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ABSTRACT

Photometry with the Hubble Space Telescope Advanced Camera for Surveys (HSTACS) reveals that the subgiant
branch (SGB) of the globular cluster NGC 1851 splits into two well-defined branches. If the split is due only to an age
effect, the two SGBs would imply two star formation episodes separated by �1 Gyr. We discuss other anomalies in
NGC 1851 that could be interpreted in terms of a double stellar population. Finally, we compare the case of NGC 1851
with the other two globulars known to host multiple stellar populations, and show that all three clusters differ in several
important respects.

Subject headinggs: globular clusters: individual (NGC 1851) — Hertzsprung-Russell diagram

1. INTRODUCTION

For many decades, globular clusters (GCs) have been consid-
ered the simplest possible stellar populations, made up of stars
located at the same distance, formed at the same epoch and from
the samematerial. Although anomalies had been noted from time
to time in the abundances of a number of individual elements
(see discussion in Gratton et al. 2004), the description of popula-
tions in terms of a helium abundance and an overall heavy-element
abundance seemed firm. The ‘‘second-parameter problem’’ has
continued to be a pain for many decades, and unusual horizontal-
branch (HB) morphologies were turning up more often, but the
implications for the origin and evolution of GC stars remained am-
biguous. Similarly, theoreticians had predicted that self-enrichment
(Cotrell &DaCosta1981; Ventura et al. 2001; Ventura&D’Antona
2005; Maeder &Meynet 2006) or mergers might generate multiple
populations in clusters, but such predictions remained controversial
(see, e.g., Fenner et al. 2004; Bekki & Norris 2006) and had little
observational basis. Most important for our discussion here, the
idea of one clear sequence in each part of the HR diagram of each
cluster stood firm.

Now, however, the paradigm of GCs hosting simple stellar
populations has been seriously challenged by the discovery of
multiple evolutionary sequences in!Centauri (Bedin et al. 2004)

and NGC 2808 (Piotto et al. 2007, hereafter P07). In both clusters
the evidence that stars must have formed in distinct bursts is the
presence of multiple main sequences (MSs). However, the two
objects differ in at least two important aspects: the stars of ! Cen
have a large spread in metal content, whereas in NGC 2808 only
oxygen and sodium are observed to vary much. ! Cen shows at
least four distinct subgiant branches (SGBs), implying a range of
ages, while the narrow turnoff (TO) in NGC 2808 implies that
there is little or no difference in age among its populations. One
more cluster, M54, shows a complex color-magnitude diagram
(CMD; see, e.g., Layden&Sarajedini 2000), including a bifurcated
SGB (Siegel et al. 2007, Paper IV of this series). This cluster has
been shown, however, in too many papers to cite here, to be a part
of the Sagittarius dwarf galaxy that is in the process of merging into
theMilkyWay, and very possibly the actual nucleus of that galaxy.
(Actually, it is still matter of debate which parts of the CMD of
M54 represent the cluster population and which ones are due to
the Sagittarius stars.) Even though ! Cen could very well repre-
sent a similar situation, we feel that M54 is very different from the
clusters thatwe discuss here, andwewill therefore not include it in
the discussions of this paper.

The puzzling observational facts for ! Cen and NGC 2808 call
for a more careful analysis of theMS, TO, and SGB of other GCs.
In this respect, the CMD database from the Hubble Space Tele-
scope (HST ) Treasury program GO-10755 (see Sarajedini et al.
2007) provides a unique opportunity to search for anomalies in
the different evolutionary sequences of other Galactic GCs. Even
though the narrow F606W� F814W color baseline is far from
ideal for identifying multiple MSs, our observing strategy was
devised to have a very high signal-to-noise ratio (S/N) at the level
of the TO, and therefore the CMDs are perfectly suitable for iden-
tifying multiple TO/SGBs, such as those found in ! Cen. (New
HSTobservations specifically devoted to the identification of mul-
tipleMSs are already planned for other massiveGCs, in GO-10922
and GO-11233.)

Indeed, a first look at the entire Treasury database showed at
least one other GCwhose CMD clearly indicates the presence of
multiple stellar populations: NGC 1851. AlthoughNGC 1851 is a
massive GC with a prototypical bimodal HB, not much attention
has been devoted to the study of its stellar population. The most
complete photometric investigation of this cluster is by Saviane

1 Based on observations with the NASA/ESAHubble Space Telescope under
the programs GO-10775 and GO-5696, obtained at the Space Telescope Science
Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

2 Dipartimento di Astronomia, Università di Padova, Vicolo dell’Osservatorio 3,
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3 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore,
MD 21218.

4 Department of Physics and Astronomy, MS 108, Rice University, 6100
Main Street, Houston, TX 77005.

5 Department of Astronomy, University of Washington, Box 351580, Seattle,
WA 98195-1580.

6 Department of Astronomy, University of Florida, 211 Bryant Space Science
Center, Gainesville, FL 32611.

7 Department of Physics and Astronomy, Dartmouth College, 6127 Wilder
Laboratory, Hanover, NH 03755.

8 Instituto deAstrofı̀sica deCanarias, E-38200LaLaguna, Canary Islands, Spain.
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et al. (1998), and the most extended spectroscopic analysis was
done over 25 years ago, byHesser et al. (1982). Saviane et al. (1998)
confirmed the bimodal nature of the HB of NGC 1851, but did not
find any other anomaly in its CMD. Hesser et al. (1982) found that
three out of eight bright red giant branch (RGB) stars have ex-
tremely strong CN bands.

The present paper is based on new photometry of NGC 1851,
from HST Advanced Camera for Surveys (ACS) imaging and
from archival Wide Field Planetary Camera 2 (WFPC2) images.
Section 2 describes the data sets, and x 3 presents the CMD from
the ACS data, with a split in the SGB clearly visible. In x 4 we
use theWFPC2 data, both for proper-motion elimination of field
stars and to construct a CMDwith a broader wavelength baseline,
which we use to set a severe upper limit on any spread in the MS.
Section 5 discusses the properties of the SGB and of the HB, and
shows that the two parts of each have the same spatial distribution.
Section 6 considers the ages of the two populations, and x 7 is a
discussion and summary.

2. OBSERVATIONS AND MEASUREMENTS

The main database used in this paper comes from HST ACS
Wide Field Channel (WFC) images in the F606W and F814W
bands, taken for GO-10775 (PI: A. Sarajedini). In addition, we
useHSTWFPC2 archive data fromGO-05696 (PI: R. C. Bohlin)
to extend the wavelength range to the blue, as well as to obtain
proper motions. The data sets are summarized in Table 1.

The photometric and astrometric measurements weremade for
bothWFPC2 andACSusing the algorithms described byAnderson
&King (2000, 2006). Each imagewas reduced independently, with
the observations averaged to produce a single flux for each star in
each filter. We put the WFC photometry into the VEGAMAG sys-
tem following the procedures in Bedin et al. (2005), and adopting
the encircled energy and zero points as given by Sirianni et al.
(2005). WFPC2 data were photometrically calibrated following
Holtzman et al. (1995). The proper motions were derived as in
Bedin et al. (2006).

Breathing can change the focus of the telescope, which can
result in small spatial variations of the point-spread function
(PSF) relative to the library PSF, and consequently in small spa-
tial variations of the photometric zero point. In order to deal with
any residual PSF variation, we used a method similar to the one
described in Sarajedini et al. (2007) to perform a spatial fit to the
color residuals relative to the main-sequence ridge line (MSRL),
and remove them. In this case, however, the corrections were made
only to colors, rather than along a reddening line, because, as noted
in x 3, the reddening of NGC 1851 is so small that what we are
correcting is surely differences between the spatial variations of
the PSF in the two filters, rather than differential reddening. The
spatially dependent correction was at the level of �0.01 mag,
and merely sharpens the sequences a little.

3. THE ACS WFC COLOR-MAGNITUDE DIAGRAM

In Figure 1 we show the color-magnitude diagram (CMD) for
the ACS WFC photometry. The left panel shows the original
CMD. The main result is already evident: the subgiant branch
(SGB) is split into two distinct branches. The right panel shows
the CMD after the correction for the spatial variation of the color
zero point. The SGB split is still there, and there are clearly two
sequences down to the cluster turnoff (TO). No separation is
evident in the main sequence (MS). It must be immediately noted
that because of the narrowness of the MS below the TO, the SGB
broadness can be due neither to any residual spatial variation of
the zero point nor to any differential reddening, which is expected
to be negligible because of the low reddening of NGC 1851
[E(B� V ) ¼ 0:02; Harris 1996].
The two SGBs remain separated by�0.1mag in the magnitude

interval 18:0 < mF606W < 19:0, over the color interval 0:5 <
mF606W � mF814W < 0:6. Hereafter wewill refer to the two SGBs
as bSGB and fSGB, where b stands for brighter and f stands for
fainter.
!Cen and NGC 2808 also show evidence of multiple popula-

tions, but we note that the split in the SGB of NGC 1851 is quite
different fromwhatwe found in the former two cases. InNGC2808,
the MS splits into three distinct sequences a couple of magnitudes
below the TO, but the SGB shows no evidence of splitting. In !
Cen, both the SGB and theMS show evidence of splitting. Here,
it is only the SGB that is split. We will see that the MS of NGC
1851 appears consistent with a single population.

4. THE WFPC2 DATA

4.1. Proper Motions for Field Decontamination

We used the archival WFPC2 images as a first epoch to deter-
mine proper motions. WFPC2 has a field of view that is only
�50% of the ACS field, and the crowding prevented us from
measuring goodWFPC2 positions for stars within 500ACSWFC
pixels of the cluster center. This somewhat reduces the size of
our sample.
In the left panel of Figure 2 we show the CMD, using the

F336Wmagnitudes from theWFPC2 images and the F814Wmag-
nitudes from the ACS images. The second column shows the
proper-motion diagrams of the stars for four different magnitude
intervals. It should be noted that we measure proper motions
relative to a reference framemade up of only cluster members, so

TABLE 1

Description of the Data Sets Used in This Work

Date

Exposures

(s) Filter Program

WFPC2

1996 Apr 10 ..................... 4 ; 900 F336W 5696

ACS WFC

2006 Jul 1 ........................ 20 + 5 ; 350 F606W 10775

2006 Jul 1 ........................ 20 + 5 ; 350 F814W 10775

Fig. 1.—Left: Original CMD. Right: CMD corrected for spatial variation of
the photometric zero point of color.
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that the zero point of our motions is the mean motion of the
cluster. In the third column the magnitudes of the proper-motion
vectors are plotted against stellar magnitude. The errors clearly
increase toward fainter magnitudes. The line was drawn in order
to isolate the stars that have member-like motions, and was de-
rived as follows. First, we note that in our study of SGB stars it is
more important to have a pure cluster sample than a complete
one, so we make a conservative choice. Taking each interval of
1 mag in F336W, we begin by estimating the � of the member-
like motions. To do this we find the size of proper motion that
includes 70% of the stars; for a bivariate Gaussian this radius
should lie at 1.552 �, where � refers to each dimension. We then
plot a point at 2.448 �, which is the size that should include 95%
of the cluster stars. We use spline interpolation to draw a line
through these points, and choose all the stars to the left of the

line. By giving up 5% of the cluster stars we effectively exclude
nearly all of the field stars. The rightmost panel shows the CMD
of our chosen cluster stars.

In Figure 3 we summarize the results. The top left panel shows
a zoomed CMD around the SGB for the stars in our proper-
motion-selected sample. Stars marked in red are bSGB stars
(119 objects), and the ones in blue are fSGB stars (88 objects). In
the bottom right panel is the vector point diagram for the same
stars. The two SGBs seem to have the same proper-motion distri-
bution. To show this more clearly, in the adjacent panels we plot
normalized histograms of the separate components of the proper
motions, for the stars of the three groups separately. Gaussian fits
are also shown.

A side benefit of proper-motion cleaning is that it also removes
from the CMD stars that did not have well-measured positions.

Fig. 2.—Left: F336W vs. F336W� F814W CMD for all stars. Second column: Proper-motion diagram of the stars in the left panel, in intervals of 1.5 mag. Third
column: Total proper motion relative to the cluster mean proper motion. Right: Proper-motion-selected CMD.
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These stars tend to have poor photometry as well, so removing
them naturally improves the quality of the CMD.

4.2. Wide Color Baseline

The second benefit of the WFPC2 data is that they provide a
much better color baseline than the ACS data alone; our study of
NGC 2808 (P07) showed that a wider color baseline yields a
more significant splitting of the main sequence (MS). The CMD
in Figure 2 shows F336W versus the F336W� F814W color. The
SGB split is evenmore clear in this figure than in theV � I CMD
of Figure 1 from the ACS data alone—but what is more im-
portant is that we now have a better opportunity to study any
possible color spread in theMS. Any limits on the intrinsic width
of the MS will translate directly into upper limits on spreads in
the helium and heavy-element abundances, since age differences
have little effect below the turnoff (TO). (We note, however, the
possibility that simultaneous changes in He and heavy elements
could have effects that offset each other.)

Figure 4 shows the color distribution of the MS stars. The left
panel repeats a part of the proper-motion-selected CMD that we
showed in Figure 2. In order to derive the main sequence ridge
line (MSRL) we divided the CMD into intervals of 0.2 mag in the
F336W band and computed the median color in each interval. By
fitting these median points with a spline, we obtained a raw fiducial

line. Then for each star we calculated the difference in color with
respect to the fiducial, and took as the� the location of the 68th per-
centile of the absolute values of the color differences. All stars with
a color distance from theMSRL greater than 4 �were rejected, and
themedian points and the �were redetermined. The center panel of
Figure 4 shows the same CMD as the left panel, but after sub-
tracting from each star theMSRL color appropriate for its F336W
magnitude. Finally, the right panel shows the histograms of the
color distributions in five different magnitude intervals.
The color distribution is fairly well reproduced by a Gaussian,

and there is no evidence of a split of the MS, such as observed in
! Cen or NGC 2808. Since most of the error in color will come
from theWFPC2 photometry, which will at best have an error of
0.02 mag (Anderson &King 2000), a 0.01 mag color error in the
WFC (Anderson & King 2006) will give us an expected color
error of 0.025mag frommeasuring error alone.As Figure 4 shows
that the MS broadening can be represented with a Gaussian with
� � 0:05, we obtain an upper limit for the intrinsic color disper-
sion of the MS of NGC 1851 of �MS ¼ 0:04.

5. TWO STELLAR POPULATIONS IN NGC 1851

In this section we will derive the basic properties of the two
SGBs, and consider whether other features in the CMD may in-
dicate the presence of two stellar populations in NGC 1851.

Fig. 3.—Top left: Same CMD as in Fig. 2, zoomed around the SGB: bSGB stars in red, fSGB stars in blue. Bottom right: Proper motions, with same color coding. The
other two panels show histograms of the individual components of proper motion.
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5.1. SGB Population Ratios

Figure 5 shows how we fitted Gaussians to the magnitude
distributions of the bSGB and fSGB stars to estimate their num-
ber ratio. The top panel of the figure is a blowup of the part of
the SGB where the split occurs. The gray line is a fiducial line
through the bSGB. We drew it by marking the middle magni-
tude level of bSGB at four equally spaced points and drawing a
line through them by means of a spline fit. In the middle panel
the magnitude of each star has had subtracted from it the mag-
nitude of this fiducial line at the color of the star. For the analysis
that was to follow, we divided the color range into four sections,
as shown.

In each section we estimated the fraction of stars in each of
the SGBs, as follows. Our aim was to fit the magnitude distri-

butions in the two branches by a pair of overlapping Gaussians,
but we felt the need to eliminate outliers, especially in the bluest
color section. This we did by making a preliminary least-squares
fit of the Gaussians, using all of the stars. We then repeated the
solution, but omitting the stars that lay more than 2 � above the
midpoint of theGaussian for bSGBormore than 2� below themid-
point of the Gaussian for fSGB (using in each case the � of the
corresponding Gaussian). In the middle panel of Figure 5 the hor-
izontal lines show the midpoints of the final Gaussians. The gray
dashed line runs 2 �b on the bright side of the bSGB, and the black
dashed line runs 2 �f on the faint side of the fSGB (where the
� values are those of the best-fitting Gaussians in each color sec-
tion, fitted to the distributions of the bSGB and fSGB stars, re-
spectively). The stars rejected consist of field stars, objects with
poor photometry, or binaries (brighter than the bSGB). We have

Fig. 4.—Left: Same CMD as shown in the right-hand panel of Fig. 2, with our MSRL overplotted.Center: The CMD, rectified by subtraction of theMSRL. Right: Color
distribution of the rectified CMD. The � values in the inset are those of the best-fitting Gaussians.
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also marked in the top panel of Figure 5 the values of the Gaussian
centers of the two SGBs with large dots, and the splines through
them with solid lines. The crosses are the Gaussian centers of
bSGB raised by 2 �b, and the black crosses are those of f SGB
lowered by 2 �f . In each case the dashed lines are a spline fitted
through the crosses.

The bottom panel of Figure 5 shows the histogram of themag-
nitude distribution in each section of the middle panel, and the
best-fitting Gaussians. The numbers reported in the figures give
the percentage of total area under each of the two Gaussians,
i.e., the percentage of bSGB (gray) and fSGB (black) in each
interval.

Fig. 5.—Top: F606W vs. F606W� F814W diagram zoomed around the SGB. The gray solid lines show the adopted fiducial lines for the bSGB and the fSGB; the
other lines are explained in the text. Middle: Same diagram, after subtraction of the bSGB fiducial line. The lines are explained in the text. Bottom: Distribution in
magnitude of the bSGB stars (gray) and fSGB (black). The numbers indicate the fraction of stars in each SGB, as the area of the best-fitting Gaussians, shown in the plot.
(See the text for more details.)
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When we added up, for each SGB, the areas under the four
Gaussians fitted to the separate sections, we found that 55% of
the stars belong to the bSGB, and 45% to the fSGB. Although the
expected � of samplings from a binomial distribution of more than
1000 stars, with a probability of 0.55, is less than 2%, we estimate
that our observed 55/45 split really has an uncertainty that is more
like 5%. This estimate is based on the differing results of several
different ways of fitting the Gaussians (e.g., as simple a thing as
changing the bin width of the histograms).

As for the intrinsic width of each SGB, the dispersions in
magnitude of the two Gaussians in the color sections where the
two SGBs are well separated are of order 0.02 mag, consistent
with the uncertainties in our corrections for spatial variation of
the PSF. (Paradoxically,WFC colors are more accurate thanWFC
magnitudes, because these corrections are what limits the accu-
racy of high-S/N photometry, and in the case of colors the cor-
rections are only for the difference in behavior of the PSF through
two different filters.)

5.2. Spatial Distribution of the SGB Stars

Figure 6 shows the spatial distributions of the two SGB com-
ponents. We select the two SGB subsamples as shown in the top
left panel, and plot the spatial distributions in the top right panel.

Stars from both groups have similar spatial distributions. This
is also confirmed by the cumulative radial distributions shown
in the bottom panel. The Kolmogorov-Smirnov statistic shows
that in random samplings from the same distribution a difference
this large would occur 11% of the time, which is very reasonable
for the hypothesis that the two SGBs have the same distribution.

5.3. The Horizontal-Branch Stars

Since the WFC data set included short exposures, we can also
examine the horizontal-branch (HB) population. Figure 7 shows
the upper part of the F606Wversus F606W� F814WCMD. The
NGC 1851 HB is clearly bimodal. Interestingly enough, the red
HB contains 63% � 7% of the total red + blueHB stars (242 stars),
and the blue part contains 37% � 9% of the red + blue HB stars
(143 stars). Note that some stars populate the RR Lyrae gap. It is
difficult to extract RR Lyrae variables from the small number of
exposures that went into Figure 7, with each star caught at random
phases in each color band. In any case, the contribution of the RR
Lyrae stars to the total population of the HB stars is <10% (see
Saviane et al.1998;Walker1992). As in the case of the bSGB and
fSGB, stars from the red and blue HB groups have similar spatial
distributions (see top right panel of Fig. 7). This is also confirmed
by the cumulative radial distributions shown in the bottom panel.

Fig. 6.—Top right: Spatial distribution of the bSGB and fSGB stars. Top left: Selection of the bSGB stars (red dots) and fSGB stars (blue dots). Bottom: Cumulative
radial distributions of the bSGB and fSGB stars.
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The Kolmogorov-Smirnov statistic shows that in random sam-
plings from the same distribution a difference this large would
occur 17% of the time, so here too there is no significant indi-
cation of a difference in their radial distribution.

Neither for the SGB stars nor for the HB stars is the distribu-
tion of the two samples significantly different. It would obviously
be desirable to strengthen the statistics by combining the two sets
of counts, but unfortunately this is not possible, because the in-
completenesses in star counts at the HB and at the SGB level are
different.

On the basis of the relative numbers of red to blue HB stars
and of bSGB to fSGB populations, it is very tempting to connect
the bSGB (which includes 55% of the SGB stars) with the red
HB, and the fSGB (45% of the SGB stars) with the blue HB
stars.

6. THE AGES OF THE TWO POPULATIONS

The dispersion in the MS in F336W� F814W is less than
0.04mag. Such a narrowmain sequence (MS) implies that either
the two SGBpopulations have the samemetallicities and the same
helium abundances, or some fortuitous combination of abundances
that results in noMS split. Comparison with the theoretical mod-
els of Dotter et al. (2007) provides an upper limit to a possible

dispersion in [Fe/H] of 0.1 dex or in helium abundance of
�Y ¼ 0:026, if each of the two is assumed to act alone. We are
not suggesting that such spreads exist; we merely state upper
limits to what might be present.
We note that if we just increase the He abundance, there will

be no appreciable effect on the SGB luminosity. Helium alone
cannot explain the observed SGB split. On the other hand, a
population 0.2 dex more metal-rich would have an SGB that is
fainter by �0.12 mag, and therefore it would be able to explain
the SGB split. However, such a high difference in [Fe/H] is ruled
out by the narrowness of the MS. We have also looked at the
color distribution of the red giant branch (RGB) and found no evi-
dence of a split, and found an RGB color dispersion consistent
with the photometric error, confirming that any dispersion in
[Fe/H] alone must be much smaller than 0.2 dex.
Note, however, that increasing [Fe/H] makes the MS redder,

while increasing helium makes the MS bluer. Thus if, as a mere
working hypothesis, one increases [Fe/H] by 0.2 dex (enough to
explain the SGB split), while changing Y from 0.247 to 0.30,
then the two effects cancel each other out, and theMSwould have
the same color. The same would happen on the RGB: an [Fe/H]
content 0.2 dex higher would move the RGB to the red, but the
RGB would be moved to the original color in the presence of a

Fig. 7.—Same as in Fig. 6, but for the HB.
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He content Y � 0:30. In this way we would be able to reconcile
the SGB split with the low dispersions in the MS and RGB.
(Clearly, this kind of conspiracy cannot be ruled out until we
have high-resolution spectra to measure the metal content of the
NGC 1851 stars.) However, there is additional observational evi-
dence that seems to rule out such an unlikely coincidence. A
change in [Fe/H] of +0.2 dex would imply a horizontal branch
(HB) 0.03Y0.04mag fainter, while the suggested Yenhancement
would end with a bluer HB that is �0.2 mag brighter. The re-
sulting sloping of the HB is not observed in Figure 7.

The only remaining possibility of explaining the SGB split is
therefore to assume that in NGC 1851 there are two stellar pop-
ulations with similar metallicity and He content, but with dif-
ferent ages. Figure 5 shows that the two SGBs are separated
vertically by �0.1 mag in F606W. Comparison with the theo-
retical models of Dotter et al. (2007) shows that this separation
corresponds to an age difference of �1 Gyr, with the fSGB older
than the bSGB.

7. DISCUSSION

In this paper we have shown that the SGB of the Galactic GC
NGC 1851 is split into two distinct branches. If the split is in-
terpreted in terms of age, its width implies that the two populations
were formed at epochs separated by�1 Gyr. As discussed in the
previous section, the age difference seems a possible explanation
for the peculiar SGB.

The SGB split is not the only observational evidence of the
presence of more than one population in NGC 1851, although it
is probably the clearest one.We have already noted that NGC 1851
has a bimodalHB, and that theremight be a connection between the
two SGBs and the two HB sections. The relative frequency of stars
in the different branches implies that the progeny of the bSGBare in
the red part of the HB, while the progeny of the fSGB are on the
blue side of the instability strip. This is what one would expect
qualitatively from stellar evolution models, although an age dif-
ference of only 1 Gyr is not enough to move stars from the red to
the blue side of the HB. Our models indicate that to move stars
from the red to the blue side of the RR Lyrae gap would require
an age difference of �2Y3 Gyr. Some additional parameter, or
combination of parameters, must be at work in order to explain
the morphology of the HB of NGC 1851.

There is another relevant observational fact that must be men-
tioned. Hesser et al. (1982) found that three out of eight of their
bright RGB stars show ‘‘extraordinarily strong’’ CN bands. These
stars also show enhanced Sr ii and Ba ii lines, and lie systemati-
cally on the red side of the RGB. In other words, �40% of their
sample of bright RGB stars contains CNO-processed material.
This material could come from the interior of these stars through
mixing processes, but after what we have learned from ! Cen
and NGC 2808 we cannot exclude the possibility that this pro-
cessed material comes from a first generation of stars that pol-
luted the gas from which the CN-strong stars have formed. This
hypothesis would be further supported if Sr and Ba are also
confirmed to be enhanced (as the spectra of Hesser et al. [1982]
seem to imply), as these elements cannot be produced in the low-
mass stars presently on the RGB of NGC 1851.

Unfortunately, the results by Hesser et al. (1982) are based on
a very limited sample of stars; a more extended spectroscopic in-
vestigation is clearly needed. Meanwhile, it is rather instructive
to look at the CMDpublished byGrundahl et al. (1999), based on
Strömgren photometry. Among the 15 CMDs in their Figure 1,
NGC 1851 shows by far the broadest RGB, with some hint of a
bimodality. This bimodality is not visible in our narrow color

baseline F606Wversus F606W� F814WCMD, but the capability
of Strömgren photometry to distinguish stellar populations with
different metal content (in particular CN content) is well known,
and the CMD of Grundahl et al. (1999) tends to confirm the re-
sults of Hesser et al. (1982). We have investigated the possibility
that an enhancement of C or N, or of both elements, can be the
cause of the observed SGB split. Hesser et al. (1982) found that
model spectra with ½C/A� ¼ þ0:2 and ½N/A� ¼ þ0:5 (where they
define [A/H] as the logarithmic relative abundance of all heavy
elements in the theoretical models), or else model spectra with
½C/A� ¼ 0 and ½N/A� ¼ þ1:0 could fit the observed spectra
equally well. A detailed analysis of the effect of C and N over-
abundances is beyond the scope of the present paper. Furthermore,
before such an analysis is justified we will need better abundance
constraints, which would require fitting a larger sample of stellar
spectra with modern atmospheric models.

Here we note that one possible consequence for a second
generation of stars is indeed an increased CNO abundance from
mass lost after the third dredge-up in intermediate-mass asymptotic
giant branch (AGB) stars from an earlier generation (see dis-
cussion in Ventura&D’Antona [2005] andKarakas et al. [2006]).
The spectroscopic results of Hesser et al. (1982) suggest enhanced
levels of C and N but do not include an analysis of the oxygen
abundance, due to a lack of measurable features in the spectra.
(This further underlines the need for a new study.) It is, however,
possible that the Cþ Nþ O amount is enhanced to some extent,
although at the moment we cannot quantify this enhancement.
The CNO enhancement is an important observational input, as
the level of enhancement would allow us to better identify the
possible polluters from the first generation of stars.

The presence of CNO enhancement would affect the age dif-
ference between the two populations. A CNO enhancement of
+0.3 dex would reduce the age difference between the two SGBs
to 300Y500Myr. Under this hypothesis, we estimate a gap in the
SGB of �0.07mag due to the composition alone, and an additional
0.03Y0.05 mag displacement due to the age difference, fully ac-
counting for the observed magnitude difference between the two
SGBs.

Larger CNO enhancements would further reduce the age gap
between the two generations of stars, down to a few hundredmega-
years, as expected in the intermediate-mass AGB star pollution
scenario (Ventura et al. 2002). We note that if the CNO enhance-
ment in second-generation stars of NGC 1851 is confirmed, NGC
1851 might differ from other GCs, in which the sum of CNO
elements for normal and self-enriched stars seems to be constant
(Cohen & Meléndez 2005). New spectroscopy of stars in NGC
1851, along with the photometry presented in this paper and de-
tailed modeling, can significantly improve our understanding of
this intriguing situation.

NGC 1851 is the third GC for which we have direct evidence
of multiple stellar generations. All three clusters seem to differ in
several important respects, however:

1. In ! Cen, the multiple populations manifest themselves
both in a main-sequence (MS) split (interpreted as a bimodal He
abundance; see Bedin et al. 2004; Norris 2004; Piotto et al. 2005)
and in a multiplicity of SGBs (interpreted in terms of large age
variations, 31 Gyr; see Villanova et al. 2007 and references
therein), which implies at least four different stellar groups within
the same cluster.

2. In NGC 2808, the multiple generation of stars is inferred
from the presence of threeMSs (interpreted in this case too in terms
of three groups of stars characterized by different helium contents;
see discussion in P07), and further confirmed by the presence of

MULTIPLE STELLAR POPULATIONS IN GCs 249No. 1, 2008



three groups of stars with different oxygen abundances. It is also
consistent with the presence of a multiple HB (D’Antona & Caloi
2004). However, in NGC 2808 the TO-SGB regions are so narrow
that any difference in age between the three stellar groups must
be significantly smaller than 1 Gyr.

3. In the case of NGC 1851, we have evidence of two stellar
groups from the SGB split, which apparently implies two stel-
lar generations, formed with a time separation of �1 Gyr. This
hypothesis is further confirmed by the presence of a group of
RGB stars with strong CN bands (distinct from the majority of
CN-normal RGB stars), and enhanced Sr and Ba, and possibly
the presence of a bimodal HB. In the case of NGC 1851 there is
no evidence of MS splitting, which implies that any difference in
helium or other heavier element content between the two pop-
ulations should be small.

Apparently, not only are GCs not single stellar population
objects, containing stars formed in a single star burst, but the evi-
dence emerging from the new exciting HST observations pre-
sented in this paper—aswell as from theHSTobservations of !Cen
and NGC 2808—is that the star formation history of a GC can vary
strongly from cluster to cluster. We are still far from understanding
what governs the different star formation histories, and this is an
exciting and challenging question for future investigations. At

the moment, we can only note that the three clusters in which
multiple generations of stars have been clearly identified (!Cen,
NGC 2808, and NGC 1851), and the two other clusters strongly
suspected to contain more than one stellar generation (NGC
6388 and NGC 6441; see Caloi & D’Antona 2007; Busso et al.
2007) are among the 10most massive clusters in our Galaxy. This
evidence suggests that cluster mass might have a relevant role in
the star formation history of GCs.
We should note finally that the cases of ! Centauri and M54,

both probably associated with mergers of other galaxies into the
Milky Way, suggest the possibility that all GCs that have com-
plexities in their CMDs are likewise merger remnants. This is an
attractive speculation, but we think that it does not yet have
enough observational support.
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a grant from the Space Telescope Science Institute, which is
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