to a C machine has length 2. Therefore, no job originating at a C machine
can be processed elsewhere before time 2. Since there are n such jobs and n triple
machines remaining to process them, each triple machine t = (ai, bj , ck) must run a
job from a C machine at time 2. Furthermore, this C job must correspond to element
ck by the locality property. Therefore, each triple machine must process the job from
the B machine adjacent to it at time slot 1. Therefore, the set of machines which run
matching schedules cover all elements of sets A, B, and C.

Proof of Theorem 3.1. We show how to convert an instance M = (A,B,C, T )
of the 3-dimensional matching problem to an instance N = (G, `,J ) of the network
scheduling problem. Instance N will have an average completion time equal to a
certain value if and only if instance M has a perfect matching.

We construct N = (G, `,J ) as follows. To construct the graph G = (V,E), we
associate a machine with each triple t ∈ T (the triple machines), and a machine with
each element of sets A, B, and C. For each triple t = (ai, bj , ck), we create three
paths: one from machine t to machine ai of length 1, one from machine t to machine
bj of length 3, and one from machine t to machine ck of length 1. On the intermediate
nodes of the path of length 3 we place machines (called the path machines), thus
yielding a network with m+ 5n nodes (machines) and 5m edges.

The initial job distribution J is defined as follows. For each element x ∈ A∪B∪C,
let t(x) be the number of triples which contain element x. Let L = 10nm.

1. On each A machine ai, we place two jobs, one with processing time 2 and one
with processing time L.

2. On each B machine bj , we place two jobs, each with processing time L.
3. On each path machine, we place a job of length L.
4. On each C machine ck we place t(ck) jobs, all of length L.

Let Ij be the total idle time experienced by Jj before being processed. A schedule
of minimum average completion time will minimize β =

∑
j Ij , the sum of the idle

times. Because the value of L is so large, an optimal schedule will minimize the
number of times quantities with the value L contribute to β. In particular, to avoid
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any job experiencing an idle time of L, in an optimal schedule once a machine runs
a job of size L, it does not run any jobs afterward. Thus, at most one job of size L
runs on any machine, and that job must be the last one. Since there are m+ 5n jobs
of size L and m+ 5n machines, every machine must run exactly one size-L job.

We now compute a lower bound on β. First, observe that all but one of the jobs
that originate on a machine ck must run on another machine, since no machine can
run two jobs of size L. Thus, each of these jobs must travel at least one edge for a total
of m − n idle time. Next, observe that of the two jobs that start on an A machine
ai, they either both run on ai, with idle time at least 2, or one runs on another
machine for an idle time of at least 1, and n overall. Now consider a B machine
and its associated path machines. The combined idle time of the jobs originating on
these machines must be at least 3. Thus we have a lower bound on idle time β of
m− n+ n+ 3n = m+ 3n.

We now show that a schedule with total idle time of β can be achieved if and
only if there is a perfect 3D matching. If there is a matching, then each of the n
triple machines that correspond to a matched edge will run a size-2 job from the A
machine at time 1 and one of the size L jobs from the B machine at time 3. The m−n
unmatched triple machines will run a job from the corresponding C machine. Since
there is a perfect matching there are exactly t(ck)− 1 such machines. All other jobs
run on their originating machines at time 0, thus giving us a schedule with β = m+3n.

Now we show that this is the only such schedule of this length and hence must
imply that a perfect matching exists. By the above lower bound arguments, each C
machine ck must send out t(ck) − 1 jobs, thus contributing at least t(ck) − 1 to the
idle time. If any of these machines contributes more to the idle time, the total idle
time must exceed β. The only way this lower bound can be achieved is for each of
these jobs to travel exactly 1 edge and run at time 1. Therefore, in any schedule with
idle time β, m − n of the jobs of size L from C machines travel to adjacent triple
machines and are run at time 1. These triple machines cannot run any other jobs. By
construction of the network, the remaining set of triple machines T cover the set C.

Again by the above lower bound arguments, each A machine must contribute at
most 1 to the idle time. Keeping both jobs incurs an idle time of 2, and therefore the
global lower bound is exceeded. Thus in any schedule with m+ 3n idle time, exactly
one of the jobs from each A machine travels exactly 1 unit of time and is run at time
1. It must be the job of size 2, because each A machine must run a job of size L.
Because the only adjacent machines are triple machines, all of the size-2 A jobs run
on adjacent triple machines at time 1. Because there are exactly n machines in set T ,
each running exactly one A job, the set T covers set A.

Now consider a B machine and its associated path machines. The lower bound
argument above shows that the combined idle time of the jobs originating on these
machines must be at least 3. There are many ways to achieve this amount of idle time,
each one places a job of size L on a triple machine at time x, where x ∈ {1, 2, 3}. But
by the arguments above about the placement of the A jobs, we see that the size-L
job that makes it from one of the B or path machines cannot run before time 3. It is
straightforward to show that in an optimal schedule, a job arrives from a B or path
machine at a triple machine at exactly time 3, and this job must run immediately
upon arrival (otherwise the idle time would exceed 3). Therefore, each triple machine
in T processes exactly one size-L job from a B machine, as this is the only job that
can arrive at exactly time 3 without causing any additional idle time. This is only
possible if set T covers set B. Thus the set of triples in T is a perfect matching.
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