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RESEARCH ARTICLE

Population effect model identifies gene

expression predictors of survival outcomes in

lung adenocarcinoma for both Caucasian and

Asian patients

Guoshuai Cai1, Feifei Xiao2, Chao Cheng1,3, Yafang Li3, Christopher I. Amos3*, Michael

L. Whitfield1*

1 Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New

Hampshire, United States of America, 2 Department of Epidemiology and Biostatistics, University of South

Carolina, Columbia, South Carolina, United States of America, 3 Department of Biomedical Data Science,

Dartmouth College, Hanover, New Hampshire, United States of America

* Michael.L.Whitfield@dartmouth.edu (MLW); Christopher.I.Amos@dartmouth.edu (CIA)

Abstract

Background

We analyzed and integrated transcriptome data from two large studies of lung adenocarci-

nomas on distinct populations. Our goal was to investigate the variable gene expression

alterations between paired tumor-normal tissues and prospectively identify those alterations

that can reliably predict lung disease related outcomes across populations.

Methods

We developed a mixed model that combined the paired tumor-normal RNA-seq from two

populations. Alterations in gene expression common to both populations were detected and

validated in two independent DNA microarray datasets. A 10-gene prognosis signature was

developed through a l1 penalized regression approach and its prognostic value was evalu-

ated in a third independent microarray cohort.

Results

Deregulation of apoptosis pathways and increased expression of cell cycle pathways were

identified in tumors of both Caucasian and Asian lung adenocarcinoma patients. We demon-

strate that a 10-gene biomarker panel can predict prognosis of lung adenocarcinoma in both

Caucasians and Asians. Compared to low risk groups, high risk groups showed significantly

shorter overall survival time (Caucasian patients data: HR = 3.63, p-value = 0.007; Asian

patients data: HR = 3.25, p-value = 0.001).

Conclusions

This study uses a statistical framework to detect DEGs between paired tumor and normal tis-

sues that considers variances among patients and ethnicities, which will aid in understanding
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the common genes and signalling pathways with the largest effect sizes in ethnically diverse

cohorts. We propose multifunctional markers for distinguishing tumor from normal tissue and

prognosis for both populations studied.

Introduction

Among different ethnic populations, cancers often present with distinct clinical characteristics

in incidence, prevalence, mortality and drug response [1]. The heterogeneity among ethnic

groups can be caused by extrinsic environmental factors or intrinsic genetic factors that are

population specific. Extrinsic factors such as environment, smoking, or dietary habits, have

been shown to contribute to a large proportion of variation in cancer susceptibility [2, 3]. In the

past decades, the possible role of intrinsic factors such as genetic variation in cancer heterogene-

ity is gradually attracting researchers’ attention. For example, smoking-related risk of lung

cancer is found to be significantly different among populations, which might be due to the

between-ethnic variation in the metabolism of nicotine [4]. Similar discrepancies have been

observed with biomarkers. Many molecular biomarkers such as mRNAs, proteins, autoantibod-

ies, microRNAs, and cell-free DNA have been identified as candidate biomarkers for diagnosis

and treatment in cancer, but few of them have been validated. Variations in genetic architecture

among different ethnic groups make it difficult to validate cancer risk associated SNP markers

[5]. In the current study, we hypothesized that integrating data across different populations will

identify robust biomarkers by taking between-ethnic genetic variation into account. Here, we

focused on the most prevalent lung cancer type, adenocarcinoma. Previous studies have identi-

fied lung cancer risk variants including mutations in EGFR [6],HER2 [7], BRAF [8] or KRAS
[9], and gene fusions of RET, ALK or ROS1 [10]. However, information on gene expression in a

tumor adds biological context to lung cancer prognosis by identifying differentially expressed

genes and inferring pathway activation. We analysed datasets from two cohort studies for Cau-

casians and Asians, which were generated by RNA sequencing (RNA-seq) [11].

In studies of cancer, comparing paired tumor and anatomically matched-adjacent normal

tissues is an effective approach to alleviate the bias from patient variations as well as systematic

error. In our study, we analyzed RNA-seq data from 58 primary solid tumors and anatomic-

site matched normal tissue pairs from The Cancer Genome Atlas (TCGA) with patients self-

identified as Caucasian [12]. Another dataset analyzed 77 primary solid tumor and anatomic-

site matched normal tissue pairs from lung adenocarcinoma patients with Korean and East

Asian descent [13]. By investigating gene expression patterns in these two populations, we

found heterogeneous expression changes in Caucasians and Asians. Considering both popula-

tion-specific and patient-specific genetic architectures, a mixed model was proposed to iden-

tify the candidate biomarkers adjusting tissue, ethnicity, as well as other latent confounding

factors in the two cohorts. As a result, a set of consistent differentially expressed genes (DEGs)

in Caucasians and Asians was identified. Using those cohort-common DEGs as possible candi-

dates for predicting survival outcomes, we also selected a panel of transcriptome markers for

lung adenocarcinoma prognosis for both Caucasian and Asian patients.

Methods

Datasets and pre-processing procedures

Two RNA-seq and three DNA microarray datasets were used in this study (Table 1), including

the following:

Lung adenocarcinoma survival signatures across populations
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Caucasian RNA-seq study. We downloaded an Illumina HiSeq 3.1.12.0 lung adenocarci-

noma RNA-seq dataset from the TCGA database [12]. The dataset contains 457 tumor and 58

paired normal tissues, in which 53 pairs were from Caucasian patients. 2x48 bp pair-end

RNA-seq reads were aligned to the Ensembl GRCh37 human reference genome by MapSplice

[17]. Read counts of each gene were then estimated by RSEM [18]. The overall survival data

and clinical variables of the patients were also downloaded from TCGA.

Asian RNA-seq study. Tumor and normal paired RNA-seq data of 77 lung adenocarci-

noma patients were downloaded from Gene Expression Omnibus (GEO) with the accession

number GSE40419 [13]. 100-bp pair-end reads were generated from Hiseq sequencing plat-

form. We used Tophat to align reads to the Ensembl GRCh37 human reference genome and

HTSeq to calculate the counts mapped to each gene [19, 20]. Clinical information of the

patients was downloaded from the public website (http://genome.cshlp.org/content/22/11/

2109/suppl/DC1).

Three microarray studies. We also used three microarray datasets for validation, which

were available in NCBI GEO database under accession numbers GSE19804, GSE10072 and

GSE8894. All three mRNA expression DNA microarray-derived datasets were generated with

Affymetrix GeneChip Human Genome U133 Arrays. Both GSE19804 and GSE10072 studied

tumor and paired normal tissues. 60 Asian patients in Taiwan were enrolled in the GSE19804

study [14] and gene expression data from 33 Caucasian patients were available in the

GSE10072 study [15]. Gene expression raw signals from GSE19804 and GSE10072 studies

were processed and normalized using the robust multiarray average (RMA) expression mea-

sure method [21]. We used the GSE8894 dataset to validate selected prognosis markers, in

which transcriptome expression and recurrence-free survival information of 62 Asian patients

were available [16]. We downloaded GCRMA normalized data of all probe sets from the

GSE8894 study. For genes with multiple probes, the probe with the maximum average expres-

sion values in all samples was selected to represent the gene expression.

Mixed effect models

Reads per kilobase per million mapped reads (RPKM) values were calculated from RNA-seq

gene counts, and were log2 transformed to improve normality. Then we imputed missing val-

ues using the K-nearest neighbor method [22].

Because of the dependency of measurements within a patient from a specific population,

for each gene, we applied a mixed effect linear model,

logitðPrðyi ¼ 1ÞÞ ¼ xTi bþ zTi gþ qTi dþ ε ð1Þ

to detect tumor-normal DEGs. Here, yi is the dichotomous outcome for the i-th patient

which is 1 for tumor tissue and 0 for normal tissue. For the i-th patient, xi indicates a vector

of variables representing the log2 scaled RPKM values for a set of p genes (xi1,xi2,xi3,. . .,xip)T.

Table 1. Datasets used.

Platform Name Population Paired Survival data

available

Accession

RNA-seq Caucasian-seq Caucasian Yes Yes TCGA[12]

Asian-seq Asian Yes GSE40419[13]

Microarray Caucasian-array Caucasian Yes GSE19804[14]

Asian-array Asian Yes GSE10072[15]

GSE8894 Asian Yes GSE8894[16]

https://doi.org/10.1371/journal.pone.0175850.t001
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β = (β1,β2,β3,. . .,βp)T is a vector of regression coefficients to be estimated. When detecting

DEGs, we performed a gene-wise testing in which p = 1. zi and qi are indexes of patient ID and

populations (Caucasians and Asians), respectively, which account for subject-specific effects. γ
and δ are unknown vectors of random effect regression coefficients that model the effects from

populations and individuals, respectively, whereas E(γ) = 0 and E(δ) = 0. The restricted maxi-

mum likelihood (REML) method was used to estimate parameters β, γ and δ. F-test was per-

formed to test the association of gene expression with the disease outcome in the full model

(Eq 1) comparing to the following null model without gene expression variables (Eq 2) as

logitðPrðyi ¼ 1ÞÞ ¼ zTi gþ qTi dþ ε ð2Þ

p-values were adjusted to control the multiple testing false discovery rate using the Benjamini-

Hochberg method.

We also tested the DEGs in each specific population with the full and null models shown in

Eqs 3 and 4, in which the population effect qi was null within one specific population,

logitðPrðyi ¼ 1ÞÞ ¼ xTi bþ zTi gþ ε ð3Þ

logitðPrðyi ¼ 1ÞÞ ¼ zTi gþ ε ð4Þ

Biomarker selection

Logistic regression and Cox proportional hazard model were used for tumor-normal classifica-

tion and prognosis prediction separately. The l1 penalized regression technique LASSO was

used to select predictive genes as potential biomarkers [23]. For the i- th patient, we still use

the vector xi to denote the expression of a set of biomarker candidates, and hi to denote the log

odds of cancer outcome or log hazard ratio of death. The regression coefficients βswere esti-

mated with the l1 penalized term λ||β||2 according to Eq 5 as

b̂ ¼ argmax b ½k x
T
i b � hik2 � lkbk2� ð5Þ

where λ was a tuning factor which was determined by minimizing the deviance.

Variables with b̂ larger than 0 were considered as potential predictive biomarkers. To evalu-

ate the goodness of model fitting, we used the 5 fold cross validation strategy by randomly

splitting data into a training dataset with 80% of the sample and a test dataset with the rest for

5 times. The coefficient of determination R2 was calculated as 1 � RSS
TSS, where RSSwas the resid-

ual sum of squares and TSSwas the total sum of squares.

Clustering, enrichment and association testing

To evaluate the genetic distance among samples in Asian and Caucasian, hierarchical cluster-

ing was applied based on the expression profiling of identified DEGs from RNA-seq. The IPA

software (http://www.ingenuity.com/products/ipa) was used to identify gene set enriched sig-

naling pathways, upstream regulators and their target networks. Also, we applied linear regres-

sion, logistic regression and ordinal data analysis to investigate the association between the

risk score and clinical features. All data manipulations, statistical analyses and visualizations

were accomplished using R 3.0.2.

Lung adenocarcinoma survival signatures across populations
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Results

Cohort-common Differential Expression Genes (DEGs)

First, we investigated differential expression between tumor and paired normal tissues from

two ethnically different cohorts of patients with lung adenocarcinoma. The tumor-normal log

ratios of gene expression were consistent across Asian and Caucasian RNA-seq studies with

cohort specific variations (S1A Fig). 4418 genes had significant differential tumor-normal log

ratios of gene expression between populations; FDR adjusted p-values showed an overabun-

dance of small values rather than being uniformly distributed (S1B Fig).

To identify consistent DEGs in both Caucasian and Asian cohorts, we designed a mixed

effect model with normally distributed residuals (Fig 1A). Cohort-common DEGs were highly

regulated in tumor tissues in both Asian and Caucasian studies (Fig 1B), which were also

found consistently to be highly differentially expressed in independent DNA microarray stud-

ies (Fig 1C). We compared the top 300 DEGs from population-specific (Asian-seq, Caucasian-

seq) and population-common analyses in Fig 1E (summary of the top 300 DEGs were shown

in S1–S3 Tables). All 118 DEGs identified in both Asian and Caucasian cohorts were detected

by the cohort-common analysis as well. Comparing the cohort-common genes from the RNA-

seq datasets and four population-specific gene sets from RNA-seq (Asian-seq, Caucasian-seq)

and microarray (Asian-array, Caucasian-array) datasets, we found a robust differential expres-

sion of the cohort-common genes (Fig 1F). As expected, the cohort-common analysis showed

greater power of detection because of the increased sample size, which identified more DEGs

than the cohort-specific analyses at the same significance thresholds (Fig 1D). Interestingly, we

also observed that Caucasian-seq analysis detected more DEGs than Asian-seq analysis (Fig

1D), which was probably due to the larger fold changes (Fig 1B).

Hierarchical clustering of all RNA-seq cohort-common and cohort-specific DEGs showed

that the expression profiling of the top tumor-normal DEGs in Caucasians and Asians were

highly consistent (Fig 2A). However, the expression for several genes, such as GDF10,

C10orf116,GCOM1,GART, WDR46, SLC25A10 and PECAM1were population specific, in

which C10orf116 [24], GART [25] and SLC25A10 [26] had been reported to be functional in

metabolic processes. These results were consistent with the previous findings that Asians and

Caucasians had significantly different metabolic profiles [27]. Interestingly, several tumor sam-

ples in the Asian cohort showed a similar expression pattern with normal samples. These “nor-

mal-like” samples might account for the smaller tumor-normal log ratios in this cohort shown

in Fig 1B.

The 118 common DEGs were enriched in pathways related to cell proliferation, such as cell

cycle and biosynthesis of compounds including inosine-5’-phosphate, purine nucleotides, fla-

vin etc (Fig 2B). Although TP53 showed increased expression (p-value = 1.55 × 10−11) and

MYC was slightly decreased (p-value = 0.002) in lung cancer tumors compared to paired nor-

mal tissues, TP53 target genes showed decreased expression (Fig 2C), consistent with the fre-

quent observation of mutations of TP53 in adenocarcinomas [28]. Furthermore, MYC target

genes showed increased expression indicating potential MYC pathway activation.

A 10-marker panel for lung adenocarcinoma prognosis prediction

We tested the identified cohort-common DEGs for predicting tumor prognosis using the

TCGA dataset. Generally, tumor-normal DEGs had more power to predict prognosis than

non-DEGs (Fig 3A). 30 out of 118 cohort-common DEGs were significantly associated with

the risk of death with FDR adjusted p-values less than 0.05 (coefficients and significances were

shown in S2A Fig and c-indexes were shown in S2B Fig). From those 30 genes, 10 prognosis

Lung adenocarcinoma survival signatures across populations
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markers were selected using LASSO with λ = 10−3 (S2C and S2D Fig), including five cell struc-

tural arrangement related genes (CAV1, FAM83A, PLEK2, KIF14 and ANLN), two cell cycle

and growth related genes (CCNB1 and RSPO1), an antioxidant gene CAT and two function-

unknown genes FAM189A2 and NCKAP5. Risk scores were calculated as CAV1 � 0.12 +

FAM83A � 0.017 + ANLN � 0.01 + PLEK2 � 0.17 + KIF14 � 0.043 + CCNB1 � 0.015—RSPO1 �

0.0048—FAM189A2 � 0.091—NCKAP5 � 0.022—CAT � 0.036. With the mean of risk scores as

the threshold, we assigned patients into high risk and low risk groups. The high risk group had

significantly shorter survival time than the low risk group in both training (hazard ratio = 2.12,

p-value = 6.58 × 10−4, Fig 3B) and test datasets (hazard ratio = 3.63, p-value = 0.007, Fig 3C),

which were randomly split from the TCGA dataset. The risk scores showed statistical signifi-

cance for patient prognosis for tumor stage I/II lung adenocarcinoma (hazard ratio = 2.51, p-

value = 4.19 × 10−5, S3 Fig Left). For tumor stage III/IV lung adenocarcinoma, high risk

patients had 2.46 times higher hazard risk than low risk patients, which was not statistical sig-

nificance (p = 0.075) due to the limited number of late stage patients (S3 Fig Right). Consistent

with these results, patients with higher risk scores had a higher likelihood of death (Fig 3D

Fig 1. Cohort-common and cohort-specific detections of DEGs. (A) Q-Q plot of residuals of one randomly selected gene from 4418 genes having

significant differential tumor-normal log ratios of gene expression between populations. (B) Comparison of detections from Asian and Caucasian RNA-seq

studies. (C) Comparison of detections from Asian and Caucasian microarray studies. (D) Comparison of discovery rates from population-common and

population-specific analyses. (E) Venn diagram of the top 300 DEGs from Asian and Caucasian RNA-seq studies. (F) Venn diagram of the top 300 DEGs

from all RNA-seq and microarray studies.

https://doi.org/10.1371/journal.pone.0175850.g001
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Top). As expected, the 10 selected markers showed significant alterations in gene expression

corresponding to the increased risk score and death proportion (Fig 3D). Consistently, each of

these 10 gene markers showed significant power in discriminating patients with low risk and

high risk of death (S4 Fig). CAV1 and NCKAP5 showed the weakest prognostic power individ-

ually but contribute to prognosis in the combined risk score.

Fig 2. Enrichment analyses of cohort-common DEGs. (A) Hierarchical clustering of gene expression of cohort-common and cohort-specific DEGs in

both Asian and Caucasian RNA-seq studies. (B) 118 cohort-common DEGs enriched pathways. (C) Upstream regulators and their target networks

enriched in 118 cohort-common DEGs.

https://doi.org/10.1371/journal.pone.0175850.g002

Lung adenocarcinoma survival signatures across populations
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Fig 3. Prognosis markers. (A) Tumor-normal DEGs have more power to predict survival outcome. Genes were ranked according to the significance of

differential expression between tumor and normal tissues and were categorized into 20 bins evenly. The blue line indicates the rescaled discovery rate of

survival associated genes. (B, C) Kaplan-Meier plot of high-risk and low-risk groups from training and test datasets. (D) From top to bottom, (panel 1)

predicted risk scores; (panel 2) survival records of patients; (panel 3) gene expression of the 10 selected markers. Structural arrangement controlling

genes are indicated by red bars. X axis in all 3 panels shows the patients in the same order. (E) Statistics of multiple regression with risk score and other

clinical features as co-factors.

https://doi.org/10.1371/journal.pone.0175850.g003
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Prognostic power with clinical survival risk co-factors

We investigated the association of the 10-marker prognostic risk score with clinical features

including age, race, disease outcome, American Joint Committee on Cancer (AJCC) TNM

tumor staging information (cancer metastasis stage, neoplasm disease lymph node stage and

tumor stage), lung capacity indicators (FEV1, FEV1/FVC, DLCO) and smoking history. In Fig

4, we found that the risk score was significantly positively correlated with tumor stage. Also as

expected, current smokers had the highest risk scores, non-smokers had the lowest risk scores

and former smokers who have quit for longer durations had lower scores compared to more

recent quitters. A positive correlation with neoplasm disease lymph node stage, and a negative

correlation with weak lung capacity (low FEV1 and DLCO) were also observed (S5 Fig). How-

ever, we observed that associations between risk score and age, race, cancer metastasis stage or

FEV1/FCV percentage were not significant. The summary of statistics from association tests is

shown in S4 Table. To evaluate the predictive power of the risk score with those clinical co-fac-

tors including age, race, tumor stage and smoking history, we performed a multiple regression

analysis and found that risk score dominated the prediction with weak additional contribu-

tions from tumor stage and smoking history (Fig 3E).

Selected markers were applicable for both prognosis and discrimination

for both Asian and Caucasian populations

Above, we selected prognosis markers from the cohort-common DEGs with the expectation

that they have high predictive power in both populations. Here, we evaluate the performance

of the prediction model using this marker panel in an Asian microarray study (GSE8894). This

evaluation showed significant difference between the high-risk and low-risk groups (hazard

ratio = 3.25, p-value = 0.001) (Fig 5A). In contrast, 10 prognosis markers selected from the 104

Caucasian specific DEGs showed in Fig 1E presented less ability to discriminate high-risk

group from low-risk group (hazard ratio = 2.20, p-value = 0.028, figure not shown).

Fig 4. Association study of survival risk score with clinical features. (A) AJCC Tumor stage. (B) Smoking history, Non: Lifelong Non-smoker;

Ref<15: Current reformed smoker for < or = 15 years; Ref>15: Current reformed smoker for > 15 years; Ref-nd: Current Reformed Smoker, Duration Not

Specified; Cur: Current smoker.

https://doi.org/10.1371/journal.pone.0175850.g004
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Moreover, the selected prognosis markers had high power to differentiate tumor from nor-

mal tissue. A large difference of prognosis risk score was found between cancer and healthy

control tissues from all RNA-seq and microarray studies (Fig 5B). A logistic model was trained

for discriminating tumor from normal tissue, by which we obtained high power of discrimina-

tion showed in the ROC curve (Fig 5C).

Discussion

Our results demonstrate that although Asian and Caucasian studies produced consistent

genome-wide expression profiles, many genes have distinct tumor-normal alterations between

these two specific populations. Therefore, we designed a mixed effect model to include random

effects from ethnicity and patient subject for detecting the cohort-common DEGs. We selected

10 genes as biomarkers of prognosis from the cohort-common DEGs and found powerful dis-

crimination of tumor and normal tissues in both Asian and Caucasian populations.

The differences between Asian and Caucasian cohort studies were captured and modeled

in our mixed effect model. Subject-average effects were estimated as well as subject-specific

effects from each subject, ethnicity and other confounding factors between studies. Thus, we

were able to characterize subject-specific confounders from individuals and populations, and

capture the true phenotype-genotype associations. Applying it, we detected 118 cohort-com-

mon DEGs and found that TP53 and MYC targeted genes were abnormally regulated in tumor

tissues. This indicates that for lung adenocarcinoma patients from both Asian and Caucasian

cohort studies, the apoptosis pathway might be turned down and cell-cycle pathway might be

powered up. Also, we observed that metabolic genes including C10orf116 [24], GART [25] and

SLC25A10were differentially expressed between Caucasian and Asian populations. However,

additional studies are required to validate that these discrepancies are population-specific and

not due to technical variation.

This study demonstrated the relevance of tumor-normal discrimination and prognosis pre-

diction in two populations using the same gene expression markers. Our findings provide the

logical basis for finding universal makers for both tumor discrimination and prognosis for

cost and time effectiveness. Also, our mixed effect model detected cohort-common DEGs to

provide a maker candidate pool for both Asian and Caucasian populations. With these logical

basis and candidate pool, we selected 10 markers and validated their capability for tumor

Fig 5. Power of prognosis markers. (A) Kaplan-Meier plots of high-risk and low-risk patients grouped by prognosis markers on validate dataset

GSE8894. (B) Prognosis risk scores in all RNA-seq and microarray datasets. (C) ROC curves for tumor-normal discrimination by selected markers in all

RNA-seq and microarray datasets.

https://doi.org/10.1371/journal.pone.0175850.g005
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discrimination and prognosis of lung adenocarcinoma in both Asian and Caucasian specific

studies with a high predictive power. Of the ten genes selected as biomarkers, five (CAV1,

FAM83A, PLEK2, KIF14 and ANLN) are associated with key events in cell division including

signal transduction, the actin cytoskeleton or in microtubule dynamics. All five genes were

positively associated with survival time, consistent with previous reports that these genes are

oncogenic in lung and other cancers [29–33]. The 10-gene biomarker panel also includes

CCNB1, which is a key cell-cycle regulator and known prognostic predictor of lung adenocar-

cinoma [34]. The antioxidant gene CAT was found to be negatively associated with the risk of

death. This is consistent with that the overexpression of CAT leads to a less aggressive pheno-

type of cancer cells [35, 36]. Despites several gene expression candidate marker sets have been

proposed [37–39], they are from single population studies and lack of reproducibility for clini-

cal application. In the current study, we selected prognosis markers from the whole transcrip-

tome RNA-seq quantification, aiming to achieve a higher prognosis power than previous

microarray studies or PCR studies of empirically selection markers. Furthermore, we consid-

ered the population genetics variations into our analysis thus our makers have higher potential

in application across populations compared to previous studies developed based on single

populations.

In clinical practice, tumor stage is the main prognostic indicator for treating lung adenocar-

cinoma. Surgical resection is the standard treatment for tumor stage I/II patients, whereas

chemotherapy and radiation are suggested to treat tumor stage III/IV patients. The 10-gene

marker panel demonstrated statistical significance for patient prognostication, particularly for

early stage lung adenocarcinoma, suggesting surgery may be insufficient for the high-risk early

patients and may be improved with additional adjuvant chemotherapy.

Prognostic risk scores from the 10-gene biomarker panel were significantly correlated with

known clinical survival risk factors including tumor stage, FEV1 and DLCO, and smoking his-

tory. However, this new panel showed the highest prognosis power in multivariate analysis.

Further in the future, other potential predictors will included in the model, such as mutations

of EGFR,HER2, BRAF or KRAS, fusions of RET, ALK or ROS1 and others.

In conclusion, this study uses a statistical framework to detect DEGs between tumor and

normal tissues that considers variances among patients and ethnicities, as well as confounding

factors such as microarray or RNA-seq platform and data processing strategies. Such a method

can help us understand the genes and signalling pathways with the largest effect sizes in ethni-

cally diverse cohorts. We propose multifunctional markers for distinguishing tumor from nor-

mal tissue and prognosis for both populations studied. This study provides a strategy for

identifying biomarkers from high-throughput transcriptome profiling data across cohorts of

diverse patients.
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