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Amulet: A secure architecture for mHealth applications for
low-power wearable devices

Andres Molina-Markham†, Ronald Peterson†, Joseph Skinner†, Tianlong Yun†, Bhargav Golla∗

Kevin Freeman∗, Travis Peters†, Jacob Sorber∗, Ryan Halter†, David Kotz†
† Dartmouth College ∗Clemson University

Abstract
Interest in using mobile technologies for health-related

applications (mHealth) has increased. However, none of the
available mobile platforms provide the essential properties
that are needed by these applications. An mHealth platform
must be (i) secure; (ii) provide high availability; and (iii) allow
for the deployment of multiple third-party mHealth applica-
tions that share access to an individual’s devices and data.
Smartphones may not be able to provide property (ii) because
there are activities and situations in which an individual may
not be able to carry them (e.g., while in a contact sport). A
low-power wearable device can provide higher availability,
remaining attached to the user during most activities. Further-
more, some mHealth applications require integrating multiple
on-body or near-body devices, some owned by a single indi-
vidual, but others shared with multiple individuals. In this
paper, we propose a secure system architecture for a low-
power bracelet that can run multiple applications and manage
access to shared resources in a body-area mHealth network.
The wearer can install a personalized mix of third-party appli-
cations to support the monitoring of multiple medical condi-
tions or wellness goals, with strong security safeguards. Our
preliminary implementation and evaluation supports the hy-
pothesis that our approach allows for the implementation of a
resource monitor on far less power than would be consumed
by a mobile device running Linux or Android. Our prelim-
inary experiments demonstrate that our secure architecture
would enable applications to run for several weeks on a small
wearable device without recharging.

Categories and Subject Descriptors
I.5.5 [Computing Methodologies]: [Implementation, spe-

cial architectures]; K.4.m [Computers and Society]: [Mis-
cellaneous]
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1 Introduction
Mobile health (mHealth) applications deal with highly

sensitive information and implement critical functionality.
Often, multiple third-party applications share hardware and
other resources. Therefore, a platform for running third-
party mHealth applications must include security in its core
design. On the other hand, key mHealth applications require
high availability to be able to deal with emergency situations
(e.g., an anaphylactic shock) and/or to adequately record
physiological information throughout the day. It remains a
challenge to design a platform for mHealth applications that
is (i) secure, (ii) provides high availability, and (iii) allows
for the deployment of multiple third-party applications that
share resources in a body-area network, such as sensor data,
actuators, computation, networking, and storage. Indeed,
prior work [16] proposed the use of a wrist-worn device for
mHealth applications and identified the general goals (i) and
(ii) but it does not propose specific mechanisms to achieve (i).
In this paper, we propose the design of a software architecture
for mHealth applications that meets goals (i)-(iii) using a
wearable platform to provide high availability.

Current wearable devices that run third-party applications,
such as smart watches, either do not satisfy (i), e.g., they
are not designed with security in mind (for example, Pebble
Watch), or do not satisfy (ii) because their software architec-
ture is not designed to run on a single charge for several days
(e.g., smart watches running Android) while continuously
collecting data from internal and external sensors. Some spe-
cialized medical devices are designed to be secure and highly
available, but these are typically single-purpose embedded
devices that do not enable third-party applications (i.e., do
not satisfy (iii)).

Our proposed software architecture, Amulet, can run mul-
tiple third-party mHealth applications simultaneously and
provides strong security properties. At a minimum, the secu-
rity features of an mHealth platform should (1) control access
to managed resources (such as sensors, actuators, storage,
computation, and network); (2) contain applications so they
cannot bypass access-control mechanisms nor read, write or
execute from arbitrary memory locations; and (3) log requests
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for access to managed resources to provide accountability.
Amulet guarantees security through a robust authorization
mechanism that manages resources, through application iso-
lation, and through audit logging. In addition to providing
security, Amulet is designed for use on small, light and ultra-
low power wearable devices that must run on a single charge
for several weeks.

Amulet restricts access to managed resources by imple-
menting an onboard authorization manager that checks all
requests from applications to access a resource against local
policies before granting access. Amulet guarantees applica-
tion isolation through a compile-time sandboxing mechanism
that statically checks third-party applications implemented
using a restricted subset of the C programming language.
Amulet also encrypts communications when using wireless
links. Finally, Amulet ensures accountability by securely log-
ging all requests that the authorization manager receives, and
its response for each request.

Thus, this paper’s contribution is the description of a se-
cure software architecture suitable for low-power wearable
hardware platforms that enables the sharing of resources by
multiple third-party applications. We provide preliminary
results that show that our approach is feasible – multiple use-
ful mHealth applications can run on low-power hardware for
several weeks on a single battery charge, and the application
isolation mechanism that we propose does not interfere with
the implementation of such mHealth applications.

2 System and Security model
In this paper, we consider personal mobile-health net-

works (MHNs) that consist of multiple devices and a smart
low-power wearable device that manages the resources in
an individual’s MHN. In our architecture, the wearable de-
vice is called an amulet. The amulet provides its internal
resources (computing, storage) to internal apps, which run
on the amulet. The amulet provides apps with other resources
(sensors, actuators, user interface, and network messaging)
through a service API. Other MHN devices run external apps:
some consume data from an amulet (such as a smartphone
that provides interactive data analysis or a smart treadmill that
provides real-time visualization during a workout); others pro-
vide services (such as an ECG chest strap that delivers sensor
data to other apps, or an infusion pump that delivers medica-
tion on command). All software on an amulet is downloaded
from a cloud-based system (operated by a trusted authority)
that links Amulet system software with apps vetted for their
security properties. In many MHN scenarios, the amulet and
other devices need to operate for extended periods without
access to a smartphone or the Internet.

In this paper, we show how Amulet addresses three main
security goals: isolation among internal applications, access
control to resources, and accountability for internal and exter-
nal applications.

2.1 Adversary model
In this paper, we are concerned with adversaries who at-

tempt to construct or compromise apps (internal or external)
so those apps will misbehave (perhaps by harming the amulet
system or other apps). We are concerned with adversaries who
interpose on the communication between an amulet and other

devices in the MHN; we assume adversaries can intercept,
insert, or alter messages in the communication medium. We
assume that adversaries do not have (a) physical access to the
amulet device, (b) the ability to break encryption primitives,
(c) the ability to discover confidential data through indirect
means (such as unintended covert channels interpreted via
computational-time or power analysis), or (d) the ability to
tamper with the cloud-based app-vetting system.

2.2 Threat model
In this paper, we focus on security-related threats (the

broader question of safety-related threats is beyond the scope
of this paper). Apps (internal or external) may attempt to
circumvent the mechanisms provided by Amulet to access
amulet-managed resources, including sensors, actuators, stor-
age, computation, and communications. For example, apps
may attempt to obtain data from sensors or send commands to
cause actuation, bypassing the amulet’s access-control mech-
anisms. Internal apps may seek to read or write to an arbitrary
location in any of the amulet memories. Also, internal or
external apps may seek to impersonate another app so that an
action looks as if that app had requested it. Finally, an app
may seek to inject data or events into other apps.

2.3 Trust model
Any secure system rests on a “root of trust” that is assumed

trustworthy. Amulet achieves its three security goals through
two assumptions: (1) we trust a cloud-based sandboxing com-
piler system to properly vet the application code it receives
and to produce signed firmware images for the amulet to
download, and (2) we trust a small bootloader in the amulet
firmware to properly verify the signature on any firmware
images before it installs and boots the amulet system.

3 Architecture
The Amulet architecture has four main components: (1) an

amulet1 that manages resources and is capable of running in-
ternal apps; (2) internal and external apps that share MHN
resources managed by the amulet; (3) the MHN resources
managed by the amulet, which include the internal sensors
and actuators in an amulet, its internal computational ca-
pabilities, and its storage and networking capabilities; and
(4) a cloud-based compiler that sandboxes internal apps and
links them with authentic system software to create a custom
firmware image for installation on a given amulet.

To achieve long life on a small battery, we chose a two-
tiered architecture. The “base tier” efficiently manages net-
work communications, internal sensors, and other basic ser-
vices, while the “application tier” runs application code. This
two-tier design allows the amulet to shut off power for the
application tier to save power when application responses are
not immediately required; in our implementation, each tier is
a separate board with a separate microcontroller.

In this section, we describe how multiple internal apps
run on an amulet, and sketch the three main mechanisms to
achieve our security goals: (a) access control to managed
resources; (b) internal app isolation; and (c) secure logging.

1We use lowercase to refer to the device and uppercase to refer to the
architecture.
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3.1 Internal apps
In the Amulet software architecture, apps run on the ap-

plication tier, which remains off most of the time. This ap-
proach drives two requirements: first, apps must be able to
survive routine system reboots; second, the application tier
must be able to return from off state to active state, load its
operating system, and reload an application, extremely fast.2
Our architecture achieves these requirements by providing an
event-driven programming model. This approach works well
for mHealth apps, many of which are idle most of the time,
waiting for an event to occur.

Internal apps are represented as finite-state ma-
chines (FSMs) with memory. Each app consists of a set
of states, a small set of variables, and a set of event handlers
that define the app’s response to events that occur. When an
event occurs, the system calls the appropriate handler function
and transitions the related app to the appropriate next state.
Handlers are non-blocking functions that may consume data
arriving with the event, update app variable(s), or send events
to system services (or to themselves), in any combination.
The app subscribes to certain events when it is initialized,
and can add or adjust subscriptions as part of the action in an
event handler.

This approach makes app state explicit; because handlers
run to completion there are no threads with stack-based state
information to preserve between events, let alone across pro-
cessor reboots. As we describe below, app code and variables
are kept in persistent storage, as is a record of the current
state of each app; thus, when the event queue becomes empty,
the app processor is simply powered off. This simplicity is
a major advantage over the alternative of running a larger
operating system, such as embedded Linux or a real-time OS,
in which applications are represented as processes or threads.

The application tier remains off until the base tier boots
it. On request, the base tier produces messages to carry the
output from internal sensors (e.g., temperature, accelerom-
eter), input from the wearer (e.g., a button press), or the
reception of a network message from an external mHealth
device. The base tier inserts each new message into the inter-
processor message queue; the memory controller uses a set of
queue-management policies to determine when to wake the
processing component (examples include the insertion of a
high-priority message or the queue being near full). While
the application tier is awake, it draws messages from the
inter-processor queue and copies it into a new event message
inserted into its internal event queue. Throughout the rest of
the paper, we refer to event messages simply as events.

The Amulet software architecture consists of the following
components: event-driven apps, an event processor and event-
driven framework, Amulet managers providing service to
applications, run-time components not directly available to
apps, and a set of board-support drivers.

The application tier runs a supervisor that receives, queues,
and dispatches events. Each component can create and
send events through an API call that adds events to relevant
queue(s) – events may be directed to a specific component

2 In the apps we consider, tasks execute every few seconds and tasks
typically require only a few milliseconds to complete.

or published to any app that subscribes to that event type.
Each component has its own event queue and is assigned a
distinct priority level: system components have higher pri-
ority than apps. (Amulet sets each app’s priority at the time
the system image is built; the details are beyond the scope
of this paper.) The event supervisor dispatches one event at
a time, from the highest-priority non-empty queue, waiting
for the handler to complete before dispatching the next event.
The Amulet supervisor enforces a timeout to prevent handlers
from blocking or running too long. To prevent runaway han-
dlers, the supervisor first sets a hardware timer; if the timeout
occurs, Amulet interrupts the app (terminating the handler)
and places the app in a special state, and the event supervisor
resumes control. Most handlers are quick: they make a quick
computation, log data, and send the event to another service.
3.2 Access control

It is often important to ensure not only that specific apps
and system components are allowed to perform an action, but
also that the action is only performed under specific condi-
tions [7]. The problem of specifying authorization policies for
access control becomes difficult as the number of principals
and resources diversifies and the conditions for providing au-
thorization become more specific [5]. In order to address this
authorization specification problem, numerous authorization
languages have been proposed [3, 4, 5, 8, 11, 12]. Recent ap-
proaches have proposed logic-based authorization languages
like SecPAL [3], DKAL [11] and others [12].

In our model, the Authorization Manager is a piece of
software running in the amulet that can check whether a
request by a principal is consistent with a set of policies.
One of the challenges that we face is that the Authorization
Manager running on the amulet must be lightweight if it
is to run on a low-power wearable device that has limited
computational capabilities.

Logic-based authorization languages have multiple attrac-
tive characteristics [1], such as decidability and tractability—
i.e., queries always terminate in polynomial time—as well
as delegation. However, a suitable authorization service for
resolving authorization queries specified in these languages
would be too heavy to be implemented in a low-power mi-
crocontroller, such as that used in an amulet. To address this,
Amulet implements a lite authorization manager that interacts
with a full authorization manager for configuration.

The full authorization manager is a deductive service ca-
pable of resolving authorization requests against policies,
both specified in a logic-based authorization language (Sec-
PAL) [3]. This authorization manager could run on a smart-
phone, personal computer, or possibly a cloud service. The
lite authorization manager is not capable of resolving autho-
rization requests following logic deduction. Instead, the lite
authorization manager decides whether or not an authoriza-
tion request should be granted by looking up an access control
list, derived from the policies and data sources on which the
full authorization manager bases its decisions. The full au-
thorization manager allows an individual to create or edit
rich policies on her smartphone (or PC or cloud service) and
receive updates to policies for her MHN from a trusted entity.
When policies are updated on the smartphone, the correspond-
ing access control list is also updated and synchronized with
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the lite authorization manager running on the amulet. As a
result, Amulet allows for the implementation of fine-grained,
expressible policies that can be updated, while enabling au-
thorization requests to be decided when a smartphone is not
present. A detailed discussion of the synchronization of these
two authorization managers is beyond the scope of this paper.
3.3 Application Isolation

In order to provide a general-purpose application platform
for wearable mHealth that is both robust and secure, Amulet
isolates applications from each other, using techniques that
require a small memory footprint, and performance overhead
that is amenable to use on resource-constrained wearable
hardware. In this paper, we specifically focus on 1) ensur-
ing that apps can only access Amulet hardware by sending
a well-formed request to the Amulet core, which can be
checked by the Authorization Manager, and 2) preventing
a malicious or buggy app from reading or modifying the
memory of either the Amulet runtime system or another app.
Our approach leverages compiler-based translation and static
analysis: developers upload their application source code to
a cloud-based Amulet service that translates, verifies, and
compiles the source code, rejecting it if it violates any of the
security properties. Later, each amulet owner visits the web
page for this service to select the desired apps; the service
links these apps with the authentic Amulet core system code
and prepares a custom firmware image for download and
installation into that amulet. (In future work we expect to ex-
plore cross-application optimization, resource-consumption
analyses, app prioritization, and personal key distribution as
part of this trusted cloud service.)

Isolation techniques used by traditional operating systems
(e.g., virtualizing memory and other resources) require sig-
nificant computational and memory resources. Other more
efficient approaches [9, 14, 17], and those designed specifi-
cally for embedded systems [20] with smaller memory foot-
prints, can still incur, in the worst case, as much as 240%
processing overhead. ARMor [20] also requires application
designers to provide a formally specified policy against which
memory accesses are checked at runtime—a task which could
place a significant burden on system designers, hindering
their ability to rapidly deploy new mHealth applications. In
contrast, Amulet is designed to reduce the runtime overhead
of isolating apps by preventing dangerous operations at the
programming language-level and by checking the majority of
memory accesses and other unsafe operations at compile-time.
Our approach uses static analysis and dynamic checks, similar
in principle to those used in XFI [9], to detect and prevent
unsafe operations; however, Amulet operates on higher-level
language constructs, instead of machine-code, and a more re-
strictive programming model that requires less runtime mem-
ory and processing overhead.

App designers implement Amulet event handlers using a
simple variant of the C programming language, which allows
programmers to use familiar programming constructs, and
facilitates efficient code generation, while excluding many
of C’s riskier features. Access to arbitrary memory locations
(pointers), arbitrary control flows (goto statements), and in-
line assembly, for example, are excluded from the language
specification. Since array accesses in C are implemented

using equivalent pointer operations, we modified the array
syntax, so that arrays can be passed to functions by refer-
ence explicitly (not as pointers). In Amulet, arrays also have
an associated length that allows for runtime bounds check-
ing, when access behaviors cannot be adequately checked
statically.

At compile time, the Amulet event handlers are checked
for additional unsafe operations before being translated into
C code that can be combined with the Amulet core and the
other apps into a single firmware. Specifically, the translator
statically analyzes the app’s function call graph and detects
recursive calls, attempts to access registers directly, and calls
to functions not in the Amulet API and not defined by the app
designer. Excluding recursive calls protects against crashes
and data corruption due to unbounded stack growth, and
allows the compiler to accurately predict the app’s memory
requirements (i.e., depth of the call stack) at any point in its
operation.

Finally, in order to prevent naming collisions (intentional
or otherwise) between two apps’ functions, the Amulet com-
pilation tools will prepend an app’s global variables, function
declarations and invocations with a unique app identifier. This
effectively creates an independent namespace for each app
and prevents an app from inadvertently or intentionally calling
another’s functions.

3.4 Secure Logging
The Authorization Manager in the amulet logs every re-

quest that it receives and its result (whether it was granted
or not) in an append-only fashion. When the Authorization
Manager receives a request, it verifies its authenticity and in-
tegrity. If the verification is successful, then it evaluates the
request against the local policies. The Authorization Manager
finally logs the request and its result, including the identity
of the app that made the request. If the verification fails, then
the request will be logged without being evaluated – against
local policies – and the request would not be granted. In
the latter case, the Authorization Manager could be set – by
the amulet’s owner or her caregiver – to optionally alert the
amulet’s owner when the Authorization Manager has received
numerous fake requests. This would allow an owner to be-
come aware of a misbehaving or misconfigured app. The
option of making the owner aware of such repeated requests
could also help in preventing a misbehaving app from fill-
ing the amulet’s logging memory or exhausting its battery
processing requests.

4 Preliminary Implementation
We implemented the core elements of the Amulet archi-

tecture using development boards to explore the feasibility of
our approach and the tradeoffs between computational capa-
bilities and power efficiency. We have also built a wearable
amulet prototype that we designed in order to deploy and test
Amulet applications. At the time of writing this paper, none
of the smart watches on the market are sufficiently open or
contain all the hardware components to do low-level software
development and prototyping.

We explored two hardware configurations, both consisting
of a base tier and an application tier. The base tier is simply
a radio, which we used in both cases: an ANT Integrated
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Circuit (IC) by Nordic (nRF51422). For the application
tier, we explored three possible microcontrollers: an ARM
Cortex-M4f by Texas Instruments, an ARM Cortex-M3 by
Energy Micro, and an MSP430 by Texas Instruments. The
MSP430 MCU requires less power than the ARM MCUs
in general and has a non-volatile memory technology called
FRAM. FRAM offers persistent storage without power, and is
one hundred times faster than flash [18]. During use, FRAM
uses 250 times less power than flash (≈ µA at 12kB/s) [18].

We implemented the Amulet services and managers in C.
The Sensor Manager, Actuator Manager, Storage Manager,
Network Manager, Inter-processor Communication Manager,
Crypto Service, and Authorization Manager each consist of
two parts, an event-driven application — which we imple-
mented in a similar way to Amulet apps — and a set of
routines that have access to lower level drivers. The event-
driven part allows these managers to receive and process event
messages. The set of routines with low level access are not
available to Amulet apps.

We implemented the base tier as an event-driven finite
state machine. We implemented two devices to simulate a
heart-rate monitor and a galvanic skin response sensor that
communicate via ANT with our amulet prototype. These
devices are development boards with a similar ANT SoC as
in our prototype (nRF51422). Our approach to secure network
communications is beyond the scope of this paper.

As described in Section 3.3, we propose a variant of
C language, which would be used by developers to write
apps. To translate the source code from this variant to C,
which can then be compiled, we used the parser generator
tool ANTLR [2]. We modified a C grammar, distributed by
ANTLR, to remove pointers, jumps, and inline asm, and gen-
erated a parser for this modified grammar. The code that is
passed to the translator is parsed into a parse tree, and the
translator walks the parse tree to verify whether recursions
exist; change the way arrays are passed as parameters to func-
tions; change element assignment in arrays to verify if the
index is within bounds; and also modify all array accesses as
we describe in Section 3.3. The translator verifies whether the
code that is passed to it is devoid of all such restricted usage
and returns the translated code or an error as per the case.

We did not implement the cloud service. For our current
approach, developers would have to submit the signed sources
of their apps so that the cloud service could verify the source
code’s authenticity and integrity. Upon successful verification,
the cloud service would check it for compliance. When the
code is compliant, the service will combine it with other
applications and the rest of the Amulet’s source code to create
a binary with metadata that is signed by the cloud service.

5 Preliminary Measurements
This paper describes a secure architecture for mHealth

applications for low-power wearable devices. We listed as
general goals for this architecture: (i) security, (ii) high avail-
ability, and (iii) customizability via the deployment of mul-
tiple third-party mHealth applications. A thorough security
analysis to justify that Amulet meets (i) is beyond the scope of
this paper because such analysis would require significantly
more space. Goal (iii) is met by design. Therefore, this sec-

tion focuses on providing evidence to support the hypothesis
that Amulet meets (ii). This high-availability goal requires
that an amulet uses low power. Therefore, it is necessary that
(a) the application tier uses a negligible amount of power most
of the time; (b) the idle consumption of the overall system
is low; and (c) the base tier – including the radio – uses a
small amount of power. There are a number of academic
and industry efforts to try to achieve (b) and (c). Therefore,
a major focus of our preliminary work is to investigate the
extent to which our software architecture provides a secure
runtime system that satisfies (a). Our measurements on the
nRF51422 board show that a full system can achieve an av-
erage idle current draw of 0.01 µA, and the MCU driving
the ANT radio can have a receiving channel, get 10 Hz data
from a low power accelerometer, and send all the data to the
application tier while drawing an average of 0.077 mA.

The application tier’s current draw depends on which MCU
is used, as well as other peripherals. Each time the application
tier wakes up, it performs a small set of operations, drives
peripherals, and turns itself off again. The power consumption
by the MCU will be the power required to resume and run the
workload. Low-power microcontrollers, such as the Texas
Instruments MSP430 or the EnergyMicro Giant Gecko (ARM
Cortex-M3) resume fast (in 11 ms and 17 ms respectively).
The Giant Gecko resumes quickly because it supports a deep
sleep mode with memory retention.

To put this into perspective, consider an application whose
workload requires the application tier to work for 70 ms
every 2 seconds and remains off otherwise. If the amulet
has 150 mAh battery capacity, it could last over 35 days
between charges. Optimizations such as wake-on-motion
could increase that lifetime.

Android or Linux would take significantly longer to re-
sume from an off state. For example, the Linux version
(Linux4SAM) provided by the manufacturers of the applica-
tion processor Atmel SAMA5D3 suspends/resumes from a
suspend to non-volatile storage state (also called hibernation)
in more than 15 seconds requiring 0.70 mAh. While sus-
pending to RAM takes approximately 300 ms, the processor
remains in a low-power mode that draws over 9 mA and the
memory would still have to be powered.

An additional benefit from our light approach is that the
size of the trusted computing base is much smaller. The com-
bined implementations of the core Amulet services, includ-
ing drivers and event framework, compiles to approximately
15 KB. In comparison, in the Motorola MOTOACTV [13]
5.6.0 firmware, the embedded JVM is 656 KB, the Android
kernel is 2.7 MB (compressed), and the entire firmware distri-
bution is 71 MB.

Finally, we explored the extent to which our approach
for achieving application isolation would require program-
mers to manually rewrite existing C programs to make them
Amulet-compatible. We identified four algorithms that are
commonly used in mobile health applications, including FFT,
Butterworth Filter, Peak Detection, and Cross Correlation
(See Table 1). Developers can build complex algorithms,
such as feature extraction for machine learning, using these
algorithms. We considered two implementations for each
algorithm: one automatically generated by translating Matlab
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Figure 1. Translator Evaluation.
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Peak FFT Filter Xcorr
0

2

4

6

8

10

12
R

A
M

(K
B

)
Original
Translated

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
e
n
a
lt

y
 (

P
e
rc

e
n
t)

Penalty

(d) RAM (Matlab Coder)

Table 1. Modifications for Translation.
Modifications/Original

Algorithm Human(LOC) Matlab(LOC)

FFT 0/98 0/332
Filter 0/94 10/317
Peak 9/110 40/1840
Correlation 0/80 0/164

implementations to C (via Matlab Coder), and a second im-
plementation coded by a human programmer [15, 10, 19, 6].
We fed these C implementations to our translator, and 5 of 8
required no manual modifications. The remaining required
minimal modification due to the use of dynamic memory
allocation or the use of pointers. The implementation that
required the most changes was a 1840 LOC (lines of code)
peak-detection algorithm that needed 40 LOC modified to
make it Amulet-compliant. While the performance overhead
(CPU and RAM) of the original and translated code varies by
program, we observed an average increase of 21% in CPU
and a 14% increase in RAM usage when using the trans-
lated code (see Figure 1). These increases result from the
additional code inserted to do array-bounds checking, but we
expect to reduce this overhead through well-known compiler
optimization methods.

6 Conclusions
This paper presents Amulet, a software architecture for

mHealth networks (MHNs) that allows multiple third-party
applications to run on a low-power wearable device, while
sharing managed resources securely. Our security analysis
demonstrates the extent to which Amulet addresses the de-
sired security goals for the trustworthy management of re-
sources in an MHN. Our implementation of Amulet on our
own amulet prototype demonstrates the practicality of our
approach. Our security mechanisms have minimal compu-
tational and storage overhead. A low-power amulet can run
sophisticated mobile applications for longer periods of time
than a wearable device running Android or Linux with the

same power budget. In particular, an amulet can run for up
to 35 days with a 150mAh battery. A wearable running on
Linux would drain the same battery in less than 10 hours
without necessarily providing security.
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