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Abstract

In this paper we show how the coupling of the notion of a network with directions with the adaptation of the four-point
probe from materials testing gives rise to a natural geometry on such networks. This four-point probe geometry shares many
of the properties of hyperbolic geometry wherein the network directions take the place of the sphere at infinity, enabling a
navigation of the network in terms of pairs of directions: the geodesic through a pair of points is oriented from one
direction to another direction, the pair of which are uniquely determined. We illustrate this in the interesting example of the
pages of Wikipedia devoted to Mathematics, or ‘‘The MathWiki.’’ The applicability of these ideas extends beyond Wikipedia
to provide a natural framework for visual search and to prescribe a natural mode of navigation for any kind of ‘‘knowledge
space’’ in which higher order concepts aggregate various instances of information. Other examples would include genre or
author organization of cultural objects such as books, movies, documents or even merchandise in an online store.
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Introduction

Network navigation generally lacks anything like a compass.

Movement occurs more or less in a point-to-point fashion, perhaps

with the intent of passing through a particular landmark or in such

a way as to optimize some sort of objective function such as path

length. Unless embedded in some ambient space (e.g, a Euclidean

space via multidimensional scaling [1]) which itself contains global

reference points, a notion of global direction is not to be found.

In contrast, in this paper we take the point of view that in many

cases, a system or network under consideration often has natural

directions. This makes it possible and useful to enable a means of

‘‘orienteering’’ on a network. The mathematics webpages of

Wikipedia (‘‘MathWiki’’) provide a good example [2]. These pages

effectively realize the ‘‘space of mathematics’’ and their navigation

is an act of exploration of a world of mathematical ideas.

Abstractly, natural directions in this space are broad overarching

concepts such as ‘‘geometry’’ or ‘‘probability.’’ A curious explorer

of the world of mathematics ‘‘coming from calculus’’ might wish to

navigate from a particular concept, say The Fundamental

Theorem of Calculus, in the ‘‘direction of geometry’’ to discover

related geometric concepts and applications. Merchandise spaces

are another source of good examples. For instance, an explorer of

the Netflix movie database (realized in some fashion as a network)

looking to broaden his or her movie viewing might want to

navigate in a particular ‘‘direction’’ of some other genre or subject

from a different genre and initial reference point.

In this paper we show how directions on a network can be

encoded as a preferenced set of vertices. Such a network with

directions is much like the unit disk with boundary that forms the

point set for a model for hyperbolic geometry, often known as the

Poincaré disk or its conformal equivalent, the upper half plane (in the

complex plane), obtained by sending a point on the disk’s

boundary to infinity [3]. In these examples the boundary acts as

a set of ‘‘points at infinity.’’ Our set of directions play an analogous

role and similarly, give rise to a natural analogue of the hyperbolic

metric. The construction is based on an idea from materials testing

in which a four-point probe (FPP) is used to measure the resistivity of

a material sample (see e.g., [4]). The FPP functions by sourcing

current to two ‘‘outer probes’’ and then the voltage across the two

‘‘inner probes’’ is measured. This idea makes sense in any situation

in which there is a notion of electric potential. In particular, this is

a well known framework for the analysis of random walks on

networks [5] and is the context in which we describe the FPP in

this paper (although others are possible as well). Random walk-

based analyses also underlie various other structural measures for

networks such as spectral clustering [6], the PageRank measure of

vertex importance [7,8], and betweeneness [9]. A potential

theoretic framework has also been used effectively in the study

of networks through the use of commute-time as a means to achieve a

different sort of metric embedding [10–12].

Our discovery of the hyperbolic nature of this four-point probe

geometry of a network with directions as an actual metric structure

on a network is very different, both in spirit and mechanics, from

the way in which the adjective hyperbolic has been used previously

to describe networks [13,14]. In particular, the metric we

construct, in combination with a declared set of directions, gives

rise to a notion of geodesic, or more precisely, geodesic bundle, that

describes an optimal path from one vertex to another, with the
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requirement that the navigator specify both the direction from

which he or she is moving as well the direction in which he or she

would like to move. This generates a ‘‘best’’ path from where you

have been to where you want to go.

While for problems of simple resource delivery, the standard

path-length metric may be the most appropriate, there may be

others in which this more ‘‘discursive’’ (in terms of path length)

geodesic is a better fit. We suggest that knowledge networks, such as

Wikipedia, may be such instances. In this situation, the existence

of highly connected hub-like portals give the network a very small

path-length diameter that can be highly discontinuous in terms of

conceptual content. Instead, our four-point probe geometry finds

geodesics that appear to link a series of closely related ideas, whose

navigation provide a much more natural sense of conceptual

connection than that produced by the goal of efficient path length

navigation. Other approaches to the efficient navigation of

Wikipedia (and thus, ‘‘Wikipedia-like’’ networks) have also

recently been suggested [15,16], while search in other and related

(e.g., power-law networks, small world networks, social networks)

has been taken up in the papers [17–21] environments. The kind

of oriented organization proposed here also enables new

visualizations for knowledge networks, creating interesting and

thematically consistent notions of neighborhoods of ideas.

We anticipate that this geometric network model may prove

useful for new notions of network search and exploration and in

particular, a model for visual search of a network such as the

WWW or online warehouses.

Results

Our main results are two-fold. We adapt the notion of the four-

point probe to a network with directions to show that this gives rise

to a pseudometric on the vertices (recall that a pseudometric differs

from a metric only in that the distance between two non-identical

points can be zero). We further show that this pseudometric

behaves much like the hyperbolic metric. The pseudometric

enables us to define the notion of geodesic bundle on a network,

which behaves much like a geodesic in the familiar models of

hyperbolic space. Proofs are left for the Methods section. We then

apply these ideas to the MathWiki to see how the hyperbolic

structure manifests itself therein and give example geodesics

(Tables 2 and 3) to show the way in which this geometric

framework presents a new framework for network navigation that

may be better attuned to idea exploration.

Networks with directions
We define a network with directions (NWD) to be a network with a

privileged subset of vertices called directions which we will denote as

L? . We denote the complement of L? as H . In some instances

the directions of the NWD can be thought of as a natural

boundary of the system (the notation purposely recalls that of the

upper half-plane model of hyperbolic geometry). In others, the

directions have a natural interpretation as a set of directions for

orientation which can provide an interesting and useful heuristic

for navigating the network. Note that in some cases (e.g., the

MathWiki) the directions already come as vertices in the space. In

other situations we may be required to create a new vertex to

encode a direction. We also assume that the NWD has a weight

(adjacency) matrix W from which we can form a Markov chain

with transition matrix P formed by normalizing the row sums of

the weight matrix to be one. We further assume that for a NWD

this chain is ergodic. See [22] for Markov chain basics.

A NWD has a natural pseudometric that can be derived from

the four-point probe which is an engineering tool used to find

imperfections and cracks in materials [4]. Roughly, the four-point

probe works by using a battery to create charges of z1 at a point

q and of {1 at a point p , and then using a probe to measure the

potential difference between two other points b and a which we

denote as ½p,q; a,b�. As we show in the Methods section, the four-

point probe is easily conceptualized and realized on a NWD (or in

any setting where the definition of a potential makes sense), and

can be used to explore the NWD’s geometry. The use of ideas

from electrical networks to analyze topological networks is well

known [5].

The distance dfpp defined by the four-point probe is such that

given a pair of points p,q [ L? , then for any points a,b [H we

have

dfpp(a,b)~maxp,q[L? ½p,q; a,b�: ð1Þ

Theorem 1 in the Methods section assures us that dfpp forms a

pseudometric. The distance dfpp behaves mathematically in many

ways just as we would expect a discretization of the hyperbolic

metric to behave. Theorem S2 in Text S1 demonstrates that given

a disk in the Riemann sphere, the construction of dfpp with the

four-point probe gives the hyperbolic metric in the disk and it

forms the familiar model of the hyperbolic plane known as the

Poincaré disk [23]. We call the NWD with dfpp the FPP geometry on

the NWD.

For visualization of a NWD we will use multidimensional scaling

(MDS) [1] applied to dfpp matrix of vertices in the network to

embed the vertices in a Euclidean space. The MDS construction

aims to preserve distances as best as possible, while the Poincaré

model preserves angles but badly distorts distances. To gain some

intuition consider Figure 1, wherein we see the difference in

appearance of a truncated (i.e., necessarily not extended out to

infinity) ideal triangle in the Poincaré model (on the left) that we use

for our schematics, and what that triangle looks like if we embed the

indicated points using the hyperbolic distances via MDS (on the

right). For comparison, in a second example, we consider a simple

NWD given by the square grid network with boundary (directions)

shown on the left in Figure 2. Therein, we assign unit weights to the

edges and let L? be the set of vertices connected to fewer than four

other vertices (the obvious boundary of vertices of the grid) so that

H comprises the remaining (interior) points. On the right in

Figure 2, we show the three-dimensional MDS embedding of H
using dfpp(x,y) . Note the nice negative curvature saddle surface

that we would anticipate for a hyperbolic geometry [23].

For our needs, the most important construction in hyperbolic

geometry is that every ordered pair of points a and b determines

a unique oriented geodesic from a to b which can then be

extended to hit a unique pair of points in L?. More precisely,

calling this unique pair of points at infinity p(a,b) and q(a,b), they

are determined by

(p(a,b),q(a,b))~argmax(maxp,q[L? ½p,q; a,b�)

(see Theorem S1 in Text S1). Conversely given a pair of

directions p and q [ L? then we can consider the sets of pairs of

points in H that give rise to them:

Cp,q~ (a,b)j(p(a,b),q(a,b))~(p,q)f g:

While in the case of hyperbolic space Cp,q would be a unique

geodesic, our NWD behaves like a discretization of hyperbolic

Orienteering in Knowledge Spaces
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space, so a vertex at infinity is effectively like a subset of points at

infinity in hyperbolic space. Thus in the NWD case we obtain a

geodesic bundle, Cp,q , of oriented geodesics that connect from points

in p to points in q . That is, Cp,q is not necessarily itself a single

geodesic. In Text S1 we show how the definitions above are

entirely consistent with the analogous constructions for hyperbolic

space. Our use of the term bundle is more closely aligned with its

use in relativistic cosmology (see e.g., [24]) versus the more

common mathematical use of the term (e.g., tangent bundle) from

geometry. See Figure 3 for a schematic illustrating the notion of

oriented geodesic bundle.

Some facts that would apply to geodesics in hyperbolic

geometry still hold for our geodesic bundles Cp,q in a NWD. For

example we have the consistency relation that if (a,b) [Cp,q and

(b,c) [Cp,q then (a,c) [Cp,q which one would expect for oriented

geodesic bundles (see the Methods section, Theorem 2). On the

other hand, since we are dealing with geodesic bundles and not

geodesics, if (a,b) [Cp,q and (c,d) [Cp,q then there is no reason

for (a,c) or (c,a) to be in Cp,q .

The hyperbolic geometry of MathWiki
We now illustrate the FPP geometry for a NWD in the example

of the MathWiki [2] the subset of the WWW and Wikipedia

determined by the subset of webpages of Wikipedia that are

devoted to mathematics (see Data Sources for details). In the

MathWiki we use the ‘‘List of’’ pages to capture the notion of

direction. This could also be done for the various other portals of

Wikipedia. Table 1 shows the ‘‘List of’’ pages in the MathWiki.

More generally, any categorical grouping of the set of entities in a

space could provide a natural set of orientations for a network

space. Note that such a grouping need be neither complete nor

non-overlapping.

Various choices could be made in forming the actual transition

matrix of the chain. During our analysis, we explored both treating

Figure 1. Hyperbolic triangle embedding comparisons. Comparison of ideal triangle in the conformal Poincaré model (left) with MDS
embedding of the (truncated) triangle with indicated points on the triangles’s boundary embedded respecting distance (right). The relevance is that
to embed our networks we use the dfpp metric and the MDS into a Euclidean space, and as such our representations will be attempting to mimic the
distances (as best as possible) and not the angle as is the case in the more familiar Poincaré and upper half space representations of hyperbolic
geometry.
doi:10.1371/journal.pone.0067508.g001

Figure 2. Square grid as a network with directions. The lefthand figure shows a square grid with obvious boundary given by the collection of
vertices with less than four neighbors. On the right is the three-dimensional MDS embedding of the hyperbolic metric dfpp(x,y) on the chain with
L? given by the boundary. Notice the saddle point structure of the embedding, consistent with a hyperbolic geometry.
doi:10.1371/journal.pone.0067508.g002

Orienteering in Knowledge Spaces
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the links as directed and undirected, and the resulting geometries

were qualitatively similar though somewhat different in the details.

We choose to present the result from the undirected analysis, as

the results appeared a bit more natural. (Arguably, this makes

sense: to get to Quantum Field Theory from the calculus it is

necessary to transition through Hilbert Space, even if the links all

flow the other direction.) We enforced that all transitions were

proportional to the available links subject to a 1/50 chance of

transitioning to a ‘‘List of’’ page at L? (when that was possible),

and that at every page there is a 1/200 chance of starting over and

going to the ‘‘List of all Mathematics Articles’’. This last condition

insures ergodicity of the chain. Admittedly these weights are

arbitrary (indeed, not unlike a first guess at a in PageRank [7]),

but they are conceptually reasonable. The best way to make these

choices would be to utilize an appropriate objective function (as

discussed in the Discussion section).

Figure 4 shows an example of a triangle in this space,

constructed on the vertices (Wikipedia pages) corresponding to

The Central Limit Theorem [25], The Fundamental Theorem of

Galois Theory [26], and The Gauss-Bonnet Theorem [27]. These

are respectively, famous theorems from probability, algebra, and

geometry. While it is possible that the three pairs of points could

determine three non-overlapping pairs of directions, in fact, in this

case, the three pairs of directions determined by the three pairs of

points are made up of only three directions – i.e., the points lie a

single ideal triangle whose vertices are the ‘‘List of Stochastic

Process Topics’’, ‘‘List of Abstract Algebra Topics’’, and ‘‘List of

Differential Geometry Topics’’ pages. This is indicated by the

lefthand side of Figure 4. We construct a sampling of the edges

utilizing the relevant geodesic bundles as follows: for each of the

three pairs of vertices a and b among the concepts of interest we

selected a set of points fxg on the geodesic bundle by randomly

selecting pairs in Cp(a,b),q(a,b) of the form (a,x), (x,a), (b,x), or

(x,b). Table 2 lists some of the points involved in the segment from

a equal to The Fundamental Theorem of Galois Theory to b

equal to The Gauss-Bonnet Theorem. To isolate this segment we

further require that our pairs are in the form (a,x) or (x,b)
subject to the condition that dfpp(a,x)vdfpp(a,b) or

Table 1. The points at infinity in the MathWiki Space.

The ‘List of’ pages at ‘

List of Abstract Algebra Topics List of Curve Topics

List of Triangle Topics List of Mathematical Topics in quantum theory

List of Lie Group Topics List of algebraic_coding_theory Topics

List of Complex Analysis Topics List of Set Theory Topics

List of Basic Probability Topics List of Fourier Analysis Topics

List of general Topology Topics List of Algorithm General Topics

List of geometry Topics List of Partial Differential Equation Topics

List of numerical Computational Geometry Topics List of Topology Topics

List of Geometric Topology Topics List of Group Theory Topics

List of Computer Graphics and Descriptive Geometry Topics List of Multivariable Calculus Topics

List of Partition Topics List of Differential Geometry Topics

List of Statistical Topics List of Variational Topics

List of Stochastic Processes Topics List of Permutation Topics

List of Linear Algebra Topics List of Algebraic Topology Topics

List of Calculus Topics List of Homological Algebra Topics

List of Exponential Topics List of Number Theory topics

List of Commutative Algebra Topics List of Recreational Number Theory Topics

List of Computability and Complexity Topics List of Basic Algebra Topics

List of Boolean Algebra Topics List of Mathematical Logic Topics

List of Representation Theory Topics List of Integration and Measure Theory Topics

List of Factorial and Binomial Topics List of String Theory Topics

List of Numerical Analysis Topics List of Topics Related to pi

List of Real Analysis Topics List of Mathematical Topics in Relativity Topics

List of Knot Theory Topics List of Trigonometry Topics

List of Convexity Topics List of Algebraic Number Theory Topics

List of Functional Analysis Topics List of Numeral System topics

List of Probability Topics List of Combinatorial Computational Geometry

List of Dynamical Systems and Differential Equations Topics List of Polynomial Topics

List of Graph Theory Topics List of Order Theory Topics

List of Mathematical Topics in Classical Mechanics’ List of Circle Topics

List of Harmonic Analysis Topics List of Algebraic Geometry Topics

These are the ‘‘List of’’ pages that make up the set of directions in the MathWiki viewed as a network with directions.
doi:10.1371/journal.pone.0067508.t001

Orienteering in Knowledge Spaces
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dfpp(x,b)vdfpp(a,b) respectively (i.e., we require that x is

‘‘between’’ a and b ). To move along the geodesic from a to b

using these points, we compute the distance from a to x as

dfpp(a,x) and (dfpp(a,b){dfpp(x,b)) for the cases (a,x) and

(x,b) respectively. This allows us to create a list of points ordered

by their distance (a traversal) from a to b , of which Table 2 is a

particular example.

In the righthand side of Figure 4 we show an MDS embedding

of points in the three sets of geodesic bundles, further augmented

by extending each set toward the appropriate point at infinity. The

points are color-coded according to the geodesic bundle of which

they are a part. Notice that we find a set of points that resembles a

sampling from an ideal triangle in hyperbolic space (as discussed in

Figure 1).

Figure 5 shows a different scenario. In this case we replaced the

use of the The Fundamental Theorem of Galois Theory with

Classification Theorem [28], a page dedicated to explaining

classification theorems. This concept is very central to mathemat-

ics and should be close to both The Gauss-Bonnet Theorem and

The Central Limit Theroem as they play intimate roles in the

classification of constant curvature surfaces and probability

distributions, respectively. Unlike the previous case, here the three

pairs of directions determined by the three pairs of points give a

total of four distinct directions. This is indicated on the lefthand

subfigure. In this case, the three points do not determine a unique

ideal triangle. The righthand subfigure is again a sampling of the

three geodesic bundles, extended toward infinity, color-coded

accordingly. As suggested by the righthand figures in Figures 4 and

5, the difference effectively derives from that of the former triangle

being determined by three ‘‘very distant’’ concepts (points) while

the latter is determined by choosing a point (The Classification

Theorem) that is closer to the other two points, notions that are

consistent with the ways in which we conceive of these triples from

a mathematical point of view.

Discussion

A NWD and accompanying pseudometric can be constructed

for any spaces in which the notion of a potential makes sense. In

both of our examples, a basic Markov chain with natural structural

boundary and the MathWiki, the set of directions come as part of

the network of interest. In the MathWiki the ‘‘List of’’ pages are a

part of the network, but they are also just an aggregation of

webpages. Note that the ‘‘List of’’ pages neither comprise a

complete nor disjoint grouping of the MathWiki. This idea,

extended to other subsets of the web or networks generally would

produce other kinds of geometries and other kinds of geodesics.

Such modifications would depend on the goal of the web

exploration. As Figures 4 and 5 indicate, the FPP geometry

suggests a natural framework for web visualization: a query need

not return a simple list of web pages of interest, but rather, the

elements of that list embedded in the FPP geometry relevant to the

search which could be navigated according to some kind of

cartographic user interface such as the Google Maps API [29].

The networks and the geodesics also, of course, depend quite a bit

on the edge weights. It is possible that it would make sense to take

into account things like user metadata or actual usage patterns to

continuously update the metric as a given network is used.

Figure 3. Schematic of a pair of geodesic bundles. We have that
(a,b)[Cp2,q2

, but, although there are points in the form ( � ,a) and
( � ,b) in Cp1,q1

, we see that (a,b) is not in Cp1,q1
.

doi:10.1371/journal.pone.0067508.g003

Figure 4. MathWiki Space triangle Example 1. In this example we see a triangle in the MathWiki space, determined by the vertices that
correspond to the Math Wiki pages for The Central Limit Theorem, The Fundamental Theorem of Galois Theory, and The Gauss-Bonnet Theorem. We
have extended the geodesic bundles between the vertices towards infinity. On the left is a schematic showing us the points at infinity involved (as
the ‘‘List of’’ pages) and how this triangle might appear in the Poincaré disk model. When we view the actual network on the right we use the dfpp

metric and MDS to place these vertices into a two-dimensional Euclidean space. Hence, the representation in that figure will look similar to the MDS
of a triangle in hyperbolic space and not the conformal representation in the Poincaré Disk model.
doi:10.1371/journal.pone.0067508.g004

Orienteering in Knowledge Spaces
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It is also possible to add a set of directions to the chain or

network of interest. For example, in the case of applying these

ideas to a corpus of documents, points at infinity could be added to

reflect genre or authorship, or topic or style (either in an annotated

or quantitatively derived [30,31] description). Similar extensions

might be executed for the analysis of other kinds of cultural

artifacts, such as movies, or for the navigation of a product space

such as encompassed by merchandising gateways like Amazon,

with the attendant possibilities mentioned above for visual search

of such spaces. In these cases, the hyperbolic geometry could be

used to ‘‘nudge’’ a user from one category to another: given a user

starting at a particular product a, then given a paradigmatic

Table 2. Fundamental Theorem of Galois Theory to Gauss-Bonnet Theorem.

FPP-Geodesic Path Length Geodesic

Fundamental Theorem of Galois Theory Fundamental Theorem of Galois Theory

Pfister Form Fundamental Theorem of Algebra

Prufer Rank The Gauss-Bonnet Theorem

Tensor Product of Quadratic Forms

Fundamental Domain

Modular Symbol

Unfolding (functions)

Kuga Fiber Variety

Minkowski-Hlawka Theorem

Fuchsian Model

(GX)-manifold

Poincare Model

Riemann Manifold

Gromov’s Compactness Theorem (topology)

Cayley Surface

Prescribed Scalar Curvature Problem

Connector (mathematics)

Calculus on Manifolds

The Gauss-Bonnet Theorem

In the column on the left we see the FPP-geodesic that navigates in the MathWiki from ‘The Fundamental Theorem of Galois Theory’ to the ‘The Gauss-Bonnet Theorem’
(with respective associated directions – i.e., ‘‘List of’’ pages – ‘List of Algebra Topics’ and ‘List of Geometry Topics’) and on the right we see the path length geodesic
between these two pages. Note that the FPP-geodesic results in a more conceptually gradual path than the path length optimized route.
doi:10.1371/journal.pone.0067508.t002

Figure 5. MathWiki Space triangle Example 2. Here we have modified the example of Figure 4 by replacing the node (MathWiki page) for The
Central Limit Theorem with that of Classification Theorem and leaving the other two nodes the same (given by the pages for The Fundamental
Theorem of Galois Theory and The Gauss-Bonnet Theorem). Again we extend the geodesic bundles between the vertices towards infinity. On the left
is a schematic showing us the points at infinity involved (as the ‘‘List of’’ pages) and how this triangle might appear in the Poincaré disk model. When
we view the actual network on the right we use the dfpp metric and MDS to place these vertices into a two-dimensional Euclidean space. Hence, the
representation in that figure will look similar to the MDS of a triangle in hyperbolic space and not the conformal representation in the Poincaré Disk
model. Note that in this example, there are four directions (points at infinity) involved, reflecting the difference in (conceptual) proximity to The
Fundamental Theorem of Galois Theory and The Gauss Bonnet Theorem of The Classification Theorem versus that of the Central Limit Theorem.
doi:10.1371/journal.pone.0067508.g005
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product b in a class of interest, the associated pair of ‘‘from’’ and

‘‘to’’ directions (p(a,b),q(a,b)) are determined, from which points

close to a moving toward b could be determined.

Choice of graph weights is also an important consideration. The

clearest method to make such choices would be to decide on an

objective function and learn the optimal parameters with regard to

this objective. A nice example of this is given in [15] where

parameters are learned to find several different geometries based

on minimizing the path length between a pair of vertices in

Wikipedia by utilizing decentralized search algorithms (see e.g.,

[17]) as it is related to the Wikispeedia game [32].

Shortest path geometries are terrific when the goal is to

efficiently get somewhere or propagate a piece of information. Our

belief is that the geometry presented here will likely be better

suited to situations in which there is something to be gained by

actually having a more discursive (in terms of path length) traversal

between two points. For example, consider a MathWiki scenario

in which someone knows the Calculus and would like to get a feel

for Topological Quantum Field Theory. In such a case, a direct

path in the MathWiki space might not be the best way to

incrementally prepare someone with a calculus background for the

rigors of Topological Quantum Field Theory.

Explicit examples of such comparisons are given in Tables 2 and

3. Clearly, the two-step path from ‘The Fundamental Theorem of

Galois Theory’ to ‘The Gauss-Bonnet Theroem’ via the ‘The

Fundamental Theorem of Algebra’ (shown in the righthand

column of Table 2) is very efficient but does not capture in any

sense the journey between these pieces of knowledge. This is also

clearly true for the path length geodesic path from ‘The Gauss-

Bonnet Theorem’ to the ‘The Central Limit Theorem’ via

‘Measure’ and ‘Gibbs Measure’ shown in the righthand column of

Table 3. Moreover, the examples given here are indicative of the

structure of the MathWiki space – that is, the (hyperlink) path

distance between any two pages in the space is generally quite

small due to the existence of the aggregating ‘‘List of’’ pages. Even

when ignoring the ‘‘List of’’ pages we find that greater than 98.4%

of the space is in the component that contains the page ‘Real

number’ [33] and 99.8% of the pages in this component are within

4 steps of ‘Real number’. (This is for the network viewed as

undirected; when viewed as directed, there is a direct path from

‘Real number’ to about about 83% of the space and 97.5% of

these pages are within 5 steps of ‘Real number’.) The previous

discussion strongly suggests that objective functions based on path-

length do not seem likely to produce geodesics appropriate for

knowledge space exploration.

It is important to remember that the metric space structure rides

‘‘on top of’’ the hyperlink structure. Once a candidate path

between concepts is returned to a user, she still must navigate it

using the hyperlinks. It is worth noting that the intentionally

discursive (with respect to path length) traversal is very different

from something like ‘‘targeted search’’ in a social network such as

is taken up in [19]. If the ‘‘directions’’ on the network are well-

chosen or defined vis-a-vis the individual nodes, then the

mathematics of potential theory effectively forces a useful notion

of distance between the concepts that are embodied in the nodes.

Inherent in that are all the properties that come along with a

(psuedo-) metric (e.g., symmetry and the triangle inequality). That

said, this is but one of an infinity of metrics (and geometries) that

could be imposed on the network and it is of interest to speculate

on what kinds of objective functions would be useful for such ends,

since, beyond the choice of weights and the sphere at infinity, with

such an objective function one could decide between various

candidate geometries for exploration.

Methods

The four-point probe on a network
Let P be the transition matrix of the ergodic Markov chain

associated to our NWD. Although, here we work in the context of

Markov chains [22], the four-point probe can be constructed in

most places where potential theory makes good sense: see the

Supporting Information for the construction on the Riemann

Sphere). Let p denote the equilibrium distribution for P and let.

K~diag(p) I{Pð Þ

where diag(p) is the diagonal matrix with p on the diagonal. The

matrix K is the version of the Laplacian matrix that relates charge

distribution r and electric potential V by

KV~r,

and as such we call it the Kirchhoff Operator. Note that K is not full

rank and we require that the total charge is zero,

X
r~0:

Table 3. Geodesic from Gauss-Bonnet Theorem to the
Central Limit Theorem.

FPP-Geodesic Path Length Geodesic

The Gauss-Bonnet Theorem The Gauss-Bonnet Theorem

Calculus on Manifolds Measure (mathematics)

Nonmetricity Tensor Gibbs Measure’

Autoparallel Central Limit Theorem

Riemann Manifold

Last Geometric Statement ofJacobi

Peetre Theorem

Uniformization

Distortion (mathematics)

Statistical Manifold

Minkowski Distance

Invariant Measure

Index Set

Self-dissimilarity

Realization (probability)

Stationary distribution

Information Projection

Martingale Difference Sequence

Slepian’s Lemmae

Minimal Entropy Martingale Measure

Limit Theorem

Central Limit Theorem

In the column on the left we see the FPP-geodesic that navigates in the
MathWiki from the ‘The Gauss-Bonnet Theorem to the ‘The Central Limit
Theorem’ (with respective associated directions – i.e., ‘‘List of’’ pages – ‘List of
Geometry Topics’ and ‘List of Stochastic Processes’) and on the right we see the
path length geodesic between these two pages. Note that the FPP-geodesic
results in a more conceptually gradual path than the path length optimized
route.
doi:10.1371/journal.pone.0067508.t003
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In the special case of reversible chains (networks with a symmetric

weight matrix) this is electric network theory (see [5]), but we will

use the same language/constructions for arbitrary chains.

Inspired by the idea of ‘‘plugging a battery into our network,’’

we place a positive unit charge at q , a negative unit charge at p ,

and we define Vq
p as the solution

KVq
p ~dq{dp

where dc is point mass function (vector) concentrated at c. Thus,

for every vertex a, dc(a)~0 unless c~a in which case it is equal to

one. With this definition in hand, we can now define (and compute

using linear algebra) our four-point probe on a network as

½p,q; a,b�~Vq
p (b){Vq

p (a):

The four-point probe metric
Recall that we define the four-point probe metric on our NWD by

dfpp(a,b)~maxp,q[L? ½p,q; a,b�:

Theorem 1 dfpp is a pseudometric.

Proof: This is a simple matter of checking off properties:

1. Non-negativity: dfpp is non-negative since ½p,q; a,b�~
{½q,p; a,b� , so the max is non-negative.

2. Symmetry: dfpp is symmetric since ½p; q; b,a�~½q,p; a,b�, so

maxp,q[L? ½p,q; a,b� and maxp,q[L? ½p,q; b,a� will agree.

3. Triangle inequality: To see dfpp satisfies the triangle inequality

first notice that ½p,q; a,c�~½p,q; a,b�z½p,q; b,c� since

½p,q; a,c�~Vq
p (c){Vq

p (a)

~Vq
p (c){Vq

p (b)z(Vq
p (b){Vq

p (a))

~½p,q; b,c�z½p,q; a,b�:

So using the p and q that maximize ½p,q; a,c�, we have

dfpp(a,c)~½p,q; a,c�

~½p,q; a,b�z½p,q; b,c�

ƒdfpp(a,b)zdfpp(b,c):

Geodesic bundle consistency
As per the Results section we define geodesic bundles as

Cp,q~ (a,b)j(p(a,b),q(a,b))~(p,q)f g:

Theorem 2 If (a,b)[Cp,q and (b,c)[Cp,q , then (a,c)[Cp,q.

Proof: We prove this by contradiction, and assume (a,c) is not

in Cp,q. This implies

(p,q)=argmaxp1,q1[A(½p1,q1; a,c�)

and so there exist (p0,q0) such that

½p,q; a,c�v½p0,q0; a,c�:

As in the proof of the triangle inequality in Theorem 1 and

using the definition of the metric, we have

½p,q; a,c�v½p0,q0; a,c�

~½p0,q0; a,b�z½p0,q0; b,c�

ƒdfpp(a,b)zdfpp(b,c)

~½p,q; a,b�z½p,q; b; c�

~½p,q; a,c�,

which is a contradiction.

Data Sources
The MathWiki was extracted using a web crawler written in

Python. This collected all the titles of the approximately 18,000

pages belonging to the Mathematics community in the English

Wikipedia. For each page, we also recorded the set of links to other

pages within the community. The code used to identify math

articles is the List of Mathematics Articles page, which should be

exhaustive for well-established pages following the Wikipedia

article standards. This method of collecting the articles relies

heavily on Wikipedia’s user categorization scheme. The code is

available here [34]. The final results and figures are from a run

performed in April of 2013.

Conclusion

In this paper we introduce the notion of the four-point probe

geometry on a network and show that in the case in which we have

a network with directions (NWD), defined as a network with a

privileged set of vertices called directions, that we can define a new

type of pseudometric on the network. We show that this

pseudometric has properties much like that of a hyperbolic metric

and its various analogies and similarities with the hyperbolic

metric. In the case of a network with directions, we are able to

define a notion of geodesic bundle that behaves much like the

geodesics of hyperbolic geometry wherein we are able to formulate

trajectories between points that go from a given direction towards

another direction. In this way the directions act much like the

points at infinity in these models. We show how the pages of

Wikipedia devoted to Mathematics, the ‘‘MathWiki’’ describes a

natural network with directions, in which the ‘‘List of’’ pages

describe the set of directions. Through examples, we show how the

geodesic currents give a more discursive, but natural means of

navigating the knowledge space that is the MathWiki. Applications to

other kinds of networks, including merchandise spaces are

suggested as is the idea that such a metric could enable a network

cartography well adapted to visual search.

Supporting Information

Text S1.

(PDF)
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