
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Open Dartmouth: Peer-reviewed articles by
Dartmouth faculty Faculty Work

12-1991

Caching and Writeback Policies in Parallel File Systems Caching and Writeback Policies in Parallel File Systems

David Kotz
Dartmouth College

Carla Schlatter Ellis
Duke University

Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa

 Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation
Kotz, David and Ellis, Carla Schlatter, "Caching and Writeback Policies in Parallel File Systems" (1991).
Open Dartmouth: Peer-reviewed articles by Dartmouth faculty. 3065.
https://digitalcommons.dartmouth.edu/facoa/3065

This Conference Paper is brought to you for free and open access by the Faculty Work at Dartmouth Digital
Commons. It has been accepted for inclusion in Open Dartmouth: Peer-reviewed articles by Dartmouth faculty by
an authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/facoa
https://digitalcommons.dartmouth.edu/facoa
https://digitalcommons.dartmouth.edu/faculty
https://digitalcommons.dartmouth.edu/facoa?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3065&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3065&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa/3065?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3065&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Copyright 1991 by IEEE. Appeared in Symp. on Parallel and Distributed Processing, pages 60-67.�
Available at URL ftp://ftp.cs.dartmouth.edu/pub/CS-papers/Kotz/kotz:writeback.ps.Z�

Caching and Writeback Policies in Parallel File Systems�

David Kotz Carla Schlatter Ellis

Dept� of Math and Computer Science Dept� of Computer Science

Dartmouth College Duke University

Hanover� NH ���������	 Durham� NC
����

David�Kotz�Dartmouth�edu carla�cs�duke�edu

Abstract

Improvements in the processing speed of multipro�
cessors are outpacing improvements in the speed of
disk hardware� Parallel disk I�O subsystems have been
proposed as one way to close the gap between processor
and disk speeds� Such parallel disk systems require par�
allel �le system software to avoid performance�limiting
bottlenecks� We discuss cache management techniques
that can be used in a parallel �le system implementa�
tion� We examine several writeback policies� and give
results of experiments that test their performance�

� Introduction

As computers grow more powerful� it becomes in�
creasingly di�cult to provide su�cient I�O bandwidth
to keep them running at full speed for large problems�
which may consume immense amounts of data� Disk
I�O has always been slower than processing speed�
and recent trends have shown that improvements in
the speed of disk hardware are not keeping up with
the increasing raw speed of processors� This widen�
ing access�time gap is known as the I�O crisis ��	� �
��
The problem is compounded in typical parallel archi�
tectures that multiply the processing and memory ca�
pacity without balancing the I�O capabilities�

The most promising solution to the I�O crisis is
to extend parallelism into the I�O subsystem� One
such approach is to connect many disks to the com�
puter in parallel� spreading individual �les across all
disks� Parallel disks could provide a signi�cant boost
in performance
 possibly equal to the degree of par�
allelism� if there are no signi�cant bottlenecks in the
I�O subsystem and if the I�O requests generated by
applications can be mapped into lower�level operations
that drive the available parallelism� Thus� the �rst
challenge to the designers of a multiprocessor �le sys�
tem is to con�gure parallel disk hardware to avoid
bottlenecks �e�g�� shared busses�� and to avoid further
bottlenecks in the system software� An e�ective �le
system for a multiprocessor must itself be fully parallel
to scale with additional processors or disks� The sec�
ond challenge is to make this extensive disk hardware

�This research was supported in part by NSF grants CCR�
������� and CCR�������� and DARPA	NASA subcontract of
NCC��
���

bandwidth easily available to application programs�
To meet these challenges we propose a highly parallel
�le system implementation that incorporates caching
and prefetching as a means of delivering the bene�ts
of a parallel I�O architecture to the user programs�

This paper concentrates on multiprocessor �le sys�
tems intended for scienti�c applications� These ap�
plications typically push the leading edge of com�
puting technology� such as multiprocessors� placing
tremendous demands on both CPU and I�O systems�
Most �le caching studies have examined general�
purpose workloads �e�g�� ��
��� where �les are much
smaller ���� ��� The parallel environment and work�
load raise a number of questions� Are caches useful for
parallel scienti�c applications using parallel �le sys�
tems� If so� in what way� What are the appropriate
management policies�

Di�erent workload characteristics� including a new
form of locality� lead us to new policies� The sequential
access patterns in the workload suggest prefetching
and write�behind� Prefetching is the focus of ��� ��� ���
and write�behind is the focus of this paper� What poli�
cies are most appropriate for bu�ering writes for these
parallel scienti�c�application workloads� Do write�
behind and delayed writeback help� In what way�
This paper examines these issues� de�nes some new
policies� and reports results from experiments with
these policies�

In the next section we provide more background
information on parallel I�O� caching� and �le system
workloads� In Section 	 we describe the testbed� the
workload� the experimental methods� and the cache
management policies� In Section � we present the ex�
periments� performance measures� and results� Sec�
tion � concludes�

� Background

Much of the previous work in I�O hardware paral�
lelism involves disk striping� In this technique� data
of a �le are interleaved across numerous disks and ac�
cessed synchronously in parallel ���� �� �	�� These
schemes rely on a single controller to manage all of
the disks�

For multiprocessors� one form of parallel disk ar�
chitecture is based on the notion of parallel� indepen�
dent disks� using multiple conventional disk devices

�

addressed independently and attached to separate pro�
cessors� The �les may be interleaved over the disks�
but the multiple controllers and independent access
to the disks make this technique di�erent from disk
striping� Examples of this architecture include the
Concurrent File System ����
� for the Intel iPSC��
multiprocessor� and the Bridge ��� 	� �le system for
the BBN Butter�y parallel computer�

File caching is a technique used in most modern �le
systems� Caching has not been studied for parallel �le
systems� but Alan Smith has extensively studied disk
caching in uniprocessors with general�purpose work�
loads� In ��
�� his simulations show that disk caching
is an e�ective way to boost the performance �as mea�
sured by the cache miss ratio� of the I�O subsystem
�e�g�� an � MByte cache can service ������ of I�O
requests��

File access patterns have never been studied for par�
allel computers� but have been studied extensively for
uniprocessors ��� ���� These studies found that sequen�
tial access� usually of the entire �le� is the major form
of access� Supercomputer �le access patterns �a sci�
enti�c workload� involve huge �les �tens to thousands
of megabytes� accessed primarily sequentially� some�
times repeatedly ����� Parallel �le access has been dis�
cussed by Crockett ���� but he did not study an actual
workload�

� Models and Methods

��� Architectural Models

Our architectural model is a multiple instruction
stream� multiple data stream �MIMD� multiprocessor�
A subset of the problems and many of our proposed
solutions �although not our implementation� may also
apply to message�based distributed�memory architec�
tures�

We represent the disk subsystem with parallel� in�
dependent disks� We assume an interleaved mapping
of �les to disks� with blocks of the �le allocated round�
robin to all disks in the system� The �le system han�
dles the mapping transparently� managing the disks
and all requests for I�O� There is a �le system man�
ager running on each processor� This spreads the I�O
overhead over all processors and allows the use of all
processors for computation� rather than reserving a
set of processors exclusively for I�O�

��� Workload Model

Parallel �le systems and the applications that use
them are not su�ciently mature for us to know what
forms might be typical� Parallel applications may use
patterns that are more complex than those used by
uniprocessor versions of the same application� The
lack of a real parallel workload employing parallel I�O
leads us to use a synthetic workload in our tests� which
captures such nuances of real workloads as sequential�
ity� regularity� and inter�process interactions�

We work with �le access patterns� rather than disk
access patterns� That is� we examine the pattern of
access to logical blocks of the �le rather than physical
blocks on the disk� Thus� we make no assumptions of
disk layout� Note also that the application is accessing

records in the �le� which are translated into accesses
to logical �le blocks by the interface to the �le system�
The �le system internals� which are responsible for
caching� see only the block access pattern�

In our research we do not investigate read�write
�le access patterns� because most �les are opened for
either reading or writing� with few �les updated ���
���� We expect this to be especially true for the large
�les used in scienti�c applications� Thus we consider
read�only patterns� used to demonstrate the bene�ts
of caching� and write�only patterns� used to investigate
delayed�write policies�

All sequential patterns consist of a sequence of ac�
cesses to sequential portions� A portion is some num�
ber of contiguous blocks in the �le� Note that the
whole �le may be considered one large portion� The
accesses to this portion may be sequential when viewed
from a local perspective� in which a single process ac�
cesses successive blocks of the portion� We call these
locally sequential access patterns� or just local pat�
terns� This is the traditional notion of sequential ac�
cess used in uniprocessor �le systems�

Alternatively� the pattern of accesses may only look
sequential from a global perspective� in which many
processes share access to the portion� reading disjoint
records within the portion� We call these globally se�
quential access patterns� or just global patterns� If
the reference strings of all the processes are merged
with respect to time� the accesses follow a �roughly�
sequential pattern� The pattern may not be strictly
sequential due to the slight variations in the global
ordering�

We use eight representative read�only parallel �le
access patterns� Four of these are local patterns� three
are global patterns� and one is random� The sequential
nature of the patterns imply a low rate of data rerefer�
encing� which is important for caching� The details of
the sequentiality are only important for prefetching�

lw Local Whole �le� every process reads the entire
�le from beginning to end� It is a special case of
a local sequential pattern with a single portion�

lfp Local Fixed�length Portions� each process reads
many sequential portions� The sequential por�
tions have regular size� although at di�erent
places in the �le for each process�

lrp Local Random Portions� like lfp� but using por�
tions of irregular �random� size� Portions may
overlap by coincidence�

seg Segmented� the �le is divided into a set of non�
overlapping contiguous segments� one per process�

gw Global Whole �le� the entire �le is read from
beginning to end� The processors read distinct
records from the �le in a self�scheduled order� so
that globally the entire �le is read exactly once�

gfp Global Fixed�length Portions� �analogous to lfp�
processors cooperate to read �xed�size sequential
portions�

�

grp Global Random Portions� �analogous to lrp�
processors cooperate to read random�size sequen�
tial portions�

rnd Random� records are accessed at random�

We use three representative write�only parallel �le
access patterns� Two of these are local patterns and
one is a global pattern�

lw� A single process writes the entire �le from start
to �nish� The other processes are idle�

seg The �le is divided into disjoint segments� one per
process� and each process writes its segment from
start to �nish�

gw Like its read�only counterpart� this pattern writes
records of the �le in a self�scheduled order�

Note that these patterns are not necessarily rep�
resentative of the distribution of the access patterns
actually used by applications� We feel that this set
covers the range of patterns likely to be used by sci�
enti�c applications�

��� Methods

Our methodology is experimental� using a mix of
implementation and simulation� We implemented
a �le system testbed called RAPID�Transit ��Read�
Ahead for Parallel Independent Disks�� on a BBN
GP���� Butter�y parallel processor ���� an MIMD ma�
chine� Since the multiprocessor does not have parallel
disks� they are simulated� The testbed is a heavily pa�
rameterized parallel program� incorporating the syn�
thetic workload �the application�� the �le system �in�
terface and manager�� and the set of simulated disks�
The �le system allocates and manages a bu�er cache to
hold disk blocks� described below� The testbed gath�
ers statistics on many aspects of the performance of
the �le system� This implementation of the policies
on a real parallel processor� combined with real�time
execution and measurement� allows us to directly in�
clude the e�ects of memory contention� synchroniza�
tion overhead� inter�process dependencies� and other
overhead� as they are caused by our workload under
various management policies� This method allows us
to evaluate whether practical caching policies can be
implemented� See ��� for more details�

In this section we describe one simple replacement
policy� which determines the blocks to replace when a
free bu�er is needed� and several write policies� which
determine when new data are written back to disk�

Bu�er Replacement Policy� We associate an in�
stance of the cache with a particular open �le� caching
the logical blocks of the �le rather than the physical
blocks of the disk� This is a shared cache concurrently
servicing the requests of all processes within a parallel
application�

The workload plays a signi�cant role in determining
the appropriate cache policies� Scienti�c applications
often read and write several megabytes or gigabytes of
data� generally sequentially ����� For a cache to suc�
ceed� the workload must exhibit some locality� Tempo�
ral locality� where recently used data will be used again

soon� is not present when large �les �much larger than
the cache size� are accessed sequentially� even if the
�les are accessed repeatedly� Spatial locality� where
other data near or in a recently accessed block will
be accessed soon� is a strong component of sequential
access patterns� The combination of these observa�
tions leads to a �toss�immediately� replacement pol�
icy� where only the most recently used �MRU� block
remains in the cache� This is more appropriate than
the traditional LRU policy ���� �although of course it
is identical to LRU with a stack size of one��

In the access patterns we expect to see in parallel
scienti�c applications� another form of locality occurs�
With interprocess locality� a block used by one process
is used soon by another process �when� for example�
each is reading di�erent small records from the same
block��

We extend the toss�immediately strategy to paral�
lel access patterns as follows� any block that is not the
MRU block of any process may be replaced� Thus the
cache must have at least as many bu�ers as processes�
Our policy has many advantages� It ensures that the
MRU block of each process remains in the cache un�
til that process has clearly �nished with it� This is
important� because locality makes it likely that the
process will use its MRU block again� If there were
only one global MRU block� toss�immediately would
replace some blocks still in use� If there were a global
LRU policy� which had a single LRU stack� an active
process could use many blocks� arti�cially aging the
blocks of less�active processes and thus forcing them
out� Finally� ours is simple to implement� each bu�er
has a counter in shared memory indicating the number
of processes that consider this block to be their MRU
block� Thus� interprocess locality is directly included�
When the count reaches zero� the block is free for re�
placement� If the block is dirty �containing data not
yet written to disk�� the block must be written to disk
and the disk write completed before the bu�er may be
re�used� Bu�ers that are available for replacement are
kept in a global free list�

Write Policies� A cache can improve �le�write per�
formance with write�behind� where data is written into
a bu�er� allowing the application to continue while the
bu�er is written to disk� If the disk write is not ini�
tiated immediately� it is termed �delayed writeback��
which traditionally has several advantages�

� Some data disappears before it is written to disk
�by being overwritten or by removal or truncation
of the �le containing the data�� and thus disk load
is reduced� This is not likely in our workload�

� Bursts of write activity can be absorbed by a
cache� asynchronously writing the data to disk
while the application continues�

� Where there is spatial locality �e�g�� when mul�
tiple �le writes are made to the same block��
caching avoids multiple writes to the disk� This is
of prime interest when there is also interprocess
locality involved�

	

The write policy determines when the �dirty� bu�ers
are �cleaned� �written to disk�� If a dirty bu�er is
written too late� the cache �lls with dirty blocks and
processes must idle waiting for bu�ers to be cleaned� If
a dirty bu�er is written too early� costly mistakes may
be made� There are two types of mistakes possible in
write�only access patterns� reread and rewrite� If the
application writes to a bu�er after the bu�er has been
written to disk� the disk write was a rewrite mistake�
If the application writes to a block that has already
been �ushed from the cache� causing the block to be
read back from disk� the extra write and read is a
reread mistake�

A technique that is appropriate for a single�process
sequential access pattern is to write a block when�
ever the process moves on to the next block �or� if
you track the �le pointer carefully� when the process
writes the last byte in the block�� This technique as�
sumes sequential access� once a block is written by
the process� it will not be rewritten� In a multiprocess
application with interprocess locality� however� the ac�
tions of any one process do not clearly indicate when
a block is complete� From the assumption of sequen�
tiality� however� every byte of the �le �and hence of
any block in the �le� is written exactly once� Thus it
is safe to write the block to disk when all bytes of the
block have been written� This leads directly to our
WriteFull policy below�

We implemented several distinct write policies�

WriteThru� the simplest scheme� forces a disk write
on every �le write request from the application�
This is ideal for blocks accessed only once�

WriteBack delays the disk write until the bu�er is
needed for another block�

WriteFree issues a disk write when the bu�er enters
the free list� Thus� it issues a write before the
bu�er is needed for re�use� but after it is no longer
in use by some processor� This is a compromise
between WriteThru and WriteBack�

WriteFull issues the disk write when the bu�er is
�full�� de�ned to be when the number of bytes
written to the bu�er is exactly equal to the size
of the bu�er in bytes�

� Experiments

We �rst brie�y demonstrate the need for a cache�
and then examine the capabilities of the four write
policies�

��� Experimental Parameters

In all of our experiments� we �x most of the pa�
rameters and then vary one or two parameters at a
time� The parameters described here are the base from
which we make other variations� Each combination of
parameters represents one test case�

There were �� processes running on �� processors�
The patterns all accessed � MBytes of data� divided
up for local patterns as ��� KBytes per process� The
cache block size was always � KByte� and the record

size was usually one block �in one set of tests we ex�
periment with other record sizes�� Note that in most
patterns this translates to ���� blocks read from �or
written to� the disk� but in lw only ��� distinct blocks
are read since all processes read the same set of ���
blocks� The cache contained �� one�block bu�ers� We
also had the capability to turn the cache o�� so all
requests went to the disk with no cache overhead�

After each record was accessed� delay was added
in some tests to simulate computation� this delay was
exponentially distributed with a mean of 	� msec� All
other tests had no delay after each access� simulating
an I�O�intensive process�

The �le was interleaved over �� disks� at the gran�
ularity of a single block� Disk requests were queued in
the appropriate disk queue� The disk service time was
simulated using a constant arti�cial delay of 	� msec�
a reasonable approximation of the average access time
in current technology for small� inexpensive disk drives
of the kind that might be replicated in large numbers
on a multiprocessor system�

��� Measures

The RAPID�Transit testbed records many statis�
tics intended to measure and interpret performance�
The primary performance metric for measuring the
performance of an application is the total execution
time� This� and all time measures in the testbed� is
real time� Total execution time incorporates all forms
of overhead �such as memory contention� reread mis�
takes� etc�� and unexpected e�ects� and thus it is the
best measure of overall performance�

A note on the data� Every data point in each plot
represents the average of �ve trials� The coe�cient of
variation �cv� is the standard deviation divided by the
mean �average�� For all experiments in this paper� the
cv was less than ���
� �usually much less�� meaning
that the standard deviation over �ve trials was less
than
��� of the mean� In each table and plot we give
the maximum cv of all data points involved�

The Ideal Execution Time� We compare the ex�
perimental execution time to a simple model of the
ideal execution time� The total execution time is a
combination of the computation time� the I�O time�
and overhead� In the ideal situation� there is no over�
head� and either all of the I�O is overlapped by compu�
tation or all of the computation is overlapped by I�O�
Thus� the ideal execution time is simply the maxi�
mum of the I�O time and the computation time� This
assumes that the workload is evenly divided among
the disks and processors and that the disks are per�
fectly utilized� No real execution of the program can
be faster than the ideal execution time� With the base
parameter values� both the I�O and the computation
times are
 seconds� and thus the ideal execution time
is also
 seconds� The ideal I�O time for lw is shorter�
only ��	 seconds� since it only reads ��� blocks from
disk� The ideal computation time for lw� with com�
putation �and thus the ideal execution time� is ���
seconds since there is only one processor involved�

�

��� Caching

Using the testbed� we ran all of our access pat�
terns with and without caching� Our point is not to
demonstrate the superiority of our particular bu�er�
replacement policy� but to demonstrate the basic ben�
e�t of a cache �from temporal and spatial locality�� We
also hope to determine the e�ects of interprocess lo�
cality� The cache� when used� contained �� one�block
bu�ers� There was no computation involved in these
access patterns�

The following table shows the results of experi�
ments on our full set of read�only access patterns�
With one�block records� there was actually a slight
performance degradation due to caching overhead�
There was no improvement because most of these pat�
terns did not rereference data in the cache �i�e�� there
was no temporal locality�� Some patterns �lrp� grp
and rnd� made some rereferences� but so rarely that
they were insigni�cant� The lw pattern had many
rereferences �interprocess temporal locality�� but exe�
cution time did not improve with caching because all
processes read the same block almost simultaneously�
and used only one disk at a time� Thus interprocess
locality was important� but not bene�cial here�

The situation changed signi�cantly when the record
size was one�quarter block� Except in the rnd pattern�
each block was referenced four times� once for each
quarter�block record in the block� Without a cache�
the block was read four times from the disk� With a
cache� spatial locality �in the local patterns� and in�
terprocess spatial locality �in the global patterns� was
used to avoid wasting disk bandwidth� �Note that the
bene�ts would be larger for smaller record sizes� and
signi�cant for all non�integral record sizes�� Because of
the interprocess locality in the global access patterns�
however� four processes waited for each four�record
block to be read from the disk� and thus only one�
fourth of all disks were in use at any time� Prefetch�
ing can avoid this underutilization� see ��� �� ��� for
further study of read�only patterns and prefetching�

Read�only patterns
Total execution time� in seconds �cv � ���	��

One�block Quarter�block
Pattern No Cache Cache No Cache Cache
lfp
�	
�� ���
 ���
lrp ��	 ��� ���� ��

lw
�� ��� 	
�� ��	
seg
�� ��� 	
�� ���
gfp
�	
��
��� ����
grp
��
��
��� ����
gw
�	
��
��� ����
rnd ���
 ���� ���� ����

The next table shows the results of experiments
on our write�only access patterns� Here we com�
pared the simple WriteBack caching policy with not
caching� Section ��� compares write policies� Caching
was faster in gw� since the delayed write allowed some
overlap between overhead and I�O� The lw� pattern
was most improved because� with delayed writes� this
one�processor pattern was able to use more than one
disk� This is an example of a cache s ability to help

applications use parallel disk bandwidth� Experiments
with quarter�block records demonstrate the real power
of caching� without a cache� all writes to a disk block
after the �rst write had to read the block from the
disk� update the block� and write the block back to
disk �a reread mistake�� With n records per block� a
cache reduced the �n � � disk accesses per block to
one per block�

Write�only patterns
Total execution time� in seconds �cv � ������

One�block Quarter�block
Pattern No Cache Cache No Cache Cache
lw� ����	 �
�� ��	�� ����
seg
�� ���
	�	 ���
gw
�	
�� ��	�� ���

��� Write�Policy Experiments

We designed a set of experiments to evaluate the
e�ectiveness of our write policies across variations in
workload and cache size� These experiments seek to
answer the following questions� What is the e�ect of
cache size� Is a large cache useful� How do the policies
react to the record size� In particular� how do they
handle the interprocess locality in gw� Which �if any�
policy is the most generally successful� Can a smart
write�bu�ering policy help an application to better use
the available parallel I�O bandwidth�

Cache�size Variation� In these experiments� the
cache size varied from �� one�block bu�ers to ��� one�
block bu�ers �� to �� blocks per process�� The record
size was one block� so each block was accessed only
once� Note that WriteFull and WriteThru are inher�
ently equivalent in these access patterns� because the
bu�er is full when it is �rst written�

In gw with computation� shown in Figure ��
WriteBack was clearly slowest� since it delayed the
disk write too long� WriteFree is also slower than
WriteThru or WriteFull� This is because WriteFree de�
lays the disk write for a full MRU block until the next
�le system access� which is after the process s com�
pute cycle �without computation� WriteFree is similar
to WriteThru and WriteFull�� This delay was too long�
slowing down overall execution� Note that between ��
and �� bu�ers were the maximum useful cache size�
Forty bu�ers corresponds to two bu�ers per process�
which allowed one to be �lled while the other is writ�
ten to disk� The results for gw without computation
give similar conclusions�

The lw� patterns ran more slowly than the gw pat�
terns� because one process could not drive all �� disks
at full e�ciency �Figure ��� WriteBack was much
worse than the other methods� and WriteFree again
was slow with computation� Larger caches bene�ted
the lw� pattern by allowing more disk parallelism to
be used�

The write�only seg patterns had a di�cult disk ac�
cess pattern �all processes began on the same disk��
A large cache helped to alleviate the resulting disk
contention� as seen in Figure 	� since the larger cache
allowed processes to continue writing even when some
disks were overloaded� In e�ect� large caches allowed

�

�

��

��

��

�� �� ��� �
� ���

Total
Time
�sec�

Cache size �blocks�

gw with computation

WriteBack !!

!
! ! ! ! ! !

WriteFull r

r

r r r r r r r

WriteFree e

e

e

e e e e e e

WriteThru �

�

� � � � � � �

ideal

Figure �� Cache�size variation�

a long pipeline to form� using more disks concurrently
than with a short pipeline� This is especially im�
portant as processor speeds increase relative to disk
speeds� This is an excellent example of the ability of a
well�managed cache to help a simple�minded program
access the potentially high bandwidth of parallel disks�
The results for seg with computation are not shown
since they o�er no new insights�

From these results� both WriteThru and WriteFull
�essentially equivalent here� appear to be good write�
bu�ering methods� in that they had the best overall
performance� In some cases a large cache was needed
to absorb disk contention problems �as in seg� or a
high write request rate �as in gw without computa�
tion�� but generally two bu�ers per process were su��
cient� For the experiments in the next section we chose
an ���block cache �four bu�ers per process� because
that was a reasonable compromise for all workloads�
based on the results in this section�

Record�size Variation� In these experiments we
varied the record size of the access pattern with a
�xed cache size of �� one�block bu�ers� The total
amount of data written� in blocks� was �xed� The vari�
ation includes both integral and non�integral record
sizes �relative to the block size�� The latter are im�
portant because they cause multiple accesses to many
blocks� which should clearly di�erentiate WriteThru
and WriteFull�

Figure �a shows the record�size variation for the
write�only gw access pattern� WriteThru is clearly a
poor choice for small record sizes� due to a huge num�
ber of rewrite mistakes� WriteFree was smarter� wait�
ing until the bu�er was mostly unused before issuing
a disk write� but it was still not perfect due to some
mistakes and to not immediately writing the blocks to

�	

��

��

�

��

��

��

�� �� ��� �
� ���

Total
Time
�sec�

Cache size �blocks�

Cache�size variation for lw�

WriteBack !

! !
!

! ! ! ! !

WriteFull r

r

r
r r r r

r r

WriteFree e

e

e
e e e e

e e

WriteThru �

�

�
� � � �

� �

ideal �
 seconds�

Figure �� Cache�size variation�

disk when they �nally were ready to be written� The
dips occur because there can be no mistakes with in�
tegral record sizes� WriteBack was sometimes faster
than WriteFree because it had fewer rewrite mistakes�
Finally� the WriteFull method had a nearly perfect
�
second execution time over all record sizes� because it
issued the write precisely when the block was ready to
go to disk� and made no mistakes�

The results for lw� are shown in Figure �b� The
high execution times were due to reduced I�O paral�
lelism� because �due to overhead� one process could
not keep �� disks busy� even with an ���block cache�
With non�integral record sizes this overhead was in�
creased due to repeated accesses to some blocks� Thus�
the time varies widely for non�integral record sizes�
Otherwise� the results are no surprise� WriteBack was
usually slowest� and WriteThru also slow for small
non�integral record sizes�

The record�size variation for the seg pattern �Fig�
ure �c� shows that WriteThru was slowest� due to
rewrite mistakes� Because of the sequential access pat�
tern on each processor� none of the others had rewrite
mistakes� and none had reread mistakes�

Thus� record size was an important factor in the
performance of our write methods� For integral record
sizes� all methods were essentially independent of
record size� For non�integral sizes� all but WriteFull
made many mistakes� WriteFull was thus the most
generally successful write policy�

� Conclusion

A relatively simple cache management strategy�
based on toss�immediately� provided e�cient and ef�
fective caching for our workload� Most importantly�
it was an e�ective base for studying write policies for

�

�

��

��

��

� � � 	 � �
 � � � ��

Total
Time
�sec�

Record size �blocks�

a� Record�size variation for gw

WriteBack !

!
!

!
!

!!!
!

!!! !!!
!

!!!
!

!!!!!!!!!
!

!!!!!!
!

WriteFull r

r
r r r r r rr r r r r r rr r r rr r r r r r

r
r r r r r r r r r

r
r

WriteFree e

e

e e

e

e e e

e

e e e e e e

e

e e e

e

e e e e e e e e e
e

e e e e e
e

e

WriteThru �

�

�

�

�

�
�
�

�

��� �
��

�

���

�

���������

�

�����
�

�

ideal

�

��

��

	�

��

��

�

� � � 	 � �
 � � � ��

Total
Time
�sec�

Record size �blocks�

b� Record�size variation for lw�

WriteBack !
!

!!

!

!
!

!

!

!

!! ! !

!

!
! !

!!
! ! ! !

!
!

! !
! !

WriteFull r

r

r r

r

r
r

r

r

r

r r r r

r

r

r
r

r r

r r r r
r

r
r r

r
r

WriteFree e

e

e
e

e

e
e

e

e

e

e e e e

e

e

e
e

e e

e e e e
e

e
e e

e
e

WriteThru �

�

�
�

�

�

�

�

�

�

��� �

�

�

�
�

��

� � � �

�

�

� �

�
�

ideal

�

�

��

��

��

��

	�

� � � 	 � �
 � � � ��

Total
Time
�sec�

Record size �blocks�

c� Record�size variation for seg

WriteBack !

!!!!!!!! !!! ! ! ! !! ! !! ! ! ! ! ! ! ! ! ! !

WriteFull r

r r r r r r rr r

WriteFree e

e e ee e e ee e

WriteThru �

�

�

�

�

��
�

�

����
�

�

��

�

�� � � �
�

�

� � � �

�

ideal

Figure �� Record�size variation for all three write patterns�

�

�

�

�

��

��

��

�	

��

��

�� �� ��� �
� ���

Total
Time
�sec�

Cache size �blocks�

Cache�size variation for seg

WriteBack !

!

!
! ! ! ! !

WriteFull r

r

r

r

r
r

r r r

WriteFree e

e

e

e

e

e
e e e

WriteThru �

�

�

�

�

�

� � �

ideal

Figure 	� Cache�size variation�

write�only patterns� Caching was often able to use lo�
cality� including interprocess locality� to help applica�
tions use the parallel disk bandwidth� In applications
where caching could not be expected to help� the cache
overhead caused a slight �though tolerable� slowdown�

Given the types of write�only access patterns we
expect to be common in scienti�c workloads� our ex�
ploration of four methods shows that WriteFull� the
most sophisticated of the methods� was consistently at
or near the best performance in all situations� A fairly
small cache ������ blocks� i�e�� ��� blocks per process�
was su�cient to obtain the best performance� except
in the seg pattern� where larger caches helped mask
the disk contention� Large caches were thus only use�
ful when there was high disk contention� �Although
we did not study bursty I�O� larger caches should also
be useful for absorbing bursts of write activity��

References

��� BBN Advanced Computers� Butter�y Products
Overview� �����

��� Thomas W� Crockett� File concepts for parallel
I�O� In Proceedings of Supercomputing 	
�� pages
�������� �����

�	� Peter Dibble� Michael Scott� and Carla Ellis�
Bridge� A high�performance �le system for par�
allel processors� In Proceedings of the Eighth In�
ternational Conference on Distributed Computer
Systems� pages �����
�� June �����

��� Peter C� Dibble� A Parallel Interleaved File Sys�
tem� PhD thesis� University of Rochester� March
�����

��� Rick Floyd� Short�term �le reference patterns in a
UNIX environment� Technical Report ���� Dept�
of Computer Science� Univ� of Rochester� March
���
�

�
� James C� French� Terrence W� Pratt� and Mri�
ganka Das� Performance measurement of a par�
allel input�output system for the Intel iPSC��
hypercube� Proceedings of the ���� ACM Sigmet�
rics Conference on Measurement and Modeling of
Computer Systems� pages �������� �����

��� Michelle Y� Kim� Synchronized disk interleaving�
IEEE Transactions on Computers� C�	����������
���� November ���
�

��� David Kotz� Prefetching and Caching Techniques
in File Systems for MIMD Multiprocessors� PhD
thesis� Duke University� April ����� Available as
technical report CS��������
�

��� David Kotz and Carla Schlatter Ellis� Prefetch�
ing in �le systems for MIMD multiprocessors�
IEEE Transactions on Parallel and Distributed
Systems� ����������	�� April �����

���� David Kotz and Carla Schlatter Ellis� Practi�
cal prefetching techniques for parallel �le sys�
tems� In First International Conference on Paral�
lel and Distributed Information Systems� Decem�
ber ����� To appear�

���� Ethan Miller� Input�Output behavior of su�
percomputing applications� Technical Report
UCB�CSD ���
�
� University of California�
Berkeley� ����� Submitted to Supercomputing
 ���

���� John Ousterhout� Herv"e Da Costa� David Har�
rison� John Kunze� Mike Kupfer� and James
Thompson� A trace driven analysis of the UNIX
��� BSD �le system� In Proceedings of the Tenth
ACM Symposium on Operating Systems Princi�
ples� pages ������ December �����

��	� David Patterson� Garth Gibson� and Randy Katz�
A case for redundant arrays of inexpensive disks
�RAID�� In ACM SIGMOD Conference� pages
������
� June �����

���� Paul Pierce� A concurrent �le system for a highly
parallel mass storage system� In Fourth Con�
ference on Hypercube Concurrent Computers and
Applications� pages �����
�� �����

���� Kenneth Salem and Hector Garcia�Molina� Disk
striping� In IEEE ��

 Conference on Data En�
gineering� pages 		
�	��� ���
�

��
� Alan Jay Smith� Disk cache�miss ratio analysis
and design considerations� ACM Transactions on
Computer Systems� 	�	���
����	� August �����

���� Michael Stonebraker� Operating system support
for database management� Communications of
the ACM� �������������� July �����

�

	Caching and Writeback Policies in Parallel File Systems
	Dartmouth Digital Commons Citation

	ieee.dvi

