
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Open Dartmouth: Published works by 
Dartmouth faculty Faculty Work 

1-2006 

Improving Data Access for Computational Grid Applications Improving Data Access for Computational Grid Applications 

Ron Oldfield 
Scalable Computing Systems, Sandia National Laboratories 

David Kotz 
Dartmouth College, David.F.Kotz@Dartmouth.EDU 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa 

 Part of the Computer Sciences Commons 

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation 
Oldfield, Ron and Kotz, David, "Improving Data Access for Computational Grid Applications" (2006). Open 
Dartmouth: Published works by Dartmouth faculty. 3103. 
https://digitalcommons.dartmouth.edu/facoa/3103 

This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has 
been accepted for inclusion in Open Dartmouth: Published works by Dartmouth faculty by an authorized 
administrator of Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/231141009?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/facoa
https://digitalcommons.dartmouth.edu/facoa
https://digitalcommons.dartmouth.edu/faculty
https://digitalcommons.dartmouth.edu/facoa?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa/3103?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3103&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


Cluster Computing 9, 79–99, 2006
C© 2006 Springer Science + Business Media, Inc. Manufactured in The United States.

Improving Data Access for Computational Grid Applications

RON OLDFIELD
Scalable Computing Systems, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1110

DAVID KOTZ
Department of Computer Science, Dartmouth College, 6211 Sudikoff Laboratory, Hanover, NH 03755

Abstract. High-performance computing increasingly occurs on “computational grids” composed of heterogeneous and geographically

distributed systems of computers, networks, and storage devices that collectively act as a single “virtual” computer. A key challenge in this

environment is to provide efficient access to data distributed across remote data servers. Our parallel I/O framework, called Armada, allows

application and data-set providers to flexibly compose graphs of processing modules that describe the distribution, application interfaces, and

processing required of the dataset before computation. Although the framework provides a simple programming model for the application

programmer and the data-set provider, the resulting graph may contain bottlenecks that prevent efficient data access. In this paper, we

present an algorithm used to restructure Armada graphs that distributes computation and data flow to improve performance in the context

of a wide-area computational grid.

1. Introduction

An exciting trend in high-performance computing is the
development of geographically-distributed networks of het-
erogeneous systems and devices, known as computational
grids [15]. Grid applications use high-speed networks to log-
ically assemble collections of resources such as scientific
instruments, supercomputers, databases, and so forth. One
important challenge facing grid computing is efficient I/O
for data-intensive grid applications. Data-intensive grid ap-
plications are particularly challenging because they require
access to large (terabyte-petabyte) remote data sets and of-
ten have computational requirements that can only be met
by high-performance supercomputers. In addition, data is of-
ten stored in “raw” formats and requires significant prepro-
cessing or filtering before the computation can take place.
Such applications exist in seismic processing, climate model-
ing, physics, astronomy, biology, chemistry, and visualization
[22].

The Armada framework for parallel I/O [23] provides a
solution for data-intensive applications in which the applica-
tion programmer and the data set provider deploy a network of
application-specific and data-set-specific functionality across
the grid. Using the Armada framework, grid applications ac-
cess remote data by sending data requests through a graph
of distributed application objects called ships. Data is pushed
toward the client for reads or pulled toward the servers for
writes. (Currently, a graph can only be used for reading or
writing, but not both. Since workload studies [20] indicate the
vast majority of scientific applications do not simultaneously
read and write the same file, this restriction is not a series
limitation.)

This work was supported by Sandia National Laboratories under DOE con-

tract DOE-AV6184.

Armada is not a parallel file system, nor does the system
itself store any data. The set of data segments that make up a
data set are each stored in conventional data servers, as files,
as databases, or the like. Indeed, a data set provider can build a
graph on top of legacy files and data bases, present a network
of similar data sets through a standard interface, or provide
transparent access to derived virtual data sets—either cached
or calculated as needed. The graph encodes most functional-
ity provided by the I/O system, including the programmer’s
interface, data layout, caching and prefetching policies, and
interfaces to heterogeneous data servers. A graph, once de-
ployed on a computational grid, appears to the application as
an object providing access to a specific type of data through
a high-level interface.

While it is possible for an application to construct an entire
graph from scratch, we believe a typical graph will consist of
two distinct portions: a portion that describes the layout of the
data (usually from a data provider), and an application-specific
portion that describes the interface and preprocessing required
by the application. Figure 1, for example, shows a graph for
an application with read access to a replicated and distributed
data set. The portion from the data provider describes the
layout of two replicas, each stored as a distributed file. The
application prepends a graph to the data provider’s portion
that includes a filter and three interface ships (one for each
client processor).

Two issues prevent the efficient mapping of the resulting
graph from figure 1 to a computational grid. First, the connec-
tion between the application’s filter and the data-provider’s
replica selector forms a bottleneck. Second, the configuration
of the graph restricts the placement alternatives for the fil-
ter. For example, if in figure 1 the network between the two
replicas is slow, or the network between the replicas and the
clients is slow, there is no placement of the filter that allows us
to significantly reduce the amount of data transferred over a



80 OLDFIELD AND KOTZ

Figure 1. The figures show the Armada graph for an application with read-

only access to a replicated and distributed data set. (a) shows the request-flow,

(b) shows the data-flow.

Figure 2. The graph from figure 1 restructured to allow the filters to execute

close to the data servers.

slow network. Figure 2 shows a restructured graph that mixes
the application’s portion of the graph and the data-provider’s
portion of the graph. The new graph has a parallelized version
of the replica-select ship to match the number of clients, and it
has a parallelized version of the filter to match the number of
data servers. The result provides end-to-end parallelism and
allows the filters to be placed near (in terms of connectivity) to
the data servers, thus reducing the amount of data transferred
over a potentially slow network. Armada can automatically
restructure graphs in this way.

In previous papers, we describe the Armada framework [21,
23]. In this paper, we present a formal description of the
components that make up an Armada graph, and we describe
and analyze an algorithm for restructuring a graph based on

programmer-specified properties of the individual ships. We
then present performance results demonstrating the value of
restructuring on three applications.

2. Related work

The two primary features of our restructuring algorithm are the
automatic parallelization of ships and the reordering of ships
to improve data-flow performance. This section describes a
few projects with related goals.

2.1. Automatic parallelization of user code

Since parallel computation became popular in the 1980’s,
many projects have tried to make the task of programming
parallel applications easier for the developer [5,8]. One ap-
proach attempts to automatically convert sequential programs
into parallel programs. A Carnegie Mellon University web
page provides a comprehensive reading list on parallel pro-
gramming languages and systems that support automatic
parallelization. Here we discuss three systems of particular
relevance to Armada because of their focus on parallel pro-
cessing of I/O streams.

The Parallel Storage-and-Processing Server (PS2) [18],
from École Polytechnique Fédérale de Lausanne, is de-
signed specifically for I/O-intensive applications. It uses the
Computer-Aided Parallelization tool (CAP) [16] to express
the parallel behavior of the application. The CAP system
constructs a data-flow computation graph with “actors” as
nodes of the graph. The actors are computational units that
provide application-specific functionality. For I/O-intensive
applications, actors provide application-specific data distri-
bution, prefetching, or filtering. CAP parallelizes a task
by inserting split actors to create and distribute data and
merge actors to gather and synchronize processed data after
computation.

A project at Duke University is investigating extensions
to the streaming computation model that map computation
to active disks [32]. They specify primitive computations as
“functors” that perform simple computations as a side-effect
of I/O access. Functors have bounded compute and mem-
ory requirements. The application exposes functors and their
compute costs to the system and the system decides (based
on analytic models) a mapping of functors to active disks
in a way that balances load. They are primarily interested
in applications that implement I/O-efficient external memory
algorithms discussed in [4,30].

DataCutter [7], developed at the University of Maryland,
is middleware used to explore and analyze scientific datasets
stored on archival storage systems across a wide-area network.
DataCutter provides a query-based interface with support
for accessing subsets of datasets and for performing user-
defined transformations of large data sets in archival storage.
The processing structure is composed of a set of processes
called “filters” that typically execute close to the data source.



IMPROVING DATA ACCESS FOR COMPUTATIONAL GRID APPLICATIONS 81

Spencer et al. describes how DataCutter can replicate filters to
distribute computation inside a pipelined data-flow graph [29].
The scheme uses an analytic model, based on measured per-
formance, to decide how many additional filters to create, then
it distributes data elements to filters using either a round robin,
weighted round robin, or demand-driven distribution policy.
The system then merges results from the distributed filters and
forwards the result to the next stage in the data-flow graph.

The systems described above all use a common algorithmic
technique known as partition-and-merge. In this technique,
the system first divides the problem into subtasks that exe-
cute in parallel, then it merges results in a single synchronous
step. The limitation of this approach is the synchronization
point (a bottleneck) where the data merges back together. Ar-
mada takes a different approach. The application portion of
the Armada graph describes the layout of data to parallel com-
pute nodes with the assumption of a single data source. The
data provider describes its layout of the data to parallel storage
servers with the assumption of a single compute node for the
application. The Armada system combines the two graphs and
restructures to provide end-to-end parallelism in an attempt
to remove synchronization points.

2.2. Operation ordering to improve data flow

Another feature of the Armada system is the ability to re-order
operations in the graph to improve data flow to or from the
client. This approach extends the work of projects in the dis-
tributed database community that have investigated data-flow
optimization for many years [3,13]. Two recent systems of
particular interest are the dynamic QUery OBject (dQUOB)
system, and River.

The dynamic QUery OBject (dQUOB) system [27] is
a runtime system for managing and optimizing large data
streams in which the users request remote data with SQL-
like queries, and computations are performed on the data
stream between the remote data servers and the client. Af-
ter the dQUOB compiler converts an SQL query to a “query
tree,” the tree is evaluated at runtime to determine which por-
tions of the query tree apply the most filtering. The tree is then
restructured to move the high-filtering portions closer to the
data.

River [2,3] is a data-flow programming environment for
database query processing applications. River is specifically
designed for clusters of computers with heterogeneous perfor-
mance characteristics. The goal of the River runtime system
is to adapt to “performance faults”—portions of the system
that perform poorly— by dynamically adjusting the trans-
fer of data through the data-flow graph. River uses two con-
structs to build applications: a distributed queue that deals
with performance faults by consumers, and graduated declus-
tering that deals with performance faults of producers. A dis-
tributed queue pushes data through the data-flow graph at a
rate proportional to the rate of consumption and adapts to
changes in consumption rates. Graduated declustering deals
with producer performance faults by reading from replicated

producers. Although River is designed specifically for query
processing, the authors briefly discuss how one might adapt
scientific applications to work in their framework [2].

Much of the success of distributed query processing
systems can be attributed to the relational model. Relational
operators have well-defined properties that are ideal for paral-
lel processing execution [12] and easy to describe mathemat-
ically. Armada presents a more general approach that allows
the reordering of arbitrary functions (not just query process-
ing functions) based on programmer-supplied properties that
help the system to decide commutativity between adjacent
functions.

3. Background

We begin with a description of Armada’s ships, providing
details about the flow of requests and data through the ships,
the types of ships available, and programmer-assigned prop-
erties. Then we describe the use of series-parallel trees to
represent the structure of an Armada graph.

3.1. Armada ships

An Armada graph is a set of interconnected ships that form two
directed acyclic graphs (DAGs): one for the flow of requests
(request graph) and one for the flow of data (data graph). As
described above, ships provide nearly all essential I/O func-
tionality except storage. From an operational perspective, re-
quests flow (in a pipelined manner) from the client processors,
through the ships in the request graph, to the data servers. Data
flows back to the client, through the ships in the data graph,
for reads and flows toward the data servers for writes. In a
typical read-only scenario, an application would process only
portions of the data at a time, thus alternating between sending
requests and getting data back. From a theoretical perspective,
for the purposes of our algorithm, we treat a ship as if the ap-
plication’s entire sequence of requests arrives at once, and we
reason about a ship’s effect on the sequence of requests or on
the sequence of data passing through.

In this context, a sequence is an ordered collection of
elements (either requests or data) written X =
〈x1, x2, . . . , xk〉. Since a single ship may process and generate
multiple sequences, we use the notation Sn = {S1, S2, . . . , Sn}
to describe the set of sequences S1, S2, . . . , Sn . The process-
ing of sequences of requests or data as it passes through a
ship is called a mapping, which has the following notation:

� S
n A−→

r T m denotes the request mapping of ship A from n
sequences in Sn (input) to m sequences in T m (output).� D

n A−→
d Em denotes ship A’s data mapping (for writes) from

n sequences in Dn to m sequences in Em . For reading,

D
n A←−

d Em denotes the data mapping from m sequences in
Em to n sequences in Dn .



82 OLDFIELD AND KOTZ

Figure 3. Hierarchy of Armada ships.

3.1.1. Types of ships
Our framework includes a rich set of ship classes (shown in
figure 3) divided into two primary categories: structural and
non-structural.

Structural ships (illustrated in figure 4) allow one-to-
many and many-to-one connections in a graph.

A Distribute ship maps the elements of a single request se-

quence to k sequences. It has request-mapping R
1 A−→

r Sk and

data-mapping D
1 A−→

d Ek for writing or D
1 A←−

d Ek if reading.
One could imagine using distribute ships in several ways. For
example, a distribute ship could read from a data set parti-
tioned into k pieces. Another example is a select ship used
to read from distributed replicas of a data set. A select ship
could choose a single path to forward all requests, perhaps
based on network conditions, or it could partition the requests
and send each partition to a separate replica (thus providing
parallel access). In yet another instance, a copy ship could
forward write requests to all output paths so that R1 = Si and
D1 = Ei for all i = 1, 2, . . . , k. This ship could be used to
update replicated data sets.

A Merge ship interleaves k request sequences. It has a

request-mapping R
k A−→

r S1 and data-mappings D
k A−→

d E1 for

writing or D
k A←−

d E1 for reading. In cases where the ordering
of requests is not important, we expect a merge ship to arbi-
trarily interleave sequences; however, some applications may
choose to arrange incoming elements a particular order. For
example, an application performing a MERGESORT would
take k sorted data sequences as input and output elements

Figure 4. Examples of the two types of structural ships. The merge ship A

has request-mapping R
3 A−→r S1. The distribution ship B has request-mapping

R
1 B−→r S3.

(based on value) to a single sorted data sequence. Another ex-
ample is an application receiving write requests for potentially
overlapping regions. A POSIX compliant application would
have to order requests based on a time stamp embedded in the
request [10,11].

Non-structural ships process and generate single se-
quences of requests and data. A non-structural ship A has
request-mapping

R
1 A−→

d S1 and data-mapping D
1 A−→

d E1 for writing or

D
1 A←−

d E1 for reading. Figure 3 shows three types of non-
structural ships: data-processing ships, optimizing ships, and
interface ships.

A data-processing ship manipulates data elements, either
individually, or in groups, as they pass through the ship. Data-
processing ships are likely to be useful for “on-the-fly” prepro-
cessing in scientific applications. Our hierarchy from Figure 3
identifies four types of data-processing ships. A filter ship out-
puts a subsequence of its input; for example, to select inter-
esting observations from a spatial dataset. A transform ship
changes the content of individual data elements; for example,
a Fast Fourier Transform (FFT) ship transforms complex data
from time values to frequency values. A reduction ship applies
a function to a collection of elements and returns a single re-
sult; for example, to sum all of the elements. A permute ship
rearranges the elements in a collection; for example, to sort
or transpose a dataset.

Optimization ships improve I/O performance through
latency-reduction techniques like caching and prefetching.

Interface ships typically form the right and left end points
of an Armada graph. On the left, client-interface ships con-
vert an application’s method calls to a set of data requests.
We expect library programmers to develop client-interface
ships that match the semantics of a particular class of appli-
cations, such as computational chemistry applications [19],
out-of-core data-parallel programming [9], or a POSIX in-
terface for access by legacy software. On the right, storage-
interface ships process Armada requests and access low-level
data servers to either load or store data based on the request.
They are essentially “drivers” for the many available storage
systems, for example, a file ship to store a data segment in
a UNIX file, or a database ship that “queries” data from a
relational database.



IMPROVING DATA ACCESS FOR COMPUTATIONAL GRID APPLICATIONS 83

Figure 5. Request-flow for parallelizable ships. Subfigures (b) and (c) show the result of replication and recursion to the left. (e) and (f) show replication and

recursion to the right.

3.1.2. Properties of ships
Encoded in a ship’s description are programmer-assigned
properties used as directives by the restructuring and place-
ment algorithms. These properties provide a simple way for
the programmer to describe the capabilities and expected
behavior of the ship once deployed on the grid.

Two important properties are request and
data equivalence. A ship that is request-equivalent pro-
duces sequences of requests that are equivalent to the input.
Similarly, a data-equivalent ship produces sequences of data
that are equivalent to its input. We declare two sequences
Sn and T m to be equivalent (written Sn ≡ T m) if T m is a
permutation of Sn , or if T m is a set of sequences that partition
Sn . For example,

{〈1, 2, 3, 4, 5〉} ≡ {〈2, 3, 5, 1, 4〉}
{〈1, 2, 3, 4, 5〉} ≡ {〈2, 3〉, 〈1, 4, 5〉}.
{〈1, 2, 3, 4, 5〉} ≡ {〈2, 3〉, 〈1, 5, 4〉}

In other words, as long as the elements themselves do not
change, order does not matter. We chose to define equivalence
in this manner because enforcing a strict ordering involves
synchronization that the application may not require. Note
also that the equivalence relation is transitive, symmetric, and
reflexive.

We expect most structural ships to be both request and
data-equivalent, because although they may interleave se-
quences (as in a merge ship) or partition sequences (as in
a distribution ship), the requests or data being operated on
do not actually change. For example, a request-equivalent

distribution ship A has request-mapping S
1 A−→

r T m , where
each T1, T2, . . . , Tm is a subsequence of S1, and a request-

equivalent merge ship A has a request-mapping S
n A−→

r T 1,
where each S1, S2, . . . , Sn is a subsequence of T1.

Another important property describes the expected
behavior with respect to data-flow. A ship with the data-
reducer property reduces the amount of data flowing back

to the client for reads or toward the data servers for writes.
For example, a filter is a ship with the data-reducer property.
Inversely, a ship with the data-increaser property increases
the size of the data as if flows through the ship. A ship that
caches data is a data increaser for reads and a data reducer for
writes.

The parallelizable property identifies ships that can
transform into a collection of ships that operate on subse-
quences of requests and data in parallel. For example, the
filters in figure 2 are a parallelized version of the filter in
figure 1. To have the parallelizable property, the parallelized
version must produce output equivalent to the original graph.
Ships become parallelized by trading positions with a struc-
tural ship (Section 4.1.1 describes when such a “swap” is
legal). A ship that is allowed to parallelize toward the clients
is left-parallelizable. In this case, the parallelized version in-
cludes a a new ship on every input path of the merge ship. A
right-parallelizable ship moves to the right of an adjacent dis-
tribution ship by placing a new ship on every output path of the
distribution ship. There are two types of parallelizable ships
(illustrated in figure 5) supported by Armada: replicatable and
recursive.

A ship is replicatable if each parallelized ship is identical
to the original. Replicatable ships operate on requests and
data objects independently. For example, a filter that discards
integer data with a negative value, or a distribution ship with
a mapping function that operates on individual requests.

A ship with the recursive property may “split” into a
manager ship and a collection of worker ships that are identi-
cal to the original ship. Data-reduction ships that calculate a
sum, min, or max are recursive. Merge sort is also a recursive
operation.

3.2. Armada graphs

We use a series-parallel tree (SP-tree) to describe the
composition of an Armada graph. An SP-tree derives from
a series-parallel directed acyclic graph (SP-DAG), which is
recursively defined as follows [31]:



84 OLDFIELD AND KOTZ

1. A DAG with a single vertex and no edges is an SP-DAG.

2. If G1 = 〈V1, E1〉 and G2 = 〈V2, E2〉 are two SP-DAGs, so
is the DAG formed by one of the following operations:

(a) Parallel composition: G p = 〈V1 ∪ V2, E1 ∪ E2〉
(b) Series composition: Gs = 〈V1 ∪ V2, E1 ∪ E2 ∪ (N1 ×

R2)〉, where N1 is the set of sinks of G1 and R2 the set
of sources of G2.

We can represent the composition of an SP-DAG as a series-
parallel tree, where s-nodes represent a series composition,
p-nodes represent a parallel composition, and leaves are the
vertices in the original graph.

A contracted SP-tree (CSP-tree) is one in which p-nodes
only have s-nodes and leaves as children, and s-nodes only
have p-nodes and leaves as children. It is easy to show that
for each SP-tree, there exists a unique CSP-tree, composed by
contracting children with the same type as the parent [6].

We chose to use a CSP-tree to describe the composition
of an Armada graph because a CSP-tree is syntactically easy
to describe (we use XML) and easy to manipulate internally,
and it constrains the graph to be an SP-DAG (we show in Sec-
tion 4.1.1 why this is important). Ships form the vertices of the
graph and the leaves of the SP-tree. For example, figure 6(a)
shows an annotated version of the graph from figure 1. In
figure 6(b), we show the SP-tree representation of the graph.

This section presents, in detail, the ships that make up an
Armada graph, the properties that describe the capabilities
of the ships, and the graph abstraction used by the Armada

Figure 6. An application graph and its SP-tree representation.

system. With this information, we are ready to describe the
algorithm used to restructure an Armada graph.

4. Restructuring an Armada graph

As mentioned in Section 1, the graph resulting from the con-
catenation of the data-provider’s portion and the application’s
portion may not provide good performance. We can improve
performance by restructuring an Armada graph to increase
parallelism and to arrange processing ships so as to minimize
traffic on the slowest network links. In this section, we de-
scribe such an algorithm.

Armada restructures a graph by swapping (exchanging the
position of) adjacent ships. It increases parallelism by swap-
ping parallelizable ships with structural ships. It reduces net-
work traffic by moving data-reducing ships toward the data-
source and data-increasing ships toward the data destination.

The restructuring algorithm manipulates an Armada graph
by restructuring its SP-tree. Recall that an SP-tree node is ei-
ther a series node, parallel node, or leaf node that corresponds
to a ship. The process of restructuring an SP-tree requires two
tasks: initializing the tree, and recursively traversing the tree
swapping series-connected nodes as needed.

The INITIALIZE procedure (Algorithm 1) verifies that root
node N is indeed an SP-tree, compresses the tree to form a
CSP-tree (if necessary), and initializes internal nodes (series
and parallel nodes) to dirty. The dirty flag identifies nodes that
need to be recursively restructured.

The RESTRUCTURE algorithm (Algorithm 2) traverses the
CSP-tree in a depth-first manner, revisiting subtrees when nec-

Algorithm 1. INITIALIZE (N ).

Algorithm 2. RESTRUCTURE (N ).



IMPROVING DATA ACCESS FOR COMPUTATIONAL GRID APPLICATIONS 85

Algorithm 3. SLIDELEFT (B).

essary. The base case occurs if N is a leaf or if N is marked
clean (meaning it has already been restructured). If N is a par-
allel node, the algorithm recursively calls RESTRUCTURE on
each child of N . For series nodes, RESTRUCTURE individually
removes and properly aligns each child of N onto a new series
node (labeled New in Algorithm 2) in by iteratively “sliding”
the child (by swapping adjacent nodes where necessary) from
right-to-left using the SLIDELEFT algorithm (Algorithm 3).
After properly aligning each child, RESTRUCTURE sets N to
point to the new node and marks N clean. The process of
restructuring series-connected nodes forms the core of our
restructuring algorithm.

4.1. Restructuring series-connected nodes

As mentioned above, the RESTRUCTURE procedure
restructures a series node by iteratively “sliding” each

child into the correct position of a previously restructured
series node using the SLIDELEFT procedure (Algorithm 3).
SLIDELEFT attempts to “swap” the designated node with
the node to its left. The algorithm decides whether or not to
swap two series-connected nodes (labeled A and B) based
on three conditions: the graph formed by swapping A and B
must produce an SP-tree, A and B must be commutative, and
swapping A and B must benefit the application. We describe
each of these conditions in order.

4.1.1. A swap must produce an SP-tree
Since our algorithm relies heavily on the structure of
series-parallel DAGs, our first condition requires that a graph
formed by swapping two series-connected ships in a series-
parallel DAG is also a series-parallel DAG. Since we use an
SP-tree to represent an SP-DAG, we satisfy this condition by
only allowing a swap when the configuration of A and B in



86 OLDFIELD AND KOTZ

Table 1

Possible configurations of series-connected ships in an SP-tree. The cells

identify whether swapping is allowed (subject to the commutativity require-

ment).

Ship B

non-struct distrib distrib-p

Ship A
non-struct yes not SP yes

merge not SP not SP not SP

p-merge yes not SP yes

the SP-tree matches one of four configurations guaranteed to
produce another SP-tree, if A and B are swapped.

Table 1 lists all possible SP-tree configurations of two
series-connected ships and identifies configurations that are

Figure 7. Four cases for swapping neighboring ships.

allowed to swap. The rows represent the left side (ship A) of
a connection and the columns represent the right side (ship
B). The three types of ships are non-structural, merge, and
distribution. Since a merge ship takes multiple inputs it must
either follow a parallel node (labeled p-merge in Table 1), or
it must be the first ship in a series node (labeled merge); thus,
it cannot be on the right side of a series connection. Similarly,
a distribution ship does not appear on the left side because it
must either be connected to a parallel node (labeled distrib-p),
or it must be the last ship in a series node. Here are the four
configurations in which a swap is allowed.

1. Two non-structural ships connected in series (figure 7(a)):
Exchanging the positions of two non-structural ships does
not effect the structure of the SP-tree.

2. A series connection of a right-parallelizable non-structural
ship A, a distribution ship B, and a parallel node



IMPROVING DATA ACCESS FOR COMPUTATIONAL GRID APPLICATIONS 87

Algorithm 4. SLIDERIGHT (A).

(Figure 7(b)): We swap A and B by prepending paral-
lelized versions of A to the children of the parallel node.
If a child of the parallel node is a leaf, we replace the
leaf with a new series node that has A and the leaf as its
children.

3. A series connection of a parallel node, a merge ship A, and
a left-parallelizable non-structural ship B (Figure 7(c)):
We swap A and B by appending parallelized versions of
B to each child of the parallel node. If a child of the parallel
node is a leaf, we replace the leaf with a new series node
that has the leaf followed by A as its children.

4. A series connection of a parallel node, a right-
parallelizable merge ship A, a left-parallelizable distribu-
tion ship B, and another parallel node (Figure 7(d)): The
result is an all-to-all connection between the parallelized

versions of B and the parallelized versions of A. We ap-
pend each parallelized version of B to the children of the
left-most parallel node, and we prepend each parallelized
version of A to the children of the right-most parallel
node.

The SLIDELEFT and SLIDERIGHT procedures (Algo-
rithms 3 and 4) implement a swap for the four allowed configu-
rations. Lines 11-12 implement case 1, lines 14–21 implement
case 2, lines 23–30 implement case 3, and lines 32–36 imple-
ment case 4. SLIDELEFT moves a node from right to left, and
SLIDERIGHT moves the node from left to right.

The additional helper routines PARALLELIZELEFT and
PARALLELIZERIGHT (Algorithms 5 and 6) perform the op-
erations necessary to create parallelized versions of the ships
and place them in the correct branch of the SP-tree.



88 OLDFIELD AND KOTZ

Algorithm 5. PARALLELIZELEFT (P, B).

4.1.2. Configurations that do not produce an SP-tree
Table 1 shows five configurations that do not produce
series-parallel DAGs after a swap. These configurations occur
either when a distribution ship on the right is not series-
connected to a parallel node, or when a merge ship on the
left does not follow a parallel node. We show that these
configurations do not produce series-parallel DAGs after a
swap by using the forbidden subgraph characterization of
Valdes et al. [31]. They proved that a DAG is series-parallel
if and only if its transitive closure does not contain the graph
N (shown in figure 8) as an induced subgraph. An induced

Figure 8. The forbidden subgraph N .

Figure 9. Two configurations of series-connected ships that produce non-series-parallel graphs when swapped. Bold lines highlight the forbidden subgraph

N in the restructured portions.

Algorithm 6. PARALLELIZERIGHT (A, P).

subgraph is obtained by deleting some vertices and all edges
incident with deleted vertices.

Figure 9(a) shows an example of the case when a
distribution ship B is not series-connected to a parallel node. In
this particular example, the left-most ship A is non-structural.
Figure 9(b) shows a similar example of the second case, where
a merge ship does not follow a parallel node. In each example,
bold lines indicate the forbidden subgraph N in the restruc-
tured portions.

4.1.3. Commutativity of series-connected ships
The second condition for making a swap requires two
connected ships to be request-commutative and data-
commutative. Two series-connected ships are request-
commutative if the graph created by swapping the two ships
generates a sequence of requests equivalent to the requests
produced by the original graph (see Section 3.1.2 for our def-
inition of equivalence). Similarly, two series-connected ships



IMPROVING DATA ACCESS FOR COMPUTATIONAL GRID APPLICATIONS 89

Algorithm 7. COMMUTATIVE (A, B).

Algorithm 8. BENEFICIALSWAP (A, B).

are data-commutative if the graph created by swapping the
two ships generates a sequence of data equivalent to the data
produced by the original graph. The COMMUTATIVE function
(Algorithm 7) uses user-provided ship properties to decide
commutativity. It returns true if and only if at least one ship is
request-equivalent and at least one ship is data-equivalent.
Intuitively, COMMUTATIVE returns true when the request-
mapping function for at least one ship is the request-identity,
and the data-mapping function for at least one ship is the data-
identity. We provide a more formal proof of commutativity
in [24].

4.1.4. A swap should benefit the application
Although two series-connected ships may be commutative,
a swap of the two ships may not improve the performance
of the application. The boolean function BENEFICIALSWAP

(Algorithm 8) provides this last step in deciding whether to
perform a swap of two series-connected ships. The goal is to
accurately predict an increase or decrease in the overall appli-
cation performance resulting from a swap. Our initial heuris-
tic is a greedy approach based on two expectations: increased
parallelism leads to improved performance, and moving data-
reducing ships closer (in terms of the number of ships) to
the data source and data-increasing ships closer to the data
destination results in improved performance by reducing the
amount of data transferred through slow portions of the net-
work.

BENEFICIALSWAP uses the DIRECTION function
(Algorithm 9) to assign a preferred direction to each ship
(1 for right, −1 for left, and 0 for no preference). As in our
diagrams, we use the convention that storage is on the right
and clients are on the left. Based on the expectation that
increased parallelism leads to improved performance, the
merge ship always prefers to move right and the distribution
ship always prefers to move left. If a ship is a data-reducer
(a property assigned by the programmer) the ship prefers
to move toward the data source (right for reads, left for
writes). Similarly, ships with the data-increaser property
prefer to move right for writes and left for reads. The
BENEFICIALSWAP function takes as input two connected
ships A and B, in which A is currently to the left of B, and

Algorithm 9. DIRECTION (A).

returns true if the preferred direction of A has a greater value
than the preferred direction of B. This can only happen if A
wants to go right and B wants to go left, if A wants to go
right and B has no preference, or if A has no preference and
B wants to go left.

4.2. Algorithm summary

The goal of the restructuring algorithm is to take an SP-tree
that represents a distributed graph of application objects, and
restructure the tree (adding nodes where necessary) to cre-
ate a new SP-tree with increased parallelism and an arrang-
ment of data-processing objects that allows a more efficient
deployment of processing objects to grid resources. The algo-
rithm works by traversing the tree depth-first and reordering
(through a sequence of “swaps”) series-connected nodes in
the tree when

� two series-connected nodes are “commutative”,� swapping two series-connected nodes “benefits” the ap-
plication, and� the graph resulting from a swap of two series-connected
nodes is an SP-tree.

Note that our solution is not optimal, since there are cases
when both ships are commutative and a swap benefits the
application (by our definition of beneficial), but swapping the
two ships will produce a non-SP-tree. However, we believe
these cases to be rare, and the benefits of the keeping the
graph series-parallel outweigh the benefit of covering those
cases.



90 OLDFIELD AND KOTZ

4.3. Analysis

The total time to restructure a graph is the sum of the time
to initialize the nodes in the graph and the time to recursively
traverse and restructure the SP-tree.

Initialization includes verifying that the root node is a SP-
tree, compressing it to form a CSP-tree, and initializing inter-
nal nodes of the tree to dirty. A paper from Valdes et al. [31] de-
scribes a linear-time algorithm for recognizing series-parallel
DAGs and trees, so recognizing a SP-tree requires running
the Valdes algorithm. To convert the SP-tree to a CSP-tree,
we traverse the tree depth-first and combine nodes where the
children and the parent are of the same type. We also visit
each internal node once to initialize them to dirty. Since each
task is linear in time, with respect to the number of nodes in
the SP-tree, the initialization step has a running time of O(n),
where n is the number of nodes in the original SP-tree.

We include a detailed analysis of graph restructuring
in [24]. To summarize, our analysis has two parts: first, we
calculate the size of the largest possible tree (based on the
number of leaves in the initial tree) and the number of opera-
tions used by PARALLELIZELEFT and PARALLELIZERIGHT to
generate the tree, then we calculate the number of operations
(based on the number of nodes in the largest possible tree)
used by RESTRUCTURE, SLIDELEFT, and SLIDERIGHT to de-
cide whether or not to swap series-connected nodes. An upper
bound on the total cost of restructuring is the sum of the num-
ber operations use to generate the largest possible tree, and the
number of operations used to traverse and decide which nodes
to swap. Finally, we accumulate the results to show that the
restructuring algorithm requires O(v3) operations, where v is
the number of leaves in the initial SP-tree, that is, the number
of ships in the original graph.

5. Placement of Armada ships

Ships that make up the Armada graph execute on processors
near the client, processors near the data, or intermediate net-
work processors. An effective placement (especially for ships
that increase or decrease data flow) has a significant impact
on the overall performance of the application.

Our approach is to treat placement as a hierarchical graph-
partitioning problem. We first partition the graph into admin-
istrative domains in an attempt to minimize data transferred
between domains. Then we partition ships in each domain to
processors provided by domain-level resource managers. Our
implementation makes use of a graph-partitioning software
library called Chaco [17]. Further details of the placement al-
gorithm are beyond the scope of this document, but can be
found in [24].

6. Evaluation

We evaluate the benefits of restructuring by measuring
performance of three applications using Armada: a repre-

sentative application, an application for third-party file trans-
fers and data permutation, and a seismic processing appli-
cation. For each application, we present a brief description
followed by performance results. For details on the design
and implementation of the various applications, see [24].

6.1. The network testbed

We used the Emulab network testbed [33] at the University
of Utah for all results in this section. Emulab provides an
emulated network environment by allocating local nodes in a
cluster and connecting them through a Virtual LAN (VLAN)
that restricts traffic to the subnet defined by the user. Each node
allocated by the user functions as either an application node, a
simulated router, or a traffic generator. To enforce control over
bandwidth, latency, and packet loss, Emulab routes controlled
network traffic through automatically allocated additional pro-
cessors that use Dummynet [28] (a network emulator). The
Dummynet nodes act as an Ethernet bridge between nodes
in the virtual network and are transparent to experimental
traffic.

6.2. Representative application

In Section 1, we introduced a representative application (see
fgure 10(a)) that reads data from a replicated and distributed
data set. The portion from the data provider describes the
layout of two replicas, each stored as a distributed file. The
application prepends a graph to the data provider’s portion that
includes a filter and three interface ships (one for each client

Figure 10. A representative application for reading a replicated and dis-

tributed dataset. (a) shows the original graph, (b) shows the restrctured graph.



IMPROVING DATA ACCESS FOR COMPUTATIONAL GRID APPLICATIONS 91

Figure 11. Four configurations of the filtering application.

processor). In Section 4, we again used the representative ap-
plication to illustrate the process of graph restructuring. We
show the resulting restructured graph in Figure 10(b). In this
section, we present performance results for an implementation
of the representative application.

6.2.1. Experiments
We demonstrate the performance benefits of graph restructur-
ing by measuring the execution time of four different config-
urations of the representative application. For each configu-
ration, the network topology consists of a wide-area network
(WAN) connecting three local-area networks (LANs).

Figure 11 illustrates the four configurations that use man-
ual placements of Armada ships to processors. The “blobs”
in the figure encompass ships deployed to a single LAN. The
first configuration (labeled orig1) uses the original graph and
places the filter on the same LAN as the clients. In the sec-
ond configuration (orig2) we use the original graph, but place
the filter on the same LAN as one of the remote files. The
third (restruct1) and fourth (restruct2) configurations use the
restructured graph. In restruct1, each adjacent filter and seg-
ment ship share a host. In restruct2, we place each filter on a
host in the same LAN different than that of its adjacent seg-
ment ship. Except for restruct1, each ship is installed on a
separate processor within its LAN.

The area between the blobs represents the WAN. Each LAN
is connected to the WAN by a single router, which has a link
to each of the other two LANs. We illustrate these links in
figure 12. Regardless of the number of graph edges crossing
the WAN, each WAN link has limited capacity. In configura-
tion orig2, note that the client LAN uses only one of its WAN

Figure 12. Topology of network illustrating links between LANs.

connections, so the client/server cut has half the bandwidth of
the other configurations.

We configured each LAN to have five 850 MHz Intel Pen-
tium III processors connected by a 100 Mbps switched net-
work with a network latency of 0.15 msec. The three LANs
were connected by a triangle of three WAN links, each with
equal bandwidth, and latency 2.0 msec. We varied the WAN
link bandwidths to understand the performance of the applica-
tion under different network conditions. For orig1, restruct1,
and restruct2, we varied the WAN link bandwidths from 1 to
50 Mbps, so that the bandwidth available between client and
servers varied from 2 to 100 Mbps. Since orig2 used only one
client/server WAN link, we generously varied its WAN link
bandwidths from 2 to 100 Mbps.

6.2.2. Results and discussion
Figures 13 and 14 show timing and throughput measurements
for each configuration, as the total client/server WAN band-
width varied. In this particular application, the filter removed
exactly fifty percent of the data. In the throughput plot (bot-
tom), we also show the optimal throughputs for orig1 (lower
solid line) and the others (upper solid line).



92 OLDFIELD AND KOTZ

Figure 13. Execution time for the representative application with la-

tency = 2 ms and bandwidth ranging from 0–100 Mbps. (a) shows the full

range of the timings, (b) shows the range between 0 and 400 seconds. Each

point is the mean of four independent trials.

Figure 14. Measured effective throughput for the representative application

with latency = 2 ms and bandwidth ranging from 0–100 Mbps. Each point is

the mean of four independent trials.

For bandwidths below 30 Mbps, the network was the bot-
tleneck for all configurations. Placement of the filtering code
on the server side of the WAN allowed a near-doubling in per-
formance over orig1, due to the filter’s halving of the WAN
traffic (orig2 only matched the restructured graphs because it
had double the WAN link bandwidth). When the client/server
WAN bandwidth was above 30 Mbps, computation associated
with Java serialization and the filter code became the bottle-
neck. The restructured graph’s distribution of the filter across
four processors provided a significant performance gain over
the original graph.

With the original graph, the orig2 placement was faster than
orig1 only because its WAN links were twice as fast. When
computation was the bottleneck, orig2 and orig1 had equiva-
lent performance. With the restructured graph, restruct2 was
equivalent to restruct1 at low WAN bandwidths, but was faster
at high WAN bandwidths because the filter in restruct1 shares
a processor with its adjacent segment ship.

The overhead of computation for this simple application
was unexpectedly high. Although restructuring helps by dis-
tributing some of the computation, further performance tun-
ing of the Armada system would also improve performance.
These improvements, however, would not change the nature
of the results. That is, we could perhaps raise the lines on the
throughput plots in figure 14, but the shape of the plots would
remain the same.

6.3. File transfer and permutation

The second application copies fixed-sized blocks of data from
one distributed file to another, compressing data before trans-
fer across a WAN, decompressing data after transfer across a
WAN, and permuting data as necessary to match the distribu-
tion scheme of the output file. Figure 15 shows the original
and restructured Armada graphs for this application.

For block I/O, we use a storage-interface ship (labeled file
in figure 15) that reads or writes blocks of byte data. We use
two different structural ships to describe the layout of the
data. For the data source, we use a stripe reader (labeled srd).
For the data destination, we use a stripe writer (labeled swr).
Although the structural ships could implement any type of
block-distribution scheme, we chose standard block striping
because of the simple implementation. In both cases, the struc-
tural ships convert global block indices to local block indices
for their respective block I/O ships. The compression (cmp)
and decompression (dec) ships are processing ships that use

Figure 15. Original and restructured Armada graphs for a distributed file

copy application.



IMPROVING DATA ACCESS FOR COMPUTATIONAL GRID APPLICATIONS 93

Figure 16. Logical layout of data for the distributed file copy application.

The figures show the first eight blocks.

gzip compression on individual data blocks to reduce data
transferred across the WAN.

Driving the application is a single client-interface ship (la-
beled cpy) that executes on the client processor. It sends the
initial transfer request to the I/O ships on the left, which then
forward the requests through the Armada graph to the I/O ships
on the right. The cpy ship then waits for acknowledgement that
the transfer completed from the I/O ships on the left. Since no
block-data actually travels through the client, the copy appli-
cation provides third-party transfer capabilities, an important
feature for the management of remote datasets.

6.3.1. Experiments
To investigate the performance of the copy operation, we cre-
ated experiments for two types of applications. The first appli-
cation (the baseline test) copies a single 600 Mbyte file (using
Armada) across a WAN. The second application copies a dis-
tributed file to another distributed file (with a different layout
of the data) across a WAN. Figure 16 shows the logical block
layout of the first eight blocks for the two distributed files. The
input file is a distributed version of the original 600 Mbyte file,
striped to six I/O servers with a striping unit of two. The appli-
cation copies the input to a file distributed to four I/O servers
using a striping unit of four.

We configured a virtual network (shown in figure 17) with
30 processors from two LANs. The client executes on a pro-
cessor in lan0. The source file exists on six I/O servers on
lan1, the destination file exists on four I/O servers on lan0.
The remaining processors are available as potential hosts for
Armada ships.

6.3.2. Results and discussion
Figures 18 and 19 show plots of the execution time and effec-
tive throughput for the single-file copy, the original Armada
graph, and the restructured Armada graph for distributed file
copy. For these plots, we assigned each Armada ship to a sep-
arate host. We calculated results of the remote transfers for
WAN bandwidths ranging between 1 Mbps and 100 Mbps
and network latency fixed at 2 ms.

We expected better results from the restructured graph (es-
pecially for low bandwidths), because of the compression;
however, after further analysis, we noticed that we were get-
ting less than 10% compression from the compression ships.
The reason was the choice of dataset. Since we also ran exper-
iments for the seismic application (Section 6.4) we reused the

Figure 17. Network topology for the distributed file copy application.

Figure 18. Execution time of file copy applications.



94 OLDFIELD AND KOTZ

Figure 19. Effective throughput of the file copy applications.

Figure 20. Execution time of file copy applications without data compres-

sion.

seismic data for the copy experiments. Unfortunately, seismic
data does not compress well with gzip compression.

Despite the poor compression, we see significant improve-
ment of the restructured Armada graph over the original graph.
This is primarily due to parallelizing the compression and de-
compression ships. The original graph becomes compute soon
(at around 10 Mbps), since all data converges at the compres-
sion ship. The restructured graph becomes compute bound
near 30 Mbps and becomes completely limited by the decom-
pression ships near 50 Mbps.

Figures 20 and 21 show plots of a similar application in
which we remove the compression and decompression ships.
We see that without the overhead of the compression, the
restructured graph transfers data near the speed of the network.
Even without compression, there is overhead associated with
serialization of objects as they pass through the graph. The

Figure 21. Effective throughput of the distributed file copy application with-

out data compression.

restructured graph adds enough parallelism to keep pace with
the network, but the single file and the original graph become
bound by Java serialization at around 50 Mbps.

6.4. Remote seismic imaging

The goal of seismic imaging is to identify sub-surface geolog-
ical structures that may contain oil. Seismic imaging is both
computationally intensive (often requiring months to process
a single data set), and data intensive. A seismic data set can
be large, sometimes more than a terabyte in size, and is stored
as a collection of files. Each file consists of recorded pres-
sure waves, gathered by a set of receivers distributed across
the surface, and generated by a single acoustic source, also
located on the surface. The dataset consists of data collected
from the same receivers for thousands of different source po-
sitions. We refer to the data collected by a single receiver for a
single source as a “trace,” and the file associated with a single
source position as a “shot file”. Figure 22 shows a 2D slice
of a propagating acoustic wave from a single source (demon-
strating the acquisition of data), and the calculated image of
the SEG/EAEG overthrust model [1].

Post-stack migration [34] is a technique that significantly
reduces the amount of processing by “stacking” (i.e., sum-
ming) co-located traces from each shot file before the com-
putation phase. Post-stack migration is ideal for demonstrat-
ing the effectiveness of Armada: it requires efficient access
to large (potentially remote) datasets that require significant
preprocessing.

For these experiments, we modified a seismic imaging ap-
plication called Salvo [25,26] to use an Armada graph to read
a seismic dataset. Figure 23 shows the original and restruc-
tured Armada graphs for the seismic application. The graph
from the data provider consists of replicatable structural ships
(labeled Sdst) that direct resquests toward the datasets, and a
storage interface ship (labeled File) that reads seismic traces
from a Unix file. The application-specific portion consists of
two processing ships (Stk and FFT) to perform the stack and
the FFT, a structural ship (Tdst) to direct traces to the proper
compute node, and a client-interface ship (API) that converts
method calls to I/O requests.



IMPROVING DATA ACCESS FOR COMPUTATIONAL GRID APPLICATIONS 95

Figure 22. Seismic imaging codes calculate a 3D image of the sub-surface by processing recorded pressure waves collected at the surface. Here we show

cross-sections of the SEG/EAEG overthrust model illustrating the propagation of acoustic waves (top-left), and the image computed by a seismic imaging

code (top-right).

Figure 23. The original and restructured Armada graphs for reading a seismic

data set.

6.4.1. Experiments
We ran experiments measuring the performance of our im-
plementation of the trace-input phase of Salvo. Figure 24
shows the Emulab virtual network used for our experiments.
The Salvo application used six processors in the first LAN
(lan0). These processors represent compute nodes that access
a remote data set distributed across five I/O servers in lan1

and five I/O servers in lan2. The remaining processors are
available as potential hosts for Armada ships.

The dataset consists of 10 shot files, each with roughly
25 Mbytes of trace data (111 × 111 traces with 500 sam-
ples per trace). Note that our data set is much smaller than a
real data set that may contain thousands of shot files. The
main reason for choosing a smaller dataset is that we do
not have the physical resources to store terabytes of data for
our experiments. For this experiment, however, the smaller
data set is sufficient to demonstrate the effectiveness of our
approach.

Figure 25 shows the original and restructured Armada
graphs (illustrating the partitioning to domains assigned by
the placement algorithm) for our experiments. In these exper-
iments, we assume there are enough processors so that every
Armada ship has its own host. Notice that since we distributed
the data set to two domains, we added an additional Sdst ship
to first direct requests to the appropriate domain-level Sdst
ship.

6.4.2. Results and discussion
The first set of plots (figures 26 and 27) compare the perfor-
mance of the original and restructured Armada graphs for a
fixed latency (2 ms) as WAN bandwidth increases from 1 Mbps
to 100 Mbps.

For the restructured graph, we see a dramatic barrier at
5 Mbps where the application changes from being network
bound to being compute bound. Since an FFT is a fairly
compute-intensive operation, our first guess placed the bot-
tleneck at the ships performing the FFTs; however, after fur-
ther analysis, we discovered the bottleneck to be stacking the
data on the data-server LANs. The FFT is, in fact, very fast
(we used a Java-enabled version of the fftw library [14]).
The stack operator, has to deserialize and perform a vector
sum for each incoming trace, but the FFT only works on the



96 OLDFIELD AND KOTZ

Figure 24. Virtual network topology used to measure the performance of the trace-input phase of Salvo. The Salvo application used six processors on lan0

to access data distributed to five disks on lan1 and five disks on lan2. The remaining processors on each LAN are available as hosts for Armada ships.

Figure 25. Original and restructured graphs (illustrating LAN placement) for reading seismic trace data.



IMPROVING DATA ACCESS FOR COMPUTATIONAL GRID APPLICATIONS 97

Figure 26. Execution time for the original and restructured Armada graphs

for reading seismic trace data. Latency is fixed at 2 ms, bandwidths range

from 0–100 Mbps. (a) shows the full range of the timings, (b) shows the range

between 0 and 300 seconds. Each data point is the mean of five independent

trials.

Figure 27. Effective throughput for the original and restructured Armada

graphs for reading seismic trace data.

resulting value. Also, the stack ship acts as a synchroniza-
tion point for the application, since co-located traces from
all inputs must arrive before passing the result on to the FFT
ship.

For the original graph, the link between the sdst ship on lan1
and the sdst ship on lan2 is the bottleneck up to 25 Mbps. For
bandwidths greater than 25 Mbps, the stack operator became
the bottleneck.

Figures 28 and 29 plot the execution time and effec-
tive throughput of the restructured Armada graph for differ-
ent latencies. The goal is to demonstrate that pipelining large
data transfers effectively negates the effect of latency over
a wide-area network. As expected, the different experiments

Figure 28. Execution time for seismic application with different WAN

latencies.

Figure 29. Throughput of seismic application for different WAN latencies.

had nealy identical running times. This feature is a partic-
ularly important; although technology limits the amount of
available bandwidth, the speed of light makes latency across
large geographic distances unavoidable.

7. Conclusion

The trend to develop applications for wide-area computing
environments (computational grids) is hindered by several
performance-related challenges. Unlike traditional parallel
computers, grid applications execute in environments with
unavoidable latency, low bandwidth, and unpredictable be-
havior. In this paper, we describe how to improve data access
performance of applications using the Armada I/O framework



98 OLDFIELD AND KOTZ

by restructuring the Armada graph to increase parallelism
and to allow effective placement of data-reduction filters on
remote servers. Our approach demonstrates that a flexible de-
sign along with careful attention to data-flow performance can
lead to efficient I/O for grid applications. Performance results
show that Armada does an exceptional job of hiding network
latency inherent in grid computing, and that Armada applica-
tions perform well in low-bandwidth environments because
of an effective placement, but also in high-bandwidth envi-
ronments because of the end-to-end parallelism provided by
restructuring.

Acknowledgments

Special thanks to Jay Lepreau, and the many students and staff
who run the Emulab at the University of Utah, for allowing
us to use their facility to run our experiments. Thanks also to
David Womble and Rob Leland (both from Sandia National
Laboratories) for their help with the Chaco graph partitioning
software and the Salvo seismic imaging code.

Notes

1. CMU Reading List on Parallel Programming Languages, http://www-

2.cs.cmu.edu/ scandal/parallel-lang/reading-list/reading-list.html

2. A request-identity function returns an “equivalent” sequence of requests,

which may not be identical to the original sequence of requests.

3. GNU zip (http://www.gzip.org)

References

[1] F. Aminzadeh, N. Burkhard, L. Nicoletis, F. Rocca and K. Wyatt,

SEG/EAEG 3-D modeling project: 2nd update, The Leading Edge 13(9)

(September 1994).

[2] Remzi H. Arpaci-Dusseau, Run-time adaptation in River, ACM Trans-

actions on Computer Systems 21(1) (2003) 36–86.

[3] Remzi H. Arpaci-Dusseau, Eric Anderson, Noah Treuhaft, David E.

Culler, Joseph M. Hellerstein, David Patterson, and Kathy Yelick,

Cluster I/O with River: Making the fast case common, in: Pro-
ceedings of the Sixth Workshop on Input/Output in Parallel and
Distributed Systems, ACM Press, Atlanta, GA, (1999) pp. 10–

22.

[4] James Abello and Jeffrey Scott Vitter, (eds.) External Memory Algo-
rithms and Visualization. DIMACS Series in Discrete Mathematics and

Theoretical Computer Science. American Mathematical Society Press,

Providence, RI (1999).

[5] Henri E. Bal, A comparitive study of five parallel programming

languages, Future Generation Computer Systems 8 (1992) 121–

135.

[6] Hans Leo Bodlaender and Babette de Fluiter, Parallel algorithms for

series parallel graphs, in: Proc. 4th Eur. Symp. Algorithms, number

1136 in Lecture Notes in Computer Science, Springer-Verlag (1996)

pp. 277–289.

[7] Michael D. Beynon, Renato Ferreira, Tahsin Kurc, Alan Sussman and

Joel Saltz, DataCutter: Middleware for filtering very large scientific

datasets on archival storage systems, in: Proceedings of the 2000 Mass
Storage Systems Conference, College Park, MD, IEEE Computer So-

ciety Press (2000) pp. 119–133.

[8] Henri E. Bal, Jennifer G. Steiner and Andrew S. Tanenbaum, Program-

ming languages for distributed computing systems, ACM Computing

Surveys 21(3) (1989) 261–322.

[9] Alex Colvin and Thomas H. Cormen, ViC*: A compiler for virtual-

memory C*, in: Proceedings of the Third International Work-
shop on High-Level Parallel Programming Models and Support-
ive Environments (HIPS ’98), IEEE Computer Society Press (1998)

pp. 23–33.

[10] Peter F. Corbett and Dror G. Feitelson, The Vesta parallel file sys-

tem, ACM Transactions on Computer Systems 14(3) (1996) 225–

264.

[11] J. Carretero, F. Pérez, P. de Miguel, F. Garcı́a and L. Alonso, Proto-

type POSIX-style parallel file server and report for the CS-2. Tech-

nical Report D1.7/1, Universidad Politecnic Madrid, Madrid, Spain,

(1993).

[12] David DeWitt and Jim Gray, Parallel database systems: The future

of high-performance database systems, Communications of the ACM

35(6) (1992) 85–98.

[13] David J. DeWitt, Robert H. Gerber, Goetz Graefe, Michael L. Heytens,

Krishna B. Kumar and M. Muralikrishna, GAMMA—A high perfor-

mance dataflow database machine, in: Proceedings of the 12th In-
ternational Conference on Very Large Data Bases (1986) pp. 228–

237.

[14] Matteo Frigo and Steven G. Johnson, FFTW: An adaptive software

architecture for the FFT, in: Proc. 1998 IEEE Intl. Conf. Acous-
tics Speech and Signal Processing, vol. 3, IEEE (1998) pp. 1381–

1384.

[15] Ian Foster and Carl Kesselman (eds.) The Grid: Blueprint for
a New Computing Infrastructure (Morgan Kaufmann Publishers,

1998).

[16] Benoit A. Gennart, Marc Mazzariol, Vincent Messerli and Roger D.

Hersch, Synthesizing parallel imaging applications using the CAP

computer-aided parallelization tool, in: Proceedings of the IS&T/SPIE
10th Annual Symposium on Electronic Imaging, Storage & Re-
trieval for Image and Video Databases VI, San Jose, CA, (1998)

pp. 446–458.

[17] Bruce Hendrickson and Robert Leland, The Chaco user’s guide: Version

2.0. Technical Report SAND94-2692, Sandia National Laboratories,

1994.

[18] Vincent Messerli, Tools for Parallel I/O and Compute Intensive Appli-

cations. PhD thesis, École Polytechnique Fédérale de Lausanne, 1999.

Thèse 1915.

[19] Jarek Nieplocha, Ian Foster and Rick Kendall, ChemIO: High-

performance parallel I/O for computational chemistry applications, The

International Journal of High Performance Computing Applications

12(3) (1998) 345–363.

[20] Nils Nieuwejaar, David Kotz, Apratim Purakayastha, Carla Schlatter

Ellis and Michael Best, File-access characteristics of parallel scientific

workloads, IEEE Transactions on Parallel and Distributed Systems,

7(10) (1996) 1075–1089.

[21] Ron Oldfield and David Kotz, Armada: A parallel file system for

computational grids, in: Proceedings of the First IEEE/ACM In-
ternational Symposium on Cluster Computing and the Grid, Bris-

bane, Australia, IEEE Computer Society Press (2001) pp. 194–

201.

[22] Ron Oldfield and David Kotz, Scientific applications using parallel I/O,

in Hai Jin, Toni Cortes, and Rajkumar Buyya (eds.), High Performance
Mass Storage and Parallel I/O: Technologies and Applications, chap-

ter 45, IEEE Computer Society Press and John Wiley & Sons, (2001)

pp. 655–666.

[23] Ron Oldfield and David Kotz, Armada: A parallel I/O framework for

computational grids, Future Generation Computing Systems (FGCS)

18(4) (2002) 501–523.

[24] Ron Oldfield. Efficient I/O for Computational Grid Applications. PhD

thesis, Dept. of Computer Science, Dartmouth College, May 2003.

Available as Dartmouth Computer Science Technical Report TR2003-

459.



IMPROVING DATA ACCESS FOR COMPUTATIONAL GRID APPLICATIONS 99

[25] Curtis Ober, Ron Oldfield, David Womble, L. Romero and Charles

Burch, Practical aspects of prestack depth migration with finite dif-

ferences, in: Proceedings of the 67th Annual International Meeting
of the Society of Exploration Geophysicists, Dallas Texas, Expanded

Abstracts (1997) pp. 1758–1761.

[26] Ron A. Oldfield, David E. Womble and Curtis C. Ober, Effi-

cient parallel I/O in seismic imaging, The International Journal

of High Performance Computing Applications 12(3) (1998) 333—

344.

[27] Beth Plale and Karsten Schwan, dQUOB: Managing large data

flows by dynamic embedded queries in: Proceedings of the
Ninth IEEE International Symposium on High Performance Dis-
tributed Computing, Pittsburgh, Pennsylvania, (2000) pp. 263–

270.

[28] Luigi Rizzo. Dummynet: a simple approach to the evaluation of network

protocols, ACM Computer Communication Review 27(1) (1997) 31–

41.

[29] M. Spencer, R. Ferreira, M. Beynon, T. Kurc, U. Catalyurek, A. Suss-

man and J. Saltz, Executing multiple pipelined data analysis operations

in the grid, in: Proceedings of SC2002: High Performance Networking
and Computing, Baltimore, Maryland (2002).

[30] Jeffrey Scott Vitter, External memory algorithms and data struc-

tures: dealing with massive data, in Abello and Vitter [4], pages 1—

38.

[31] Jacobo Valdes, Robert E. Tarjan and Eugene L. Lawler, The recognition

of series parallel digraphs, SIAM Journal of Computing 11(2) (1982)

298–313.

[32] Rajiv Wickremesinghe, Jeffrey S. Chase and Jeffrey S. Vitter, Dis-

tributed computing with load-managed active storage, in: Proceedings
of the Eleventh IEEE International Symposium on High Performance
Distributed Computing, Edinburgh, Scotland, IEEE Computer Society

Press (2002) pp. 24–34.

[33] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi

Guruprasad, Mac Newbold, Mike Hibler, Chad Barb and Ab-

hijeet Joglekar, An integrated experimental environment for dis-

tributed systems and networks, in: Proceedings of the 2002 Sym-
posium on Operating Systems Design and Implementation, Boston,

MA, December 2002. USENIX Association (2002) pp. 255—

270.

[34] Ozdogan Yilmaz, Seismic Data Processing (Society of Exploration

Goephysics, 1987).

Ron A. Oldfield is a senior member of the technical

staff at Sandia National Laboratories in Albu-

querque, NM. He received the B.Sc. in com-

puter science from the University of New Mex-

ico in 1993. From 1993 to 1997, he worked in

the computational sciences department of San-

dia National Laboratories, where he specialized

in seismic research and parallel I/O. He was the

primary developer for the GONII-SSD (Gas and

Oil National Information Infrastructure–Synthetic

Seismic Dataset) project and a co-developer for the

R&D 100 award winning project ”Salvo”, a project

to develop a 3D finite-difference prestack-depth

migration algorithm for massively parallel archi-

tectures. From 1997 to 2003 he attended graduate

school at Dartmouth college and received his Ph.D.

in June, 2003. In September of 2003, he returned to

Sandia to work in the Scalable Computing Systems

department. His research interests include parallel

and distributed computing, parallel I/O, and mobile

computing.

E-mail: raoldfi@sandia.gov

David Kotz is a Professor of Computer Science

at Dartmouth College in Hanover NH. After re-

ceiving his A.B. in Computer Science and Physics

from Dartmouth in 1986, he completed his Ph.D

in Computer Science from Duke University in

1991. He returned to Dartmouth to join the fac-

ulty in 1991, where he is now Professor of Com-

puter Science, Director of the Center for Mobile

Computing, and Executive Director of the Insti-

tute for Security Technology Studies. His research

interests include context-aware mobile comput-

ing, pervasive computing, wireless networks, and

intrusion detection. He is a member of the

ACM, IEEE Computer Society, and USENIX

associations, and of Computer Professionals for

Social Responsibility. For more information see

http://www.cs.dartmouth.edu/ dfk/.

E-mail: dfk@cs.dartmouth.edu


	Improving Data Access for Computational Grid Applications
	Dartmouth Digital Commons Citation

	SJNW514-08-NO00004899.tex

