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PREDATORS AND LIFE HISTORIES SHAPE LESTES DAMSELFLY
ASSEMBLAGES ALONG A FRESHWATER HABITAT GRADIENT

RoBBY StOKs!?2 AND MARK A. McPEEK!3

1Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 USA
2Laboratory of Aquatic Ecology, University of Leuven, Ch. De Bériotstraat 32, B-3000 Leuven, Belgium

Abstract. Survey data from New England showed that assemblages of Lestes dam-
selflies are organized along the entire gradient of pond permanence and predator presence.
One assemblage occupies vernal ponds lacking large dragonfly predators and fish; four are
largely confined to temporary ponds that typically contain dragonfly predators; one dom-
inates fishless permanent ponds and lakes where dragonflies are the top predators; and one
dominates permanent ponds and lakes where fish are the top predators. We determined the
role of life history and predation in maintaining this striking pattern by conducting a series
of transplant experiments in the field and a laboratory experiment manipulating presence
and absence of local predators. Life history (1) shaped the ability of species to cope with
drying regime, thereby excluding temporary-pond Lestes from vernal ponds and permanent-
water Lestes from temporary ponds, and (2) generated size differences among species due
to differences in the timing of hatching. This mediated the exclusion of temporary-pond
Lestes from permanent water bodies through asymmetric intraguild predation by permanent-
water Lestes. Dragonfly predation on permanent-water Lestes had an indirect positive effect
on the survival of temporary-pond Lestes; however, this effect apparently is too small to
allow coexistence of both Lestes groups. Predation by large dragonfly larvae excluded the
Lestes species of vernal ponds from temporary ponds, and differential vulnerability to large
dragonfly larvae and fish shaped the reciprocal dominance of L. eurinus and L. vigilax in
fishless and fish-containing permanent water bodies, respectively. Taken together, these
results show that life history constraints and predation both shape the distributions of Lestes
species along the pond permanence gradient in New England. We discuss the importance
of this freshwater habitat gradient in shaping local and regional species diversity.

Key words:  coexistence; community assembly; damselfly; environmental gradient; hydroperiod,;
indirect effects; Lestes; life history; local vs. regional speciesrichness; phenologic priority; predation.

INTRODUCTION

Species are not randomly distributed across the land-
scape. Predictable assemblages of species are usually
found along major environmental gradients, and clear
patterns of species turnover are associated with major
ecological discontinuitiesaong these gradients. Anim-
portant and clearly defined gradient orders lentic fresh-
water habitats along an axis of hydroperiod, with small,
temporary ponds that hold water for only a few weeks
a year at one extreme, and large lakes that are essen-
tially permanent bodies of water at the other extreme.
Species from nearly every group of freshwater organ-
isms sort along this environmental gradient, thus mak-
ing it a critical axis along which aguatic communities
are organized (reviewed in Wellborn et al. 1996). Un-
derstanding the processes that pattern species assem-
blages across this gradient requires that we understand
the ecological interactions that restrict species to in-
habiting only a subset of the environment gradient
available to them. To reveal the fundamental role of
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these interactions, studies within only a single habitat
type are not sufficient and a gradient approach is nec-
essary (Wellborn et al. 1996).

Several ecological processes are known to vary in
intensity along the freshwater habitat gradient, and
these ecological processes have been shown to limit
the distributions of some taxa along the gradient. Pond
drying can be an important source of mortality for or-
ganisms at the more temporary end of the gradient
(Smith 1983, Jeffries 1994, Skelly 1995); species in-
habiting temporary ponds must be able to complete the
obligate aquatic phases of their life cycle before pond
drying to maintain populations at this end of the gra-
dient (Wiggins et al. 1980). As water becomes more
permanent, predation becomes a more important fea-
ture of the ecological milieu (Woodward 1983, Skelly
1995, 1996, Wellborn et al. 1996, Schneider 1997, Bil-
ton et al. 2001). However, different top predators dom-
inate different portions of the gradient, with inverte-
brate predators (particularly large dragonflies) domi-
nating in the semipermanent range of the gradient and
in permanent ponds and lakes that are inaccessible to
fish colonization, and fish dominating on the permanent
end of the gradient in ponds that have routes of col-
onization for them (Tonn and Magnuson 1982, Rahel
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1984, M cPeek 1990a, Werner and M cPeek 1994, Skelly
1996, Wilbur 1997, Williams 1997, Fauth 1999, K napp
et al. 2001). The intensity of competition may also
change along the gradient as a result of changes in
predator presence and composition (e.g., Werner and
McPeek 1994, Werner and Anholt 1996). Emerging
patterns so far show that community structure along
the freshwater habitat is shaped primarily by pond dry-
ing and differences in predation, and that competition
seems to be of minor importance in causing species
exclusion along the gradient, although competition in-
fluences abundances of assemblage members where
they can persist (reviewed in Wellborn et al. 1996).

The group that has been most intensively studied
along the entire breadth of the gradient are the anurans,
which inhabit ponds and lakes as larvae (e.g., Kats et
al. 1988, Werner and McPeek 1994, Skelly 1995, 1996,
Smith and Van Buskirk 1995, Richardson 2001). Pond
drying and differences in predation regimes also influ-
ence the distributions of many invertebrate groups
along the gradient as well (see reviews by Batzer and
Wissinger 1996, Wellborn et al. 1996). Fish predation
in lakes containing fish and invertebrate predation in
fishless lakes clearly causes species in many taxa to
segregate among permanent lakes based on predation
regime both for limnetic and littoral species (e.g.,
Brooks and Dodson 1965, Bendell 1986, Arnott and
Vanni 1993, McPeek 1990a, Wellborn 1995, 2002). At
the more temporary end of the gradient, Wissinger et
al. (1999b) have shown that a combination of habitat
drying, intraguild predation, and salamander predation
determined the habitat distribution of two species of
limnephilid caddis flies going from vernal ponds to
permanent fishless water bodies (see also Sprules 1972
and Dodson 1974 for similar examplesin zooplankton).
Studies focusing on the mechanisms shaping inverte-
brate community structure along the gradient from tem-
porary ponds to permanent fish-containing lakes have
typically focused on taxa that inhabit only part of the
gradient, and/or have typically considered only a few,
and typically only two, species (e.g., Brooks and Dod-
son 1965, McPeek 1990a, Arnott and Vanni 1993,
Wellborn 1995, 2002, Wissinger et al. 1999b).

In this paper, we consider the ecological interactions
that structure the assemblage of Lestes damselflies
along this freshwater habitat gradient. Lestes are strik-
ing because members of this genus inhabit the entire
breadth of the gradient from vernal ponds to large per-
manent lakes with fish. Moreover, different assem-
blages of Lestes are found at different ranges along the
gradient. We present the results of laboratory and field
experiments that identify key ecological interactions
restricting species to different parts of the gradient, and
thus generating patterns in the species assemblages
along the gradient. Our results show that life history
constraints, predation by fish and dragonflies, and in-
traguild predation among the Lestes themselves all act
to restrict the distributions of Lestes species along the
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gradient. Our results also imply that a fourth com-
munity type should be added to Wellborn et al. (1996)’s
model of community assembly along the gradient (see
Discussion).

NATURAL HisTORY

Members of the genus Lestes can be found along the
freshwater habitat gradient from vernal pools that dry
yearly in early summer, temporary ponds that dry in
late summer in some, but not every year, and permanent
bodies of water. Only part of the distribution of Lestes
species along the gradient can be explained by life
history differences that lead to exclusion due to pond
drying. All lestid damselflies are univoltine, and most
overwinter as desiccation-resistant, diapausing eggs,
followed by a short larval stage of ~2—3 months in
spring and early summer (Gower and Kormondy 1963,
Sawchyn and Gillott 1974, Jodicke 1997). During this
larval period they pass through 10 instars (from F-9 to
F-0, with F-0 being the final instar). In New England,
species with this life history include L. congener Ha-
gen, L. disjunctus Selys, L. dryas Kirby, L. forcipatus
Rambur, L. rectangularis Say, and L. unguiculatus Ha-
gen. This life history permits these Lestes species to
potentially inhabit any position along the freshwater
habitat gradient, except for the most vernal of ponds.
Only L. dryas appears to have a short enough larval
period to successfully emerge in vernal ponds that dry
after only a few weeks in the spring and early summer
(see Results and Wiggins et al. 1980).

The exception to the typical Lesteslife history strat-
egy isgiven by the direct developing eggs of L. eurinus
Say, L. inaequalis Walsh, and L. vigilax Hagen (Lutz
1968, Paulson and Jenner 1971; M. A. McPeek, per-
sonal observation). For these species, eggs hatch soon
after being laid in late June and July, and their aquatic
larvae are present through May of the following year.
Thus, their requirement to overwinter as aquatic larvae
instead of diapausing eggs restricts them to permanent
water bodies (they can be found in temporary water
bodies that have not dried in several years; see Results).
Life history constraints can, however, not explain (1)
the near absence of L. dryas from temporary and per-
manent ponds and lakes, (2) the absence of temporary-
pond Lestes from permanent water bodies, and (3) the
clear habitat separation between the permanent-water
Lestes species (see Results). Water chemistry and com-
petition can probably also not explain these three pat-
terns. Abiotic conditions such as oxygen stress are
thought to be less harsh with increasing permanence
(Williams 1996), making it unlikely that they underlie
patterns (1) and (2). Lestes, like other damselflies, are
very resistant to low pH (Jodicke 1997), and their dis-
tribution is not related to pH (Bendell and McNicol
1987, McNicol et al. 1987). For example, in a survey
of permanent lakes in Michigan, the only chemical fac-
tor that differed between fishless lakes with L. eurinus
and fish-containing lakeswith L. vigilax was apH value
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that was, on average, slightly lower in fishless lakes,
but with nearly completely overlapping ranges of pH
(McPeek 1990a). Therefore, pattern (3) is also prob-
ably not caused by changesin water chemistry. Studies
focusing on the potential role of competition in spatial
segregation of coenagrionid damselfly larvae could not
demonstrate any competitive exclusion (Pierce et al.
1985, McPeek 1990a, 1998). Therefore, the experi-
ments described below were designed to test whether
the major predators found at different ranges along the
gradient, namely large dragonflies and fish, and intra-
guild predation by other Lestes species impose differ-
ential mortality on various Lestes species that can ac-
count for their distributions along the pond permanence
gradient.

MATERIALS AND METHODS

Quantification of species occurrence
along the gradient

A number of previous studies have described the types
of ponds inhabited by the larvae of various Lestes species
across North America (Walker 1953, Johnson and Crow-
ley 1980, Cannings and Cannings 1987, McPeek 19903,
Westfall and May 1996). To determine whether these dis-
tributional patterns hold in New England, we quantified
the densities of Lestes damselfly larvae and their potential
predators using a standardized protocol at 12 ponds and
lakes across the gradient in the vicinity of Hanover, New
Hampshire (see Appendix A).

General methodology of the field experiments

Field experiments with enclosures were conducted
in natural water bodies to evaluate the contributions of
predation in shaping the distribution of Lestes species
along the gradient. We worked with the natural avail-
able distribution of larval instars at the time of the
experiment for each damselfly species. Densities used
were within the natural range encountered during the
survey (none of the densities exceeded the maximum
density encountered during one of the sweeps). Natural
vegetation was added to each enclosure in densities
mimicking the conditions at the study site.

At the start of each experiment one additional larval
sampleidentical to the ones added to the enclosure was
taken to determine the initial size and mass of the lar-
vae. Head width was measured by digitizing an en-
larged image of the head using OPTIMAS software
(Optimas 1996). This initial sample of larvae and all
larvae recovered from cages were dried for >24 h at
64°C, and their dry mass was determined to the nearest
0.01 mg on an Ohaus Analytical Plus electrobalance
(Ohaus, Florham Park, New Jersey, USA).

We used two types of enclosures. For relatively short
experiments (a few days) or when very small instars
were involved, we used 17-L white buckets filled with
pond water for enclosures. Buckets were floated in sty-
rofoam frames in a pond, and these frames were po-
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sitioned to float in 0.5 m deep water. The bottom of
each bucket was covered with a 2-cm layer of detritus
and aquatic vegetation, and the background prey pop-
ulation was added to reconstruct the environment of
the natural site. Care was taken to exclude any dam-
selfly and dragonfly larvae or other predators (e.g., bee-
tle larvae and notonectids) when filling the enclosures.
The tops of the enclosures were open, but no immi-
gration of flying aquatic insects was observed.

For longer experiments (>3 wk in duration), we used
semipermeable enclosures in which small prey items
could pass freely into and out of the cages. These en-
closures were made of acylindrical chicken-wireframe
with aheight of 120 cm and a diameter of 30 cm (drag-
onfly predation experiment) or 54 cm (fish predation
experiment) (McPeek 1990a, 1998). This cylinder was
covered with nylon mosquito netting (0.6 X 1.2 mm
mesh size). The bottom of the enclosure was closed by
a plastic dish. This plastic dish was filled to a depth
of 2 cm with sediment, and aquatic vegetation in natural
densities was added to enclosures after rinsing them
vigorously to remove animals. These enclosures were
placed in water at a depth of 80 cm, with their open
top extending 40 cm above the water level. No im-
migration of flying aquatic insects was detected. This
type of enclosure was installed in a pond or |ake one
week before the start of the experiment to allow prey
(e.g., copepods, cladocerans, amphipods, ephemerop-
terans, annelids) to colonize the cages. Coenagrionid
damselfly larvae display natural mortality and growth
rates under appropriate treatmentsin experiments using
this same enclosure design (McPeek 1990a, 1998).
With each experiment using these enclosures, we also
deployed three enclosures that were handled identically
to treatment enclosures, except that no damselfly larvae
or predators were added. These served as controls to
detect any potential immigration of Lestes larvae
through the netting. We found no Lestes larvae in these
control cages at the end of any experiment.

The potential role of predation was assessed by cal-
culating mortality rate for each species (or species
group) in each enclosure. A constant mortality rate (m)
was assumed (i.e., N(t) = N(0) X exp(—mt)), hence
mortality rate was expressed as m = —-1.0 X
[In(number recovered) — In(initial number added)]/
(duration of experiment in days). This givesamortality
rate that is comparable across experiments with dif-
ferent initial densities and durations. Differences in
growth rate among treatments were assessed by com-
paring the dry masses of larvae recovered at the end
of the experiment.

Experiment 1: Anax predation in a temporary pond

Our survey showed that L. dryas has a strong affinity
for vernal ponds lacking large dragonfly predators (Ap-
pendix A). We established an experiment to test wheth-
er predation by large dragonfly predators excludes L.
dryas larvae from temporary ponds where large drag-
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onfly larvae (e.g., Anax and Aeshna species) are com-
mon. Each of the experimental enclosures contained L.
dryas and temporary-pond Lestes larvae. We studied
their performance (survival, final size) under each of
the two predator treatments: (1) no Anax predator add-
ed, and (2) one Anax predator added (Appendix B).

Experiment 2: Anax and Lestes predation in a
fishless permanent pond

The field survey showed that L. eurinus is the only
abundant Lestes present in permanent ponds and lakes
with large dragonflies as top predators (Appendix A).
The absence of temporary-pond Lestes from these per-
manent water bodies cannot be explained by hydro-
period or predation by the top predator (Anaxisequally
abundant in both habitat types; Appendix A). In early
spring, temporary-pond Lestes larvae that are just
hatched have a size disadvantage compared to larvae
of L. eurinus that hatched the previous summer and
which are already large at that moment (instar F-3 to
F-1). We established an enclosure experiment to eval-
uate the role of predation by the large L. eurinus and
Anax larvae in keeping the numbers of temporary-pond
Lestes low in fishless permanent ponds and lakes.

Each of the experimental enclosures was stocked
with temporary-pond Lestes. We studied their perfor-
mance (final mass, survival) in a completely cross-fac-
tored design of the four combinations of the presence
and absence of L. eurinus larvae and the Anax predator
(Appendix B).

Experiment 3: Laboratory predation experiment

The outcome of this last enclosure experiment sug-
gested that L. eurinus prey heavily upon small Lestes,
but Anax do not. To test this explicitly, we also estab-
lished a series of laboratory predation trials in which
individual L. eurinus and Anax were allowed to feed
on small Lestes. Trials were done in 20 cm diameter
glass bowls covered with window screening to provide
footing for the odonates (see McPeek 1990b). Bowls
were filled with aged pond water to a depth of 5 cm.
To extrapolate our findings to fish-containing water
bodies, we also ran trialswith L. vigilax, and the typical
aeshnid dragonfly predator, Basiaeshna janata, found
in fish-containing habitats (see Appendix A). Ten small
temporary-pond Lestes from Logging Pond were al-
lowed to acclimate for >2 h in a bowl before we ran-
domly assigned each bow! to one of the following four
treatments: no predator, one penultimate instar of Anax,
Basiaeshna, or L. eurinus. We counted the surviving
small Lestes after 24 h. Six trials of each predator treat-
ment were performed on 17 May.

Because the number of recovered larvae was zero in
two of the trials, we calculated mortality rate as the
proportion of larvae that died. Since no remains of
larvae that were missing were found, we assume that
all missing larvae were eaten.
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Experiment 4: Anax predation in a fishless
permanent pond

Lestes eurinus and L. vigilax are clearly restricted to
the permanent part of the freshwater habitat gradient
by their life history. In this experiment, we examined
whether the strong affinity of L. vigilax for fish-con-
taining permanent water bodies, and its absence from
fishless permanent water bodies (Appendix A) was due
to predation by large dragonfly larvae in the latter hab-
itat type. Each of the experimental enclosures was
stocked with larvae of both permanent-water Lestes.
We studied their performance (survival, final size) un-
der each of the two predator treatments: (1) no Anax
predator added, and (2) one Anax predator added (Ap-
pendix B).

Experiment 5: Fish predation in a fish-containing
permanent lake

In a second field experiment with permanent-lake
Lestes, we tested whether the absence of L. eurinusin
fish-containing permanent lakes (Appendix A) can be
explained by exclusion via fish predation. Each of the
experimental enclosures was stocked with both per-
manent-water Lestes. We studied their performance
(survival, final size) under each of the two predator
treatments: (1) no fish added, and (2) one fish added
(Appendix B).

Satistical analyses

In experiments where we held two focal Lestes spe-
cies within the same enclosure, not only the response
variables (mortality rate, head size, and body mass)
within one species, but also those between both species
are potentially not independent. Ideally, when testing
for an effect of predator, we should therefore perform
a one-factor multivariate analysis of variance (MAN-
OVA). However, the large number of response vari-
ables (six) relative to the level of replication (three or
four) precluded this analytic approach. In such cases,
we performed separate MANOVASs for the effect of the
predator on the mortality rates of both species in one
analysis, on head size of the two in a second analysis,
and on body mass of thetwo in athird. If the MANOVA
was significant we performed separate t tests for each
focal species. This approach is similar to the protected
ANOVA approach described by Scheiner (1993).

Whenever one of our treatment variables had more
than two levels, we tested for differences among these
levels with Duncan a posteriori tests (Sokal and Rohlf
1995).

RESULTS

Quantification of species occurrence along
the gradient

Total Lestes damselfly density did not differ among
the four habitat types along the freshwater habitat gra-
dient (ANOVA Fgq, P > 0.54; Appendix A). However,
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across the gradient there were dramatic shifts in indi-
vidual species abundance, and these differencesin spe-
cies composition identify four Lestes assemblages in
different habitat types: (1) L. dryas in verna ponds
(Duncan test, three pairwise comparisons with mean
densities in other habitat types, all P < 0.026); (2) L.
congener (all P < 0.001), L. disjunctus/forcipatus (all
P < 0.036), and L. rectangularis (all P < 0.005) in
temporary ponds; (3) L. eurinus in fishless permanent
ponds (all P < 0.02); and (4) L. vigilax in fish-con-
taining permanent bodies of water (all P < 0.001).
Anax dragonfly larvae and Acilius beetle larvae were
the most abundant invertebrate predators in our sam-
ples. Both predator groups occupied different parts of
the gradient. Anax larvae almost exclusively occurred
in temporary ponds and fishless permanent bodies of
water and their mean density did not differ between
these habitat types (Duncan test P > 0.48). The same
pattern was found for newts (Notophthalmus virides-
cens). Acilius spp. larvae were the only abundant pred-
ator in vernal ponds; they are the only potential pred-
ator of L. dryasin these ponds, but our experience with
them indicates that they are too small in size to impose
significant mortality on Lestes populations. Dytiscus
beetle larvae were more abundant in fishless permanent
ponds than in the three other habitat types (Duncan
tests, all pairwise comparisons P < 0.01). Basiaeshna
dragonfly larvae only occurred in fish-containing per-
manent bodies of water, although always at low den-
sities (see also Johnson and Crowley 1980, McPeek
1990a). Belostomatidae and Nepidae were very rare,
and other taxa such as species in the Notonectidae and
Naucoridae (Hemiptera) were present at low numbers.

Experiment 1: Anax predation experiment in a
temporary pond

The MANOVA indicated a significant effect of Anax
dragonflies on Lestes mortality rate (F,s = 15.53, P <
0.01). L. dryas and the temporary-pond Lestes (i.e., L.
disiunctus, L. forcipatus, and L. rectangularis) all had
higher mortality rates in the presence of the Anax drag-
onfly than when Anax was absent (t; = 6.01, P < 0.001
and t; = 2.73, P < 0.05; Fig. 1A), showing that drag-
onflies are a significant mortality source for these Les-
tes species when they co-occur. In the absence of Anax,
L. dryas and the temporary-pond Lestes species had
similar mortality rates (paired t test, t; = 2.37, P =
0.10). However, L. dryas had significantly higher mor-
tality rates than the temporary-pond Lestes in the pres-
ence of Anax (t; = 5.96, P < 0.01).

The growth rates of all Lestes species were unaf-
fected by the dragonfly predator treatments (MANO-
VAs for head width and body mass with P > 0.17)
(Fig. 1B-C).

Experiment 2: Anax and Lestes predation experiment
in a fishless permanent pond

Mortality rates of small Lestes larvae were influ-
enced by the interaction between L. eurinus and Anax
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(two-way ANOVA F,z = 10.74, P < 0.02; Fig. 1D).
Across all treatments the presence of L. eurinus in-
creased the mortality of small Lestes (F,s = 67.76, P
< 0.001). Surprisingly, mortality of small Lestes did
not increase in the presence of an Anax dragonfly. In
the absence of L. eurinus, the Anax larva imposed no
detectible mortality on small Lestes (F,, = 1.58, P >
0.25); in addition, the mortality of small Lestesin the
presence of both Anax and L. eurinus was lower than
in the presence of only L. eurinus (F,, = 9.54, P <
0.04). This positive indirect effect of Anax on the sur-
vival of small Lestes was caused primarily through
Anax reducing L. eurinus abundance. Indeed, in an AN-
COVA with the number of recovered L. eurinuslarvae
as a covariate and the presence/absence of Anax as a
main effect, the presence of Anax had no significant
effect on small Lestesmortality (F, o, = 0.54, P > 0.45),
but there was a positive relationship between the num-
ber of recovered L. eurinus larvae and the mortality of
small Lestes (R = 0.93, F,, = 126.16, P < 0.001).

The final mass of the small Lestes was lower in the
presence of L. eurinus (F,g = 48.00, P < 0.001), but
not affected by the presence of Anax (F,s = 0.62, P
> 0.45; Fig. 1E). This reduction in body mass in the
presence of L. eurinus could be due to a reduction of
growth or positive size-biased predation. Only in the
latter case is a reduction of the variance in body mass
to be expected. The variance of body massdid not differ
between treatments with and without L. eurinus (one-
way ANOVA with the variation in body mass within
an enclosure as dependent variable, F,, = 0.21, P >
0.65), which suggests that the reduction in mean body
mass was the result of reduced growth of the small
Lestesin the presence of the L. eurinusintraguild pred-
ator.

Experiment 3: Laboratory predation experiment

The outcome of the laboratory predation trials
showed that small Lestes mortality differed among
treatments (log-transformed data, F, ;s = 68.11, P <
0.001). Duncan a posteriori tests showed two groups
(all species differences between groups, P < 0.001):
(1) mortality was low and statistically not different
when there was no predator (0.08 = 0.03; mean + 1
SE), a Basiaeshna larva present (0.13 = 0.02), or an
Anax larva present (0.25 + 0.04) and (2) high in the
presence of L. eurinus (0.85 = 0.04) or L. vigilax (0.75
+ 0.07). Hence, congeneric intraguild predation ap-
pearsto be amajor mortality source when Lesteslarvae
of one species are small, and large instars of another
Lestes species are present.

Experiment 4: Anax predation experiment in a
fishless permanent pond

Mortality rates of both native L. eurinus and trans-
planted L. vigilax were significantly increased by the
presence of Anax dragonfly larvae. Anax significantly
increased mortality rates of both transplanted L. vigilax
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(t, = 10.40, P < 0.001) and native L. eurinus (t, =
5.85, P < 0.01; overall MANOVA, F,; = 64.78, P <
0.005; Fig. 1F) in the experiment done in the fishless
permanent pond. In the absence of Anax, the mortality
rates of the transplanted L. vigilax and the native L.
eurinus were not different (paired t test, t, = 0.47, P
> 0.45), but the mortality rate of L. vigilax was much
higher than that of L. eurinus in the presence of Anax
(t, = 6.80, P < 0.03; Fig. 1F).

The presence of Anax did not reduce the final head
width, but did reduce final body mass (MANOVA, F,
= 0.74, P > 0.55 and F,; = 9.59, P = 0.050, respec-
tively for head width and body mass; Fig. 1G—H). Body
mass of L. eurinus was smaller in the presence of Anax
than in their absence (t, = 3.15, P < 0.04), and mass
of L. vigilax was marginally smaller in the presence of
Anax (t, = 2.33, P = 0.08), suggesting that larvae of
both species were growing slower in the presence of
the Anax predator.

Experiment 5: Fish predation in a fish-containing
permanent lake

The results of the MANOVA indicated that fish af-
fected the mortality rate of the Lestes larvae (F,; =
19.90, P < 0.02). Both transplanted L. eurinus and
native L. vigilax had higher mortality when fish were
present than when fish were absent (t, = 7.28, P <
0.002 and t, = 4.46, P < 0.02, for L. eurinus and L.
vigilax, respectively; Fig. 1I). Again, both Lestes had
comparable mortality rates in the absence of the pred-
ator (paired t test, t, = 0.42, P > 0.70), but the impact
of fish on larval mortality was more severe on thetrans-
planted L. eurinus than on the native L. vigilax (t, =
5.99, P < 0.03).

The presence of fish had an overall effect on the
sizes of recovered larvae of both species (MANOVA,
F,; = 10.23, P < 0.05 and F,, = 30.12, P < 0.01, for
head width and body mass, respectively). The presence
of fish did not affect the head width of the recovered
larvae for L. eurinus (t, = 1.26, P > 0.25) and only
marginally reduced it for L. vigilax (t, = 2.17, P <
0.10; Fig. 1J). While the final body mass of L. eurinus
was not affected by fish (t, = 0.83, P > 0.45), thefinal
body mass of L. vigilax was considerably reduced in
the presence of fish (t, = 8.94, P < 0.001; Fig. 1K).
This suggests a growth reduction of L. vigilax larvae
in the presence of fish.

Discussion
Habitat segregation and its underlying mechanisms

Our quantitative survey results show adramatic turn-
over in Lestes species along the freshwater habitat gra-
dient. Each of the four types of freshwater habitats
along the gradient imposes a specific set of constraints
and is characterized by a single Lestes species or spe-
ciesgroup. Thisstriking match between the four habitat
types and Lestes species assemblages can be complete-
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ly explained by the interplay of species differencesin
life history and vulnerability to predation (Fig. 2). Most
species (L. congener, L. disunctus, L. forcipatus, and
L. rectangularis) were abundant in temporary ponds
that also have large dragonfly populations. We also
found small numbers of these species as small larvae
at the time of sampling in lakes with fish and in one
case in a vernal pond (Appendix A); our experience
suggests that few if any of these larvae in fish lakes or
vernal ponds will survive to adulthood, and so these
small populations probably represent sinks (Pulliam
1988) for these species. The three other Lestes species
were almost exclusively found in a particular but dif-
ferent part of the gradient: L. dryas dominated vernal
ponds, L. eurinus dominated fishless permanent ponds
and lakes, and L. vigilax dominated fi sh-containing per-
manent ponds and lakes (Appendix A). This pattern is
in agreement with a broader, qualitative survey of 27
sites we conducted across the gradient in Vermont and
New Hampshire for the presence or absence of larvae
and newly emerged adults (R. Stoksand M. A. McPeek,
personal observation), and with other studies on the
distribution of Lestes damselflies across North Amer-
ica: L. dryas is known as a typical species of vernal
ponds (Walker 1953, Sawchyn and Gillott 1974, Wig-
gins et al. 1980, Cannings and Cannings 1987), L. dis-
junctus and L. congener occur in temporary ponds that
do not dry until mid-August (Cannings and Cannings
1987), L. eurinus is a specialist of fishless permanent
water bodies (Johnson and Crowley 1980, Crowley and
Johnson 1982), and L. vigilax is a specialist of fish-
containing permanent water bodies (Johnson and
Crowley 1980, Crowley and Johnson 1992).

Role of life history in shaping L estes assemblages.—
Life history played a key role in shaping species turn-
over along the gradient in two ways: (1) by determining
the ability of species to cope with drying regime and
(2) by mediating species exclusion through intraguild
predation. Not unexpectedly, the only Lestes special-
ized in vernal ponds, L. dryas, has a higher growth rate
than Lestes from the other habitat types (R. Stoks and
M. A. McPeek, unpublished data) and emerges earlier
in the summer before other Lestes (Sawchyn and Gillott
1974). Temporary-pond Lestes, such as L. congener
and L. disjunctus, probably cannot develop fast enough
at the relative lower temperatures associated with ver-
nal ponds, and as a result, are eliminated in the larval
stage by early pond drying (see also Jodicke 1997). At
the other end of the gradient, permanent-water Lestes
are largely excluded from temporary ponds because
their eggs hatch immediately in late summer (Lutz
1968, Paulson and Jenner 1971): therefore, they cannot
bridge the dry period in the egg stage as the temporary-
pond Lestes do (Jodicke 1997).

Life history also shaped species distributions along
the gradient by inducing asymmetric interactions be-
tween temporary-pond and permanent-water Lestes.
The near absence of temporary-pond Lestes in fishless
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permanent water bodies cannot be due to predation by
dragonflies. Indeed, large dragonfly larvae are the top
predators in both temporary ponds and fishless per-
manent ponds, and their densities did not differ be-
tween the two habitat types (Appendix A, Fig. 2). Tem-
porary-pond Lesteswere instead excluded from fishless
permanent bodies of water through asymmetric intra-
guild predation by L. eurinus (Experiments 2 and 3).
Because of their direct development, L. eurinus larvae
arealready inlate instarswhen the larvae of temporary-
pond Lestes hatch in the spring. The size advantage
linked with this life history-induced priority effect
makes it possible for L. eurinus to exert very high
mortality rates on temporary-pond Lestes. At natural
densities, L. eurinus larvae could eliminate almost all
small temporary-pond Lestes in the bucket enclosure
experiment after five days (Experiment 2). The sur-
viving temporary-pond Lestes larvae also had a re-
duced growth in the presence of L. eurinuslarvae. This
would probably be due to interference effects, since
small Lestes and L. eurinus would be feeding on very

different prey because of their size differences (see,
e.g., Havel et al. 1993), and would thus probably not
compete directly for resources. Predation by large L.
eurinus larvae and dragonfly predation would also ex-
clude small L. dryas from fishless permanent water
bodies.

Additional evidence that L. eurinus precludes tem-
porary-pond Lestes from invading fishless permanent
habitats comes from biogeography. L. eurinus only oc-
curs in northeastern North America, while the tem-
porary-pond Lestes, L. congener, and L. disjunctus are
widespread across the entire continent (Westfall and
May 1996). This creates a natural experiment to see
whether L. eurinus restricts these species to temporary
ponds. In accordance with our experimental results, L.
disunctusis able to establish large populations in fish-
less permanent ponds where it occursin allopatry with
L. eurinus (in Alberta[Krishnarg] and Pritchard 1995],
Colorado [Wissinger et al. 1999a], Montana [Eriksen
1984], and Texas [Abbott 2001]). A similar niche ex-
pansion of temporary-pond Lestes is seen in Europe,
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where permanent-water Lestes are absent. In contrast
with the pattern observed in northeastern North Amer-
ica, most European Lestes species are dominant in tem-
porary ponds, but also occur in large numbers in fish-
less permanent water bodies (Jodicke 1997; R. Stoks,
personal observation).

Role of large dragonfly and fish predation in shaping
L estes assemblages.—Predation pressure differed both
in a quantitative and in a qualitative way along the
gradient. Due to their short hydroperiod, vernal ponds
lack the large invertebrate top predators (mainly large
Anax dragonfly larvae) that dominate temporary ponds
and fishless permanent water bodies (Appendix A; see,
e.g., Smith 1983). Our survey further showed that fish-
less systems were characterized by the presence of the
larger and more active A. junius, while in fish-con-
taining systems, the smaller, less active B. janata dom-
inates, and many other smaller anisopteran species are
also present in lower abundances (see also McPeek
1990a, Werner and McPeek 1994). Large dragonfly
predators like Anax are excluded from fish-containing
water bodies by fish predation (Crowder and Cooper
1982, Morin 1984, Werner and McPeek 1994). Fish
typically are excluded from the less permanent water
bodies by oxygen stress and pond drying (e.g., Tonn
and Magnuson 1982, Rahel 1984), and many ponds are
fishless because no routes of colonization (e.g., con-
necting streams) are available for fish.

Our enclosure experiments showed that these chang-
ing predator assemblages (the presence or absence of
large dragonfly larvae and fish in particular) along the
gradient explained several Lestes species distribution
boundaries (Fig. 2). One, L. dryas, seems unable to
coexist with either of these two key predators and
adopted a fugitive strategy (sensu Sih 1987) by only
occurring in vernal ponds (Experiment 1). Thisis fur-
ther supported by the fact that the only temporary pond
in our larger survey where L. dryas was present (even
in high numbers), at the Ray Elementary School of
Hanover (New Hampshire), was one where large aeshn-
id dragonfly larvae were absent (R. Stoks and M. A.
McPeek, unpublished data).

The two permanent-water Lestes differed strongly in
their vulnerability to each of these two key predators:
L. eurinus was less vulnerable than L. vigilax to Anax
predation, while L. vigilax was less vulnerable than L.
eurinus to fish predation (Experiments 4 and 5). This
pattern of reciprocal dominance of prey species under
different predation regimes is a widespread phenom-
enon within other vertebrate and invertebrate genera.
As repeatedly shown in other systems that differ in the
background predator community, allopatric predators
impose greater mortality, and this is clearly a force
limiting part of the present species distribution (Wood-
ward 1983, Pierce et al. 1985, McPeek 1990a, b; Wis-
singer et al. 1999b, Relyea 2001). The same behavioral
mechanisms as found in Enallagma damselflies seem
to underlie the habitat segregation between both per-
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manent-water Lestes (R. Stoks and M. A. McPeek, un-
published data). The fact that both permanent-water
Lestes lower their foraging effort in the presence of
Anax, but only L. vigilax does so in the presence of
fish, makes them differentially vulnerable to both pred-
ators and may also explain why both species have a
reduced growth rate in the presence of Anax, but that
only L. vigilax suffered a reduced growth rate in the
presence of fish (Experiments 4 and 5).

Besides direct effects, we have indications that also
indirect effects (sensu Wootton 1994) of Anax drag-
onfly predation may be at work along the gradient (Ex-
periment 2). The presence of large dragonfly larvae had
a positive indirect effect on the survival of small tem-
porary-pond Lestes transmitted through its effects on
L. eurinus. Such indirect effects can be due to changes
in the abundance or changes in the per capita effect of
the intermediate transmitting species (Morin 1999).
Our results suggest that the indirect effect we observed
was mediated by a reduction in L. eurinus abundance
due to Anax predation. At our study sites, this positive
indirect effect appeared to be too small to allow the
coexistence of temporary-pond Lestes and L. eurinus.
At sites with a higher Anax predation and/or lower L.
eurinus densities, Anax may, however, act as akeystone
predator (sensu Mills et al. 1993) by preferentially con-
suming the L. eurinus that would otherwise eliminate
temporary-pond Lestes. This mechanism may be at
work in those temporary ponds that do not dry in a
given year. At present this is only conjecture and ad-
ditional experimental work is needed to evaluate the
potential context-dependent keystone role of large
dragonfly larvae (see also Fauth 1999).

Community types and transitions along the gradient

Our results are largely consistent with the mecha-
nisms shaping community structure along the gradient
of freshwater bodies as reviewed by Wellborn et al.
(1996). Along the gradient, they recognized three com-
munity types separated by two important transitions:
(1) the permanence transition that separates non-per-
manent and permanent habitats and (2) the predator
transition that separates permanent water bodies dom-
inated by invertebrate top predators and permanent wa-
ter bodies dominated by fish. However, an important
difference with our findings is that they assume that
the permanence transition also coincides with the shift
from communities without predators to communities
with large invertebrate top predators. For ponds in our
area of North America, the invertebrate predation and
hydroperiod transitions are not coincident; densities of
large dragonfly predators do not differ between tem-
porary ponds and fishless permanent water bodies (Ap-
pendix A, Fig. 2; see also Snodgrass et al. 2000). In-
stead, the transition towards communities dominated
by invertebrate top predators occurs when going from
vernal ponds to temporary ponds; what we would call
the first predator transition (as opposed to the second
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one separating permanent waters with invertebrate top
predators and permanent waters with fish). We believe
this mismatch between the first predator transition and
the permanence transition to be general. Indeed, other
studies have shown that large dragonfly predators can
be abundant and important top predators in non-per-
manent ponds (e.g., Skelly 1996, Wilbur 1997, Wil-
liams 1997, Fauth 1999, Higgins and Merritt 1999; see
also Richardson 2001). Because species of several taxa
can be eliminated by predation by large dragonfly lar-
vae in temporary ponds (e.g., anurans [Woodward
1983, Fauth 1999], odonates [ see Results], diptera[Stav
et al. 2000]), community structure differs largely at
both sides of thisfirst predator transition, justifying the
discrimination between vernal ponds and temporary
ponds. The presence of invertebrate top predators on
both sides of the permanence transition does not in-
validate this transition; it should be kept, but for other
reasons.

Species assemblages may differ at both sides of the
permanence transition due to strong asymmetric inter-
actions by congeneric species (not necessarily top pred-
ators, as in our study system), which are restricted to
permanent ponds. The same life history constraint that
keeps these permanent fishless pond species from liv-
ing in temporary ponds should give them a size ad-
vantage against congeneric species living in temporary
ponds. Taken together, this justifies the view of four
community types separated by three transitions along
the freshwater habitat gradient (Fig. 2; see also Snod-
grass et al. 2000).

Maintaining and generating biodiversity along
the gradient

Our results showed that pond drying and predation
interact in structuring Lestes assemblages and main-
taining biodiversity along the gradient. On alocal scale,
these selective forces sharply reduce Lestes species
richness; one single habitat-specific Lestes species
dominates vernal ponds and fishless and fish-containing
permanent water bodies. Different selective forces,
however, create refuge habitats for species that cannot
coexist with a certain predator. For example, L. dryas
and L. vigilax are both unable to live in temporary
ponds and fishless permanent waters because of the
presence of large Anax larvae; pond drying allows L.
dryas to persist in vernal ponds, and fish predation
allowsL. vigilax to persist in fish-containing permanent
water bodies. As aresult, the availability of alternative
habitat types along the gradient allows more Lestes
species to coexist on aregional scale. In other words,
the strong habitat-specific selection regimes along the
gradient decrease local species richness, while at the
same time increasing regional species richness.

The same ecological forces that today maintain hab-
itat segregation and thereby the regional species pool
also may have been the selective forces that generated
the regional species pool. Indeed, adaptation to local
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ecological conditions may play a significant role in
generating new species and shaping local community
structure (Wellborn et al. 1996, McPeek and Brown
2000, Schluter 2000). In agreement with the fact that
habitat-specific selection pressures are often severe and
incompatible, habitat specialization as seen in the ge-
nus Lestes is pronounced along the gradient (Wellborn
et al. 1996). This suggests that the common ancestor
of the extant Lestes species may also have had alimited
distribution along the gradient and that speciation may
have been linked with habitat shifts. For the moment
we are exploring this scenario within the genus Lestes
by reconstructing their phylogeny. Preliminary data
suggest that temporary ponds are the ancestral habitat
for Lestes damselflies (M. A. McPeek and R. Stoks,
unpublished data). Successful habitat shiftstoward ver-
nal ponds and permanent water bodies would have giv-
en rise to new species, thereby increasing regional spe-
ciesrichness (e.g., McPeek and Brown 2000). Clearly,
to fully exploit the freshwater habitat gradient as a
potential template for the evolutionary assembly of
communities, studies of diversification of the multitude
of taxa that segregate along the entire gradient should
be coupled with experimental tests of mechanisms pro-
moting local and regional coexistence of theselineages.
Because of the relative ease in identifying key evolu-
tionary and ecological processes in this system, we
think that the study of assemblages of closely related
species along an environmental gradient may be the
ideal system in which to explore how an entire eco-
system may have been assembled over evolutionary
time (see also Wellborn et al. 1996, McPeek and Brown
2000, Richardson 2001).

ACKNOWLEDGMENTS

We would like to thank the following people for their very
appreciated help in several stages of the enclosure experiment
in McDaniels Marsh: Stephen ‘‘ Chip”” Glaholt, Jr., for placing
the enclosures; Nick Friedenburg, Ryan Thum, Julie Turgeon,
and lan White for picking the Lestes larvae; and Curtis
McPeek for doing a great job in catching the pumkinseeds.
Sofie De Pooter is gratefully acknowledged for her assistance
with the enclosure experiment in Sylvester Pond. The owners
of Hemphill Pond, Johnson Pond, Montshire Museum Pond,
and Sylvester Pond generously allowed our presence on their
properties. Jens Rolff and Frank Johansson gave valuable
comments on this manuscript. R. Stoks is a postdoctoral fel-
low of the Fund for Scientific Research Flanders (FWO-Flan-
ders). The work was supported by grants from FWO-Flanders
to R. Stoks and by grants from the National Science Foun-
dation (USA) to M. A. McPeek.

LITERATURE CITED

Abbott, J. C. 2001. Distribution of dragonflies and damsel-
flies (Odonata) in Texas. Transactions of the American En-
tomological Society 127:199-228.

Arnott, S. E., and M. J. Vanni. 1993. Zooplankton assem-
blages in fishless bog lakes: influence of biotic and abiotic
factors. Ecology 74:2361-2380.

Batzer, D. P, and S. A. Wissinger. 1996. Ecology of insect
communities in nontidal wetlands. Annual Review of En-
tomology 41:75-100.



1586

Bendell, B. E. 1986. The effects of fish and pH on the dis-
tribution and abundance of backswimmers (Hemiptera, No-
tonectidae). Canadian Journal of Zoology 64:2696—2699.

Bendell, B. E., and D. K. McNicol. 1987. Fish predation,
lake acidity and the composition of aquatic insect assem-
blages. Hydrobiologia 150:193-202.

Bilton, D. T., A. Foggo, and S. D. Rundle. 2001. Size, per-
manence and the proportion of predators in ponds. Archiv
fur Hydrobiologie 151:451-458.

Brooks, J. L., and S. |. Dodson. 1965. Predation, body size
and the composition of the plankton. Science 150:28-35.

Cannings, R. A., and S. G. Cannings. 1987. The Odonata of
some saline lakes in British Columbia: ecological distri-
bution and zoogeography. Advances in Odonatology 3:7—
21.

Crowder, L. B., and W. E. Cooper. 1982. Habitat structural
complexity and the interaction between bluegills and their
prey. Ecology 63:1802-1813.

Crowley, P. H., and D. M. Johnson. 1982. Habitat and sea-
sonality as niche axes in an odonate community. Ecology
63:1064-1077.

Crowley, P H., and D. M. Johnson. 1992. Variability and
stability of adragonfly assemblage. Oecologia90:260—-269.

Dodson, S. |. 1974. Zooplankton competition and predation:
an experimental test of the size-efficiency hypothesis. Ecol-
ogy 55:121-127.

Eriksen, C. H. 1984. The physiological ecology of larval
Lestes disjunctus Selys (Zygoptera: Odonata). Freshwater
Invertebrate Biology 3:105-117.

Fauth, J. E. 1999. Identifying potential keystone speciesfrom
field data: an example from temporary ponds. Ecology L et-
ters 2:36-43.

Gower, J. L., and E. J. Kormondy. 1963. Life history of the
damselfly Lestes rectangularis with special reference to
seasonal regulation. Ecology 44:398—402.

Havel, J. E., J. Link, and J. Niedzwiecki. 1993. Selective
predation by Lestes (Odonata, Lestidae) on littoral micro-
crustacea. Freshwater Biology 29:47-58.

Higgins, M. J., and R. W. Merritt. 1999. Temporary woodland
ponds in Michigan: invertebrate seasonal patterns and tro-
phic relationships. Pages 279-297 in D. P. Batzer, R. B.
Rader, and S. A. Wissinger, editors. Freshwater wetlands
of North America: ecology and management. John Wiley
and Sons, New York, New York, USA.

Jeffries, M. 1994. Invertebrate communities and turnover in
wetland ponds affected by drought. Freshwater Biology 32:
603-612.

Jodicke, R. 1997. Die Binsenjungfern und Winterlibellen Eu-
ropas. Westarp, Heidelberg, Germany.

Johnson, D. M., and P H. Crowley. 1980. Habitat and sea-
sonal segregation among coexisting odonate larvae. Odon-
atologica 9:297-308.

Kats, L. B., J. W. Petranka, and A. Sih. 1988. Antipredator
defenses and the persistence of amphibian larvae with fish-
es. Ecology 69:1865-1870.

Knapp, R. A., K. R. Matthews, and O. Sarnelle. 2001. Re-
sistance and resilience of alpine lake fauna to fish intro-
ductions. Ecological Monographs 71:401-421.

Krishnargj, R., and G. Pritchard. 1995. Theinfluence of larval
size, temperature, and components of the functional re-
sponse to prey density on growth rates of the dragonflies
Lestes disunctus and Coenagrion resolutum (Insecta:
Odonata). Canadian Journal of Zoology 73:1672—-1680.

Lutz, P E. 1968. Life-history studies on Lestes eurinus Say
(Odonata). Ecology 49:576-579.

McNicol, D. K., B. E. Bendell, and R. K. Ross. 1987. Studies
of the effects of acidification on aquatic wildlifein Canada:
waterfowl and trophic interactions in small lakes in north-
ern Ontario. Canadian Wildlife Service Occasional Paper
Number 62, Ottawa, Canada.

ROBBY STOKS AND MARK A. McPEEK

Ecology, Vol. 84, No. 6

McPeek, M. A. 1990a. Determination of speciescomposition
in the Enallagma damselfly assemblages of permanent
lakes. Ecology 71:83-98.

McPeek, M. A. 1990b. Behavioral differences between En-
allagma species (Odonata) influencing differential vulner-
ability to predators. Ecology 71:1714-1726.

McPeek, M. A. 1998. The consequences of changing the top
predator in a food web: a comparative experimental ap-
proach. Ecological Monographs 68:1-23.

McPeek, M. A., and J. M. Brown. 2000. Building a regional
species pool: diversification of the Enallagma damselflies
in eastern North America. Ecology 81:904-920.

Mills, L. S., M. E. Soulé, and D. F. Doak. 1993. The keystone
concept in ecology and conservation. BioScience 43:219—
224.

Morin, P J. 1984. Odonate guild composition: experiments
with colonization history and fish predation. Ecology 65:
1866-1873.

Morin, P J. 1999. Community ecology. Blackwell Science,
Boston, Massachusetts, USA.

Optimas. 1996. Optimas, version 6.1. Optimas Corporation,
Bothell, Washington, USA.

Paulson, D. R., and C. E. Jenner. 1971. Population structure
in overwintering larval Odonata in North Carolina in re-
lation to adult flight season. Ecology 52:96-107.

Pierce, C. L., P H. Crowley, and D. M. Johnson. 1985. Be-
havior and ecological interactions of larval Odonata. Ecol-
ogy 66:1504-1512.

Pulliam, H. R. 1988. Sources, sinks, and population regu-
lation. American Naturalist 132:652—661.

Rahel, F J. 1984. Factors structuring fish assemblages along
a bog lake successional gradient. Ecology 65:1276—1289.

Relyea, R. A. 2001. The relationship between predation risk
and antipredator responses in larval anurans. Ecology 82:
541-554.

Richardson, J. M. L. 2001. The relative roles of adaptation
and phylogeny in determination of larval traits in diver-
sifying anuran lineages. American Naturalist 157:282-299.

Sawchyn, W. W., and C. Gillott. 1974. The life history of
three species of Lestes (Odonata: Zygoptera) in Saskatch-
ewan. Canadian Entomologist 106:1283-1293.

Scheiner, S. M. 1993. MANOVA: multipleresponsevariables
and multiple species interactions. Pages 95-112 in S. M.
Scheiner and J. Gurevitch, editors. Design and analysis of
ecological experiments. Chapman and Hall, New York,
New York, USA.

Schluter, D. 2000. The ecology of adaptive radiation. Oxford
Series in Ecology and Evolution, Oxford University Press,
Oxford, UK.

Schneider, D. W. 1997. Predation and food web structure
along a habitat duration gradient. Oecologia 110:567-575.

Sih, A. 1987. Predators and prey lifestyles: an evolutionary
and ecological overview. Pages 203—224 in W. C. Kerfoot
and A. Sih, editors. Predation: direct and indirect impacts
on aquatic communities. University Press of New England,
Hanover, New Hampshire, USA.

Skelly, D. K. 1995. A behavioral trade-off and its conse-
quencesfor the distribution of Pseudacristreefrogtadpoles.
Ecology 76:150-164.

Skelly, D. K. 1996. Pond drying, predators, and the distri-
bution of Pseudacris tadpoles. Copeia 1996:599—-605.

Smith, D. C. 1983. Factors controlling tadpole populations
of the chorus frog (Pseudacris triseriata) on Isle Royal,
Michigan. Ecology 64:501-510.

Smith, D. C., and J. Van Buskirk. 1995. Phenotypic design,
plasticity, and ecological performance in two tadpole spe-
cies. American Naturalist 145:211-233.

Snodgrass, J. W., A. L. Bryan, and J. Burger. 2000. Devel-
opment of expectations of larval amphibian assemblage



June 2003

structure in southeastern depression wetlands. Ecological
Applications 10:1219-1229.

Sokal, R. R., and E J. Rohlf. 1995. Biometry. Third edition.
W. H. Freeman, New York, New York, USA.

Sprules, W. G. 1972. Effects of size-selective predation and
food competition on high-altitude zooplankton communi-
ties. Ecology 53:375-386.

Stav, G., L. Blaustein, and Y. Margalit. 2000. Influence of
nymphal Anax imperator (Odonata: Aeshnidae) on ovipo-
sition by the mosquito Culiseta longiareolata (Diptera: Cu-
licidae) and community structure in temporary pools. Jour-
nal of Vector Ecology 25:190-202.

Tonn, W. M., and J. J. Magnuson. 1982. Patterns in the spe-
cies composition and richness of fish assemblages in north-
ern Wisconsin lakes. Ecology 63:1149-1166.

Walker, E. M. 1953. The Odonata of Canada and Alaska.
University of Toronto Press, Toronto, Canada.

Wellborn, G. A. 1995. Predator community composition and
patterns of variation in life-history and morphology among
Hyalella (amphipoda) populations in southeast Michigan.
American Midland Naturalist 133:322—-332.

Wellborn, G. A. 2002. Trade-off between competitive ability
and antipredator adaptation in a freshwater amphipod spe-
cies complex. Ecology 83:129-136.

Wellborn, G. A., D. K. Skelly, and E. E. Werner. 1996. Mech-
anisms creating community structure across a freshwater
habitat gradient. Annual Review of Ecology and System-
atics 27:337-363.

Werner, E. E., and B. R. Anholt. 1996. Predator-induced be-
havioral indirect effects: conseguences to competitive in-
teractions in anuran larvae. Ecology 77:157-169.

Werner, E. E., and M. A. McPeek. 1994. Direct and indirect
effects of predators on two anuran species along an envi-
ronmental gradient. Ecology 75:1368-1382.

SPECIES TURNOVER ALONG A GRADIENT

1587

Westfall, M. J., J., and M. L. May. 1996. Damselflies of
North America. Scientific Publishers, Gainesville, Florida,
USA.

Wiggins, G. B., R. J. Mackay, and |. M. Smith. 1980. Evo-
lutionary and ecological strategies of animals in annual
temporary pools. Archiv fur Hydrobiologie 58:97—-206.

Wilbur, H. M. 1997. Experimental ecology of food webs:
complex systems in temporary ponds. Ecology 78:2279—
2302.

Williams, D. D. 1996. Environmental constraints in tempo-
rary fresh waters and their consequences for the insect fau-
na. Journal of the North American Benthological Society
15:634-650.

Williams, D. D. 1997. Temporary ponds and their inverte-
brate communities. Aquatic conservation: marine and
freshwater ecosystems. 7:105-117.

Wissinger, S. A., J. Bohonak, H. W. Whiteman, and W. S.
Brown. 1999a. Subalpine wetlands in Colorado: habitat
permanence, salamander predation, and invertebrate com-
munities. Pages 757—790 in D. P. Batzer, R. B. Rader, and
S. A. Wissinger, editors. Freshwater wetlands of North
America: ecology and management. John Wiley and Sons,
New York, New York, USA.

Wissinger, S. A., H. H. Whiteman, G. B. Sparks, G. L. Rouse,
and W. S. Brown. 1999b. Foraging trade-offs along a pred-
ator—permanence gradient in subalpine wetlands. Ecology
80:2102-2116.

Woodward, B. D. 1983. Predator—prey interactions and
breeding-pond use of temporary-pond species in a desert
anuran community. Ecology 64:1549-1555.

Wootton, J. T. 1994. The nature and consequences of indirect
effectsin ecological communities. Annual Review of Ecol-
ogy and Systematics 25:443-446.

APPENDIX A

Sampling methods and a table of quantitative density estimates of Lestes damselfly larvae and predators are available in
ESA's Electronic Data Archive: Ecological Archives E084-040-A1.

APPENDIX B
A description of the setup of the enclosure experiments is available in ESA's Electronic Data Archive: Ecological Archives

E084-040-A2.
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