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Quantum Information Encoding, Protection, and Correction
from Trace-Norm Isometries

Francesco Ticozzi∗
Dipartimento di Ingegneria dell’Informazione, Università di Padova, via Gradenigo 6/B, 35131 Padova, Italy

Lorenza Viola†
Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755, USA

(Dated: November 5, 2018)

We introduce the notion of trace-norm isometric encoding and explore its implications for passive
and active methods to protect quantum information against errors. Beside providing an operational
foundations to the “subsystems principle” [E. Knill, Phys. Rev. A 74, 042301 (2006)] for faith-
fully realizing quantum information in physical systems, our approach allows additional explicit
connections between noiseless, protectable, and correctable quantum codes to be identified. Ro-
bustness properties of isometric encodings against imperfect initialization and/or deviations from
the intended error models are also analyzed.

PACS numbers: 03.67.Pp, 03.65.Yz, 03.67.Lx, 89.70.-a

I. INTRODUCTION

The idea that states of ideal quantum systems, car-
rying abstractly defined quantum information, must be
suitably mapped – encoded – into states of a physical sys-
tem, in such a way that information can be best protected
against the unavoidable effect of errors, underpins the
possibility to practically exploit the added power of quan-
tum information in real-world devices. According to the
so-called subsystems principle [1, 2, 3, 4], logically map-
ping quantum information into a subsystem of a Hilbert
space provides the most general approach to quantum
encoding, and well-identifiable subsystems must exist at
each point in time in order for the desired information
to be faithfully represented throughout a computational
process. Subsystem-encodings play a central role in the
theory of quantum fault tolerance, allowing, in particu-
lar, for a unified understanding of quantum error con-
trol to be gained in terms of passive protection based on
decoherence-free subspaces [5, 6] and noiseless subsys-
tems [2], as well as active stabilization based on either
“initialization-protectable” or “error-correcting subsys-
tems” [4]. Conceptually, the subsystems principle pro-
vides the foundation for operator quantum error correc-
tion (OQEC) [7, 8, 9], which is the most general error-
control framework presently known for noise described
by a completely positive trace-preserving (CPTP) map.

For physically realized information, recent work by
Blume-Kohout and coworkers [10, 11] has shown that
preservation of the mutual distinguishability between
states under a given error process is key to a general op-
erational characterization of the information-preserving
structures (IPS) that the process can support, whether
in passive or active form. Mathematically, the starting
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point is to realize that preservation of information in a
set of possible states (a code) under the action of a map
E is equivalent to requiring that E acts on the code as a
distance-preserving map, where the appropriate distance
measure is induced by the trace norm. Remarkably, since
the latter yields both lower and upper bound to the fi-
delity between quantum states [12], the trace norm pro-
vides the appropriate metric of performance for quanti-
fying distance between open-system evolutions [13, 14].

In the light of the special significance that both subsys-
tems and trace-norm isometries have in the broad QEC
context, a natural question arises: Can these notions be
related at a fundamental level? Equivalently, what role
do trace-norm isometries play in representing quantum
information? Exploring the implications of a descrip-
tion that directly exploits trace-norm isometries is the
main motivation of this work. We show that by insisting
in the requirement that quantum information encodings
be 1-isometries, a number of a priori unrelated results
are consistently recovered, and additional new insight is
gained. In particular, our first result (Sec. II) is the
possibility to derive a manifestation of the subsystems
principle, thereby firmly grounding it on operational re-
quirements. In Sec. III, an explicit form of the most
general codes that can faithfully encode quantum infor-
mation and of the class of transformations that preserve
and recover these codes is obtained. In the process, we
elucidate connections between the dual notions of cor-
rectability and protectability that were not captured by
the previous IPS analysis [10], and further characterize
QEC scenarios whereby the required active intervention
may be achieved through purely unitary means [15, 16].
In Sec. IV, we argue that the trace-norm isometric ap-
proach developed for describing perfect quantum infor-
mation encoding and recovery may serve as a useful start-
ing point for investigating ‘perturbations’ around exact
notions, thus complementing ongoing investigations of
approximate QEC [17, 18, 19, 20]. We conclude in Sec.
V with some open questions.
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II. QUANTUM INFORMATION ENCODINGS

Consider an ideal quantum system Q, defined on a
Hilbert space HQ, with states belonging to the trace-one,
positive, convex subset D(HQ) of the Hermitian opera-
tors O(HQ), representing physical observables. Q repre-
sents the logical level, the abstract quantum information
to be encoded. Our task is to represent quantum infor-
mation carried by Q in a given quantum physical system
P, defined on a Hilbert space HP , with corresponding
states D(HP) and observables O(HP).

An encoding of Q in P is specified once two maps, a
state encoding Φ and an observable encoding Ψ, are given:

Φ : D(HQ)→ Σ, (1)
Ψ : O(HQ)→ Ω, (2)

where the elements of Σ and Ω are nonempty sets of
D(HP) and O(HP), respectively. The use of subsets in-
stead of single operators allows for the possibility that
the encoding is insensitive (robust) against the choice of
a ‘co-subsystem’ state, as it will be clear shortly (see dis-
cussion after Theorem 1).

In Ref. 4, Knill has formalized the meaning of a faithful
encoding, by requiring that the encoding maps satisfy
three physically-motivated conditions as follows:

(i) Statics: For all σ ∈ Φ(ρ), X ∈ Ψ(A), expectation
values coincide on faithfully encoded states: trace(σX) =
trace(ρA);

(ii) Unitary dynamics: For all σ ∈ Φ(ρ), X ∈ Ψ(A),
e−iXσeiX = e−iAρeiA;

(iii) Measurement dynamics: For all σ ∈ Φ(ρ), X ∈
Ψ(A), with X =

∑
λ λΠλ

X , A =
∑
α αΠα

A denoting the
corresponding spectral representations [21], projective
measures are faithfully implemented in the sense that
Πλ
XσΠλ

X ∈ Φ(Πλ
AρΠλ

A).
It is then proved (Thm. 1 in [4]) that every faithful en-

coding of quantum information is a subsystem encoding,
that is, there exists a decomposition

HP = HS ⊗HF ⊕HR, (3)

such that for all ρ, supp(Φ(ρ)) ⊂ HS ⊗ HF , and for all
X ∈ Ψ(A), Ψ(A) is of the form XS ⊗ IF ⊕ XR. Mo-
tivated by the operational requirement of distinguisha-
bility preservation between sets of states [10, 11], we
now introduce 1-isometric encodings, and compare them
with faithful encodings. In what follows, we shall pri-
marily focus on encoding of states, which is the key for
quantum information protection and correction in the
Schroedinger’s picture.

It is well known [22, 23, 24] that the probability of cor-
rectly distinguishing a pair of quantum states is related
to the distance induced by the trace-norm,

‖A‖1 ≡ trace(|A|) =
∑
i

si(A),

where |A| ≡
√
A†A and si(A) are the singular values.

Specifically, let two states ρ, τ, be prepared with prior
probability p, 1 − p, respectively. Then they can be dis-
criminated by means of measurements with at most prob-
ability 1

2 (1 + ‖pρ − (1 − p)τ‖1). This naturally prompts
investigating the structure of encodings that preserve dis-
tinguishability:

Definition 1 A linear map on Hermitian operators, Φ :
O(HQ) → O(HP), defines a 1-isometric encoding if for
all ρ1, ρ2 ∈ D(HQ) and p ∈ [0, 1],

‖pΦ(ρ1)− (1− p)Φ(ρ2)‖1 = ‖pρ1 − (1− p)ρ2‖1. (4)

Notice that linearity is assumed here from the beginning,
reflecting the fact that, in practice, any physical proce-
dure to be employed as an information “encoder” can be
described as a linear state transformation. While dis-
tinguishability preservation might at first seem a weak
requirement in comparison with (i)-(iii) for faithful en-
codings, we shall next show that it is indeed enough to
enforce a subsystem structure. We begin with a prelimi-
nary Lemma:

Lemma 1 If Eq. (4) holds for any ρ1, ρ2 ∈ D(HQ), the
map Φ is a linear isometry on the whole O(HQ).

Proof. Any Z ∈ O(HQ) may be expressed in the form

Z = Z+ − Z− = trace(Z+)ρ+ − trace(Z−)ρ−,

where Z+,− are the positive and negative parts of Z,
respectively, and ρ+,− = Z+,−/trace(Z+,−) ∈ D(HQ).
By letting p = trace(Z+)/trace(Z+ + Z−), we get

‖Φ(Z)‖1 = ‖trace(Z+)Φ(ρ+)− trace(Z−)Φ(ρ−)‖1
= (trace(Z+ + Z−))‖pΦ(ρ+)− (1− p)Φ(ρ−)‖1
= (trace(Z+ + Z−))‖pρ+ − (1− p)ρ−‖1
= ‖trace(Z+)ρ+ − trace(Z−)ρ−‖1
= ‖Z‖1.

Thus, Φ is an isometry on O(HQ). �

Since Φ : O(HQ)→ O(HP) is a linear 1-isometry that
sends states to states, it defines a stochastic isometry in
the terminology of Busch [25]. By invoking Thm. 1 of
Ref. 25, in particular, it follows that for every 1-isometric
encoding as defined above, there exists a decomposition
of the form

HP =
(⊕

j

HS,j
)
⊕HR, (5)

with each HS,j isomorphic to HQ, such that

Φ(ρ) =
(⊕

j

ωjUjρU
†
j

)
⊕ 0̂R, (6)

where Uj : HQ → HS,j is either unitary or anti-unitary,
ωj ∈ [0, 1],

∑
j ωj = 1, and 0̂R denotes the zero opera-

tor on HR (on the topic of isometric mappings between
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quantum states, see also [26, 27]). Thus, up to a unitary
(or anti-unitary) transformation UP =

(⊕
j U
†
j

)
⊕ ÎR on

HP , and a possible reordering of the basis, it follows that
for any 1-isometric state encoding there exists a subsys-
tem decomposition of HP of the form given in Eq. (3),
such that

Φ(ρ) = ρ⊗ τ ⊕ 0̂R, (7)

with a density operator τ on the co-subsystem factor HF
with spectrum {ωj}.

We remark that the subsystem decomposition of the
Hilbert space HP associated to a given encoding Φ is in
general not unique. In particular, there exists a minimal
decomposition for which the state τ in (7) is full-rank in
HF . The other subsystem decompositions of HP may
be obtained from the minimal one by augmenting the
dimension of HF (thus reducing the one of the summand
HR) upon identifying more isomorphic copies of HS,j ∼
HQ in (5), associated to weights ωj = 0 in (6). The latter
subspaces do not actually encode any information, since
the state has trivial support there.

Once a subsystem decomposition of HP is chosen, a
natural observable encoding Ψ is given by

Ψ(A) = A⊗ IF ⊕XR, (8)

for some XR ∈ O(HR) [28]. Given the structure of the
encoded states in Eq. (7), the specific choice of non-
minimal subsystem decomposition and ofXR is irrelevant
for expectations, dynamics, and measurement on the en-
coded states. In fact, one may directly verify that any
pair (Φ,Ψ) of the form given in Eqs. (7)-(8) defines a
faithful encoding, and that the requirements (i)-(iii) do
not depend on the co-factor state, τ . Conversely, consider
a faithful encoding (Φ̄, Ψ̄). Then the associated subsys-
tem structure provides us with a class of 1-isometric state
encodings Φτ as in Eq. (7), parametrized by the state of
the co-factor τ ∈ D(HF ). Each pair (Φτ , Ψ̄) is a faith-
ful encoding. We can summarize these properties in the
following:

Theorem 1 To every 1-isometric encoding Φ is associ-
ated a (minimal) faithful subsystem encoding of the form
given in Eqs. (7)–(8), and to every faithful encoding
(Φ̄, Ψ̄) is associated a class of 1-isometric encodings Φτ
parametrized by the co-factor state τ ∈ D(HF ).

This result provides an explicit connection between 1-
isometric and faithful encodings. In fact, Thm. 1 may be
regarded as establishing a subsystems principle building
on the operational notion of distinguishability.

By requiring the state encoding Φ to be a linear and
isometric function, we lose in principle some of the struc-
ture associated with the general encoding maps of [4] into
subsets, Eqs. (1)–(2). Nonetheless, it is important to ap-
preciate that to each subsystem decomposition is associ-
ated a class of isometric encodings, parametrized by the
cofactor state τ . The latter are operationally indistin-
guishable with respect to the faithfulness requirements

(i)-(iii), as long as they they share the same observable
encoding of the form (8). One can then think to describe
such a class in a compact form as a state encoding into
subsets:

Φ̂ : ρ ∈ D(HQ) 7→ Σρ = {ρ⊗ τ ⊕ 0̂R|τ ∈ D(HF )}.

When the observable encoding is defined as in (8), Φ̂
can be interpreted as a robust encoding with respect to
τ , in the sense that the desired information is correctly
represented inHS irrespective of which element of Σρ has
been used. Such a robustness property plays a crucial
role for characterizing the potential of error correction
and protection of 1-isometric quantum codes, to which
we turn next.

III. NOISELESS, PROTECTABLE, AND
CORRECTABLE CODES

Consider a 1-isometric encoding (Φ,Ψ) of Q in P: We
shall henceforth denote Φ(D(HQ)) by CQ and call it a
code. Assume that as a result of some noise process, the
physical system P undergoes CPTP dynamics described
by a quantum operation E on D(HP). We start by recall-
ing three desirable properties that CQ may exhibit with
respect to E , following the definitions given in Blume-
Kohout et al. [10]:

Definition 2 A code CQ is (i) fixed by E if E(ρ) = ρ for
every ρ ∈ CQ; (ii) preserved by E if E acts as a 1-isometry
on CQ; (iii) noiseless for E if it is preserved by any convex
mixture

∑
k pkEk, with pk ≥ 0 and

∑
k pk = 1.

Our focus in this Section is to study in detail how,
within the present 1-isometric framework, the above
properties relate to both passive and active methods for
stabilizing information encoded in CQ against E .

A. Noiseless isometric codes and subsystems

The noiselessness property as stated in Definition 2
appears at first quite different from the original concept
underlying decoherence-free subspaces (DFSs) [5, 6] and,
more generally, noiseless subsystems (NSs) [2, 3, 4, 29].
While a number of equivalent characterizations exist, the
following may be taken as the standard defining property
of a NS: Given a fixed decomposition of the Hilbert space,
HP = HS ⊗ HF ⊕ HR, and a TPCP E , HS supports a
NS for E if for every ρS ∈ D(HS), τF ∈ D(HF ),

E(ρS ⊗ τF ) = ρS ⊗ σF , (9)

for some state σF ∈ D(HF ). That is, the restriction of E
to HS ⊗HF obeys

E|HS⊗HF
= IS ⊗F , (10)

for some TPCP F on HF .
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From Eq. (9), it is easy to show that a noiseless 1-
isometric code exists with support on the same factor
HS . In fact, it suffices to consider a state τ ∈ D(HF )
which is a fixed point for F , and observe that the code
ρ ⊗ τ ⊕ 0̂R is fixed for E , and hence it is trivially noise-
less. The converse is not equally straightforward: Given
that a TPCP map admits a noiseless 1-isometric code,
is there a noiseless subsystem that shares the same (or a
compatible) subsystem structure?

The rest of this section is devoted to prove that this is
indeed the case. We begin with the following Lemma:

Lemma 2 Let E : D(HP) → D(HP) be a TPCP map
and ρ̄ ∈ D(HP) such that E(ρ̄) = σ̄, with supp(σ̄) ⊆
supp(ρ̄). Let D(H̄) be the set of density operators with
support only on H̄ = supp(ρ̄). Then E(D(H̄)) ⊂ D(H̄).

Proof. Let us choose an operator-sum representation
E(·) =

∑
kMk ·M†k . Consider the orthogonal decompo-

sition HP = H̄ ⊕ H̄⊥: In a block-matrix representation
consistent with such a decomposition, we may write

ρ̄ =
(
ρS 0
0 0

)
, Mk =

(
Mk,S Mk,P

Mk,Q Mk,R

)
,

E(ρ̄) =
( ∗ ∗
∗ ∑kMQ,kρSM

†
Q,k

)
= σ̄, σ̄ =

(
σS 0
0 0

)
.

Then it must be
∑
kMQ,kρSM

†
Q,k = 0, and since ρS is

full-rank on H̄, this implies MQ,k = 0 for all k. It is then
easy to verify that this ensures E(D(H̄)) ⊆ D(H̄). �

By using the previous Lemma, we first show that if the
action of the map respects a fixed Hilbert space decom-
position, the link between noiseless isometric codes and
NSs can be established directly:

Theorem 2 Consider a fixed Hilbert space decomposi-
tion HP = HS ⊗ HF ⊕ HR and a TPCP map E :
D(HP) → D(HP). Assume that there exists a full-rank
state τ ∈ D(HF ), such that for every ρ ∈ D(HS),

E(ρ⊗ τ ⊕ 0̂R) = ρ⊗ σ ⊕ 0̂R, (11)

for some σ ∈ D(HF ). Then

E|HS⊗HF
= IS ⊗F , (12)

for some TPCP F : D(HF )→ D(HF ).

Proof. First consider a full-rank state ρ ∈ D(HS). Then

supp(ρ⊗ σ ⊕ 0̂R′) ⊆ HS ⊗HF = supp(ρ⊗ τ ⊕ 0̂R),

and Lemma 2 implies that

E|HS⊗HF
(D(HS ⊗HF )) ⊆ D(HS ⊗HF ).

We can then restrict our attention to HS ⊗ HF . Con-
sider an operator-sum representation for E|HS⊗HF

(·) =

∑
kMk ·M†k . Let {Ci ⊗Dj} be an orthonormal operator

basis for the corresponding operator space B(HS ⊗HF ),
with C0 = IS . We may thus rewrite

Mk =
∑
i,j

mkijCi ⊗Dj =
∑
i

Ci ⊗ Fik,

with Fki =
∑
jmkijDj . It then follows that

E(ρ⊗ τ ⊕ 0̂R) =
∑
klm

ClρC
†
m ⊗ FlkτF †mk = ρ⊗ σ.

Since the {Ci} are orthonormal, it must be∑
k

ClρC
†
l ⊗ FlkτF

†
lk = 0,

for l > 0 and all ρ ∈ D(HS). This implies
∑
k FlkτF

†
lk = 0

and, since τ is full rank by hypothesis, Flk = 0 for l 6= 0.
We thus get the conclusion with F(·) =

∑
k F0k · F †0k. �

In the general case where the Hilbert space decompo-
sition is allowed to change, the argument is less direct.
Building on the above results, we have the following:

Theorem 3 Let C ∼ ρ⊗σ⊕0̂R be a 1-isometric noiseless
for E. Then there exists a fixed code C′ ∼ ρ⊗ τ ⊕ 0̂R that
admits a subsystem decomposition in common with C and
for which, denoting by HC′ the support of C′, E|HC′ =
IS ⊗F .

Proof. Consider an infinite, convergent series

Ē =
∞∑
i=0

piE i,
∞∑
i=0

pi = 1, pi > 0.

Then, any convex combination G =
∑
i qiE i, with∑

i qi = 1, qi ≥ 0, satisfies supp(G(C)) ⊆ supp(Ē(C)). De-
fine HSF ≡ supp(Ē(C)) and let ρ⊗ τ̄ ⊕ 0̂R be a minimal
subsystem representation of Ē(C). Consider an orthonor-
mal basis {|ϕj〉} of HQ, and the associated orthogonal
projections Πj = |ϕj〉〈ϕj |. Define the isomorphic sub-
spaces HF,j ≡ supp(Πj ⊗ τ̄). By hypothesis, the com-
bination of the encoding and the evolution Ē ◦ Φ must
act like a trace-norm isometry, and trace-norm isome-
tries preserve orthogonality [25]. Thus, by definition of
Ē and orthogonality preservation, it follows that one can
define a family of orthogonal subspaces

HF,j = supp(Ē(Πj ⊗ σ)), ∀j,
HF,j ⊥ HF,k, j 6= k.

Pick now an orthonormal basis in each HF,j , such that,
for instance, Ē(Πj ⊗ σ) is diagonal in HF,j . We can then
construct a decomposition

HSF =
⊕
j

HF,j = HS ⊗HF (13)
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Since, by definition of Ē , it must also be supp(E i(Πj ⊗
σ)) ⊆ HF,j for any i, the subsystem structure in (13)
supports not only Ē(C), but each E i(C) in subsystem form
up to a unitary change of basis in each of theHF,j ’s. That
is,

E i(C) ∼ U (i)
(
ρ⊗ τ(i)⊕ 0̂R

)
U (i)†

on HS ⊗ HF ⊕ HR, with HR = H 	 HSF and a block-
unitary U (i) =

⊕
j U

(i)
j ⊕ IR which in general depends

on the exponent i of E i. The same holds for any convex
combination of powers of E : In particular, consider the
convex combination

EN =
N∑
i=0

1
N + 1

E i.

Then the limit E∞ = limN→∞ EN is well defined for
finite-dimensional Hilbert spaces. In addition, E ◦ E∞ =
E∞, hence E∞ projects onto the fixed points of E [10, 30].
Furthermore, C∞ ≡ E∞(C) must be of the form ρ⊗ τ∞⊕
0̂R with respect to the decomposition HP = HS ⊗HF ⊕
HR, after some change of basis U∞ =

(⊕
j U∞,j

)
⊕ IR,

constructed as described above. It therefore follows that

E(ρ⊗ τ∞ ⊕ 0̂R) = ρ⊗ τ∞ ⊕ 0̂R,

for all ρ ∈ D(HP). If we restrict to the support of the
code, we can apply Theorem 2, hence it follows that
E|supp(C∞) = IS ⊗F . �

B. Correctable vs. protectable codes

When no DFS or NS can be found under the error
dynamics induced by E , active intervention via a recov-
ery quantum operation R is required in order to pro-
tect quantum information encoded in P. For a given R,
the subsystems principle implies that stored information
must exist irrespective of whether active intervention is
effected before or after error events take place, in a suit-
able sense [2, 4]. This is formalized by the following:

Definition 3 A code CQ is (i) correctable for E if there
exists a CPTP map R on D(HP) such that CQ is noise-
less for R◦E; (ii) protectable for E if CQ is noiseless for
E ◦ R.

Two specializations of the above definitions will also be
relevant: we shall call unitarily correctable (protectable)
a code for which R can be chosen to be a unitary trans-
formation on HP (see also [11, 15]), and completely cor-
rectable (protectable) a code which is fixed for R ◦ E (or,
respectively, E ◦ R).

Note that what we refer to as completely correctable
codes directly correspond to the original notion of a
(finite-distance) QEC code, in which case the state of
the syndrome subsystem (in the language of [31], Thm.

III.5) has to be appropriately re-initialized to its refer-
ence state at each iteration, and the code subspace effec-
tively forms a DFS under R◦E [31]. NSs and OQEC, on
the other hand, require from the outset that the state of
the syndrome subsystem be irrelevant as long as informa-
tion is properly encoded in the logical factor [2, 10, 29].
While OQEC does not lead to fundamentally different
quantum codes (in the sense that for each OQEC code,
an associated subspace QEC code may be found), simpli-
fied recovery procedures may result from taking explicit
advantage of the subsystem structure [32]. In the frame-
work of 1-isometric codes, our first result is to show how
the correspondence between NSs and noiseless isometric
codes highlighted in the previous section is complemented
by the following correctability property:

Theorem 4 A 1-isometric code CQ is preserved iff it is
correctable, and it is correctable iff it is completely cor-
rectable.

Proof. Assume that CQ, of the form given in Eq. (7), is
preserved by E . Hence E ◦Φ is a 1-isometry from D(HQ)
on D(HP) and, by Theorem 1, E(CQ) must correspond
to another subsystem state-encoding of Q in P. Assume
the two subsystem decompositions of HP , corresponding
to CQ and E(CQ), respectively, to be HS ⊗HF ⊕HR and
HS′ ⊗HG⊕HT , with dim(HS) = dim(HS′) = dim(HQ).
The action of E restricted to CQ can be represented in
the form

E|CQ = US−S′ ⊗ EF−G,

with US−S′ a unitary map from D(HS) to D(HS′), and
EF−G a CPTP map from D(HF ) to D(HG), respectively.
Let EF−G(τ) = σ. Thus, given the definition of a noise-
less code given in Definition 2, CQ is corrected by any R
which obeys

R|E(CQ) = U†S−S′ ⊗RG−F ,

with RG−F (σ) = τ. One may for instance employ the
time-reversal of EF−G [33, 34]: That is, let {Ek} be
the Kraus operators associated to EF−G, then its time-
reversal with respect to σ is REF−G,σ with Kraus opera-
tors {σ 1

2E†kτ
− 1

2 }. Notice that not only does this correc-
tion operation make CQ a noiseless code, but actually a
code of fixed points.

Conversely, preservation is necessary for correctability
since every CPTP map acts like a trace-norm contraction
on states (see e.g. [24]):

‖E(ρ1)− E(ρ2)‖1 ≤ ‖ρ1 − ρ2‖1, ∀ρ1, ρ2 ∈ D(HP). (14)

If CQ is not preserved by E , there must exist ρ1, ρ2 ∈ CQ
such that ‖E(ρ1)−E(ρ2)‖1 < ‖ρ1−ρ2‖1. To correct those
states, any correction R should violate (14), and hence
it would not be a physically realizable TPCP map. �

Remarkably, a similar reasoning allows us to extend
the analysis to protectable codes:
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Corollary 1 A TPCP map E admits a 1-isometric pro-
tectable code CQ iff it admits a 1-isometric completely
protectable code C′Q, and it admits a 1-isometric com-
pletely protectable code C′Q iff it admits a 1-isometric
completely correctable code C′′Q.

Proof. Clearly, if CQ′′ is completely protectable it is also
protectable. It then suffices to prove that the existence of
a protectable code implies the existence of a completely
correctable one, and this in turn implies the existence
of a completely protectable one. Assume that CQ, of
the form given in Eq. (7), is protectable for E , with a
“protecting” quantum operation R. Then, by the above
argument, CQ, R(CQ), and E ◦R(CQ) must be 1-isometric
state encodings of Q in P of the subsystem form. Let
C′Q = R(CQ). Then C′ is preserved by E , hence completely
correctable by the previous Theorem.

Conversely, assume then that C′Q is completely cor-
rectable for E , with correction operation R′. Let C′′Q =
E(C′Q). Then we have

(E ◦ R′)(C′′Q) = E(C′Q) = C′′Q,

which is completely protectable. �

The role of isometries for 1-isometric subsystem en-
codings is illustrated in Figure 1. Note that while Theo-
rem 4 above may be regarded as a direct counterpart of
Theorem 1 in Ref. 10, the isometric approach has the
advantage of additionally providing the explicit struc-
ture of the encoding, along with the explicit noise action
and the required correction map. Furthermore, Corol-
lary 1 formally establishes how protectable 1-isometric
encodings are in fact equivalent to correctable ones. In-
tuitively, at least as far as perfect information recovery is
concerned, we cannot hope to find a protectable code if
no correctable codes of the same dimension are available.

Next, we consider the potential of unitary correction
superoperators for 1-isometric codes. Our main result
shows that unitary recovery may suffice, provided that
the code is not increasingly “smeared” under the noise
action, in the following sense:

Proposition 1 Let CQ be a preserved 1-isometric code
for E, with dim (supp(E(CQ))) ≤ dim(supp(CQ)). Then
CQ is unitarily correctable.

Proof. Consider a 1-isometric code CQ associated to
HS ⊗HF ⊕HR and preserved by E . Thus, there exists a
minimal Hilbert space decomposition HS′ ⊗ HG ⊕ HT
associated to E(CQ), with dim(HS) = dim(HS′). If
dim(HG) < dim(HF ), we may extend the decomposition
to an non-minimal one HS′ ⊗HG′ ⊕HT ′ , in such a way
that equality holds. Having ensured that dim(HG′) =
dim(HF ), the two subsystem representations are isomor-
phic, and there exists a unitary correction superopera-
tor U(·) = U(·)U† that restores the initial state up to
the cofactor, which has rank at most equal to the initial
one. Thus, Theorem 2 applies to U ◦ E , and the code is

Q

CQ

E(CQ)

C̃Q

Q

Encoding

Correction

Protection

Decoding

R(CQ)

R|CQ

R|E(CQ)

E|CQ

E|R(CQ)

Noise

Noise

Φ(D(HQ))

Φ−1(C̃Q)

FIG. 1: (Color online) Pictorial representation of trace-norm
isometries in quantum information encoding, correction, and
protection. Here, C̃Q denotes a code isomorphic to CQ,
whereas the (state-)decoding map returns information from
the physical back to the abstract level.

supported on a NS for U ◦ E . Therefore, it is unitarily
correctable. �

When the main assumption of the above Theorem is vi-
olated, that is, dim(supp(E(CQ))) ≤ dim(supp(CQ)), we
can still gain some insight on what can be achieved by re-
stricting to unitary corrections: If, in the previous proof,
dim(HG) > dim(HF ), we can define a non-minimal sub-
system encoding for CQ such that dim(HG) = dim(HF ).
Then there exists a unitary change of basis V such that
V (ρ ⊗ EF ′−G′(τ ′))V † is a 1-isometric encoding for Q in
HS ⊗HF ′ ⊕HR′ , equivalent to the initial subsystem de-
composition. Since the support of CQ is strictly con-
tained in E(CQ), Theorem 2 does not apply. This means
that every 1-isometric subsystem encoding which is cor-
rectable is in general only unitarily recoverable, that is,
there exists a unitary operation that restores the code
to one which is supported by a non-minimal extension
of the initial subsystem decomposition. This is weaker
than the code being unitarily correctable, since there is
no guarantee that further iterations of noise and correc-
tion will still preserve the code. We have thus recovered
Theorem 1 in Ref. 15 (stating the equivalence between
correctable and unitarily recoverable subsystems) as a
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corollary of our isometry-based analysis. An interesting
open question for further investigation is to what extent
direct connections might exist between with the charac-
terization of unitarily correctable codes from the multi-
plicative domain of CPTP maps as recently pursued in
[16]. Within the current analysis, we conclude our dis-
cussion on perfect isometric encodings by considering a
simple illustrative example.

Example 1: The 3-bit quantum repetition code
revisited. Consider a system of three qubits, described
in HP ≈ (C2)⊗3 with the standard computational ba-
sis {|abc〉 = |a〉 ⊗ |b〉 ⊗ |c〉 | a,b,c∈{0,1}}. Assume that the
dominant noise on the system stems from independent
bit-flip errors with probability p < 1/2, that is, E ∼
{√1− p σ(i)

0 ,
√

p
3 σ

(i)
x }i=1,2,3, where σ(i)

x are Pauli opera-
tors on the i-th qubit, and σ

(i)
0 = I corresponds to no-

error. Consider the subspace HC = span{|000〉, |111〉},
which is used to encode the states of a logical qubit Q,
that is, in our notation, C = D(HC). Let us consider the
subsystem decomposition HP ∼ HQ ⊗ HF , induced by
the unitary change of basis U defined by

U |abc〉 = |x〉 ⊗ |yz〉, (15)

where x is the majority count of the binary string abc,
and yz indicates in which location abc differs from xxx,
with 00 indicating no differences. Then, in the subsystem
representation defined by Eq. (15), HC ∼ HQ ⊗ |00〉,
C = {ρ ⊗ |00〉〈00|}, with ρ ∈ D(HQ), see also [1]. It is
easy to see that the action of E restricted to C in this
representation is E|C = I ⊗F , where explicitly

F(|00〉〈00|) ≡ σ = (1− p)|00〉〈00|
+
p

3
(|01〉〈01|+ |10〉〈10|+ |11〉〈11|).

Thus, E(C) = {ρ ⊗ σ} is 1-isometric to C. By using a
correction superoperatorR = I⊗A, where for instance A
is a two-qubit amplitude damping channel on HF (such
that for any σ, A(σ) = |00〉〈00|), it follows that C is
fixed for R ◦ E . Equivalently, HC is a DFS under R ◦ E .
On the other hand, one may directly verify that the code
C′ ≡ E(C) is completely protectable for E , with protection
operation R as above, as it follows from the proof of
Corollary 1. Equivalently, HQ supports a NS of E ◦ R.

While the fact that every (finite-distance) subspace
QEC code is associated to a NS of E ◦ R is implied by
Theorem 6 in [2], OQEC subsystem codes take explicit
advantage of the fact that a NS may also be identified
for R ◦ E , for the same R, see [32] for the simplest rep-
resentative of an OQEC code which protects one logical
qubit into nine qubits subject to arbitrary independent
single-qubit errors.

IV. ROBUSTNESS OF ISOMETRIC
ENCODINGS

The 1-isometric setting we analyzed thus far naturally
lends itself to investigate robustness properties of subsys-
tem encodings. In turn, this allows to place our approach
in the context of approximate QEC, which has been ex-
tensively investigated for subspace codes from different
perspectives (see e.g. [33, 35, 36, 37, 38]), and is now
receiving renewed attention in the light of extensions to
the more general case of OQEC and subsystem codes
[18, 19, 20]. While a comprehensive study is beyond our
current scope, we focus here on two representative kinds
of uncertainty sources:

• Encoding uncertainty: The procedure that imple-
ments the intended encoding map may be affected
by errors.

• Model uncertainty: The noise model for which the
code and correction operator are intended may be
only approximately known.

For 1-isometric encodings as defined in Sec. I, we
show here that error correction is robust with respect to
bounded encoding errors. Furthermore, an upper bound
may be given on how information is degraded in the pres-
ence of modeling errors. The key idea is to invoke per-
turbations of 1-isometries:

Definition 4 A map Φ̃ : O(HA) → O(HB) is a per-
turbation of a 1-isometry if there exist a 1-isometry
Φ : O(HA)→ O(HB) and ε ∈ R+ such that

‖Φ̃(ρ)− Φ(ρ)‖1 ≤ ε, ∀ρ ∈ D(HQ).

Approximate isometries on Banach spaces have been
introduced by Hyers and Ulam in the 40’s [39] in their
most general form [40], and since then their properties
have been studied intensively, most notably approxima-
tions with linear or affine isometries as well as various
extension problems, see e.g. [41, 42, 43, 44] and refer-
ences therein. Note that in our context we consider only
approximate isometries that are ε-perturbations of linear
1-isometries and, for the sake of brevity, we still refer to
them simply as ε-isometries. The definitions of approx-
imate 1-isometric encodings and of approximately pre-
served codes are then the natural extension of the exact
ones to this setting. In particular:

Definition 5 A state encoding Φ̃ of Q in P is an ε-
isometric encoding if Φ̃ is a ε-isometry.

It follows from our previous analysis that ε-isometric
state encodings have the following structure:

Φ̃(ρ) = ρ⊗ τ ⊕ 0̂R + ∆(ρ), (16)

with ‖∆(ρ)‖1 ≤ ε. In this way, given the properties of
the trace-norm, and the relation of the latter to distin-
guishability, the perturbation parameter ε inherits the
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role of an upper bound to the error probability in infor-
mation recovery via measurements. The other relevant
definitions are also extended in a similar fashion:

Definition 6 A code CQ is (i) ε-preserved for E if E|CQ
is a ε-isometry; (ii) ε-noiseless for E it is ε-preserved
for any convex combination of the form

∑
k pkEk; (iii)

ε-correctable if it is ε-noiseless for R ◦ E.

A. Encoding uncertainty

The correction operations for 1-isometric codes we
discussed in Sec. III.B exhibit a desirable property:
Bounded errors in the encoding map do not increase.
This is formalized by the following:

Proposition 2 Let Φ be a 1-isometric encoding such
that its range CQ is preserved by E. Then any ε-
approximate version Φ̃ generates ε-approximate codes C̃Q
which are ε-correctable for E .

Proof. Under the assumptions, any C̃Q is of the form

Φ̃(ρ) = ρ⊗ τ ⊕ 0̂R + ∆(ρ),

with ‖∆(ρ)‖1 ≤ ε and ρ⊗τ⊕0̂R ∈ CQ, which is preserved
hence completely correctable. Let R be the TPCP map
that implements the complete correction, and let Ēp =∑
j pj(R ◦ E)j be any convex combination. Then

Ē(ρ⊗ τ ⊕ 0̂R + ∆(ρ)) = ρ⊗ τ ⊕ 0̂R + Ē(∆(ρ)).

Given that
∑
j pj(R◦ E)j is a trace-norm contraction, it

follows that |∑j pj(R ◦ E)j(∆(ρ))| ≤ ε. �

B. Model uncertainty

Errors due to model uncertainty may cause the en-
coded information to degrade rapidly: In fact, mono-
tonicity of the trace norm under CPTP dynamics is not
enough to ensure non-increasing errors as in Section IV A.
We provide a bound on the norm-1 error after a finite
number of iterations of an approximately preserved code.

Since CQ is ε-approximately preserved, there exists a
subsystem decomposition such that for every ρ ∈ D(HQ),
we may write

(E ◦ Φ)(ρ) = ρ⊗ τ ⊕ 0̂R + ∆(ρ),

with ‖∆(ρ)‖1 ≤ ε and E ′|CQ = E −∆ being a 1-isometry.
Choose R such that CQ is fixed for R◦ E ′|CQ , as invoked
in the proof of the previous Proposition. Therefore,

(R ◦ E)n(ρ) = ρ+R
(

n∑
i=1

(E ◦ R)i−1(∆(ρ))

)
, (17)

where now ρ ∈ CQ. By recalling that both R and E ◦ R
act as a trace-norm contraction, it follows that for any i,

‖R ◦ (E ◦ R)i(|∆(ρ))‖1 ≤ ‖(E ◦ R)i(∆(ρ))‖1 ≤ ε.
We thus have the following:

Proposition 3 Any ε-preserved code CQ under E admits
a correction operation R such that CQ is ε̃-preserved by
(R ◦ E)n, with ε̃ ≤ nε.

While it is possible to construct instances in which
equality holds (at least for low n), an interesting ques-
tion is whether the bound can be tightened under ad-
ditional information on ∆(ρ). Suppose, for instance,
that E ◦ R is strictly contractive along any trajectory
Tρ = {(R ◦ E)i(∆(ρ)); i ∈ N}, ρ ∈ CQ, that is, there
exists an α ∈ [0, 1) (possibly dependent upon ε) such
that ‖E ◦ R(X)‖1 ≤ α‖X‖1, ∀X ∈ Tρ. Under these as-
sumptions, given Eq. (17), the relevant bound becomes
a geometric sum, and there exists a value

ε̃ ≤ lim
n→∞

n∑
i=1

αi−1ε =
ε

1− α,

so that the code is ε̃-correctable. The fact that the set of
strictly contractive maps is dense in the set of all CPTP
maps [45] leaves in principle the door open for approxi-
mate long-term information preservation in a generic set-
ting. In practice, whether the error bound is acceptable
for the intended application has be tested on a case-by-
case basis. We again provide an illustrative example.
Example 2: The approximate 3-bit quantum rep-
etition code. Consider the same two-qubit system and
the same code described in Example 1, but assume now
that the error model is described by

Eε = (1− ε)E + εG, 0 < ε < 1,

with E accounting for independent bit-flip errors as in
Example 1, and G for independent phase-flip errors. That
is, G ∼ {√1− p σ(i)

0 ,
√

p
3 σ

(i)
z }i=1,2,3, where as before σ(i)

z

acts on the i-th qubit, and σ
(i)
0 = I.

Assume that we are interested in testing how well the
corrected code performs after a given number of itera-
tions of errors followed by recovery, where R is chosen
in the perfect case. For concreteness, we let n = 10,
ε = 0.050, and p = 0.4 for both E and G. The linear
bound of Proposition 3 predicts that the error in trace
norm should be at most ε̄ = 0.5. Since states repre-
sented by matrices diagonal in the computational basis
are clearly unaffected by the addition of a dephasing term
like G, we choose as a test encoded state

ρc =
1
2

(
1 1
1 1

)
.

After 10 iterations, the recovered state reads

ρ10 =
(

0.500 0.332
0.332 0.500

)
,
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which leads to the following error in trace distance:

ε10 = trace(|ρc − ρ10|) = 0.335.

It is easy to show that asymptotically the encoded
qubit undergoes a complete dephasing process. That is,
for any initial encoded state ρ0, we get:

lim
n→∞

(R ◦ E)n(ρ0) = lim
n→∞

(R ◦ E)n
(
a b
b∗ c

)
=
(
a 0
0 c

)
.

Using a state like ρc, the asymptotic error thus becomes
ε → 1, rendering this approximate code unfit for use
whenever a large number of iteration is needed.

V. CONCLUSIONS

We have shown that trace-norm isometries provide an
operationally motivated and mathematically consistent
framework for addressing encoding and preservation of
quantum information in physical systems. Our results
point to a number of possible extensions and open prob-
lems, some of which have been already highlighted in
the main text. A first natural step is motivated by
considering information protection and correction in the
Heisenberg picture, which calls for a constructive char-
acterization of observable encodings in relation to the
general subsystem structure of state encodings obtained
in Sec. I. From a general QEC standpoint, two in-
teresting problems arise from seeking extensions of the

present 1-isometric framework that may be applicable to
continuous-time (Markovian) dynamics and OQEC [46],
or that relax the correctability notion to allow for non-CP
transformations [47] (Markovian) dynamics [46]. Since
the basic mathematical result on which our treatment
relied (Busch’s Theorem, from Ref. 25) applies to arbi-
trary separable Hilbert spaces in its full generality, exten-
sions to infinite-dimensional settings and quantum infor-
mation with continuous variables are also conceivable in
principle. Lastly, the problem of detecting when a map
is “close” to an isometry (with respect to the standard
Hilbert-space inner product) has recently been shown to
be QMA-hard [48]. It is suggestive to speculate that anal-
ogous complexity results for trace-norm isometries might
allow to further characterize the complexity of finding
preserved quantum codes NP-hard [10, 11].
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