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Simulating fermionic lattice models with qubits requires mapping fermionic degrees of freedom
to qubits. The simplest method for this task, the Jordan-Wigner transformation, yields strings of
Pauli operators acting on an extensive number of qubits. This overhead can be a hindrance to
implementation of qubit-based quantum simulators, especially in the analog context. Here we thus
review and analyze alternative fermion-to-qubit mappings, including the two approaches by Bravyi
and Kitaev and the Auxiliary Fermion transformation. The Bravyi-Kitaev transform is reformulated
in terms of a classical data structure and generalized to achieve a further locality improvement for
local fermionic models on a rectangular lattice. We conclude that the most compact encoding
of the fermionic operators can be done using ancilla qubits with the Auxiliary Fermion scheme.
Without introducing ancillas, a variant of the Bravyi-Kitaev transform provides the most compact
fermion-to-qubit mapping for Hubbard-like models.

I. INTRODUCTION

Among the various applications of quantum comput-
ing, quantum simulation has long stood out as a primary
motivation [1, 2]. Classical computers can often perform
rapid electronic structure calculations without explicit
electron-electron interaction and obtain relatively accu-
rate results [3]. However, systems where the electron-
electron interaction cannot be integrated out are called
strongly correlated and represent a new frontier for elec-
tronic structure in both theoretical chemistry [4] and
strongly correlated materials, such as high-temperature
superconductors [5]. It is in this regime that quantum
simulation is a promising route forward [6–10].

Quantum simulation comes in two distinct flavors: dig-
ital and analog, are each subject to different mindset
and constraints. In the digital context, the hardware is
thought of as a universal quantum computer where an ar-
bitrary quantum circuit can be implemented and used to
approximate the system of interest [2]. Since high-quality
qubits are required in this context, the simulation qubit
count can be thought of as an important constraint.

An analog quantum simulator on the other hand ap-
proximates the system with another, easier to implement,
control and measure. Such a simulator or emulator is
usually tailored to a specific problem and it is therefore
argued to be technologically more viable to build such
a chip rather than a general purpose quantum computer
[8]. These analog simulators are typically restricted to
2-qubit couplings and a limited set of global operations -
examples being both the trapped ions [11] or the super-
conducting qubits [8].

Quantum simulation of strongly correlated fermionic

systems has recently been a focus of algorithmic develop-
ments [6, 10, 12, 13]. Besides direct simulation [6], it has
been pointed out that quantum simulation of a strongly
correlated region can act as an impurity solver for dy-
namical mean field theories [9, 10, 12]. In these recent
investigations, the authors have chosen to use the Jordan-
Wigner fermionic encoding scheme [14–16] for their spe-
cific simulations. However, under this transformation,
local fermionic operators become spin operators acting
on an extensive number of qubits, which may be prob-
lematic especially in the analog context. This can be
avoided using other encoding schemes and we contribute
to the ongoing line of research by investigating various
fermion-to-qubit mappings.

The Hubbard model has served as a paradigmatic ex-
ample for strongly correlated problems [5, 6, 8]. We
will continue this trend and use the Hubbard model as
testbed for our ideas. Its Hamiltonian, on a graph with
edges E and vertices V , is given by:

H = −t
∑

(i,j)∈E

∑

σ=↑,↓

(a†iσajσ+a†jσaiσ)+U
∑

i∈V

ni↑ni↓, (1)

where t and U are parameters of the model, njσ =

a†jσajσ , and the fermion creation operators {aiσ} satisfy

a†iσajτ + ajτa
†
iσ = δijδστ . We will consider t and U to

be fixed and assume, for now, that we are on a square
lattice.

The paper is organized into two parts. The first part
reviews and extends mappings from fermionic Hamilto-
nians to qubits and the second part studies operator lo-
cality of the various fermion encoding methods.

http://arxiv.org/abs/1701.07072v1


2

II. MAPPING FERMIONIC HAMILTONIANS
TO QUBITS

The following section reviews and expands on a set of
locality improving transformations for mapping fermionic
Hamiltonians to qubits. Subsection II A briefly summa-
rizes the Jordan-Wigner transformation which will be
used as a baseline for locality overhead comparison. In
subsection II B, we review the first method originally out-
lined in Ref. [17] which has been referred to as Bravyi-
Kitaev transformation in the literature [18, 19]. We
reformulate the transform in terms of a classical data
structure (different perspective on the construction can
be found in [18, 19]). This allows for its generaliza-
tion outlined in subsection II C. The generalized Bravyi-
Kitaev transformation corresponds to a whole class of
fermion-to-spin transformations characterized by a tran-
sition from linear to logarithmic operator locality. In
part II E, we review the second method outlined in
Ref. [17] and provide an example of 2D Hubbard model
mapping. Lastly, subsection II F reviews the Auxiliary
Fermion method introduced in [20, 21] with focus on op-
erator locality analysis. We have previously worked out
construction details of this transformation in Ref. [22].

A. Jordan-Wigner Transform

The usual way to map fermionic operators to qubits
is the Jordan-Wigner (JW) transformation [14]. This
encoding stores information about the occupancy of N
fermionic sites in N qubits. The fermion raising/lowering
operators on k-th site are mapped to qubit operators by:

ak 7→





k−1∏

j=0

Zj



 |0〉 〈1|k , a†k 7→





k−1∏

j=0

Zj



 |1〉 〈0|k ,

where Zj stands for an N -qubit operator corresponding
to a Pauli Z operator applied to the j-th qubit and 1

to the rest of the qubit register. The above operators
obey fermionic anti-commutation relations and therefore
generate fermionic algebra on qubits. The

k−1∏

j=0

Zj = Z ⊗ Z . . . Z
︸ ︷︷ ︸

k

⊗ 1⊗ . . .1
︸ ︷︷ ︸

N−k

,

string of Pauli Z operators counts the excitation parity.
The action of raising/lowering operators can be there-

fore thought of as a composition of two operations on
qubit states: (1) counting the parity and (2) updating

the fermionic site occupancy. The number of single-qubit
Pauli Z operators used for parity counting scales asymp-
totically as O(N), while the update is implemented with
a single qubit operator |0〉 〈1|k or its conjugate. The com-
posite operation hence costs O(N) in operator locality.

The fermionic raising/lowering operators occur only in
pairs in any physical Hamiltonian. The Pauli strings

could therefore cancel, as is the case in 1D Hubbard
model. In a general case however (specifically for a Hub-
bard model on higher dimensional lattices), the hopping
operator locality scales with the size of the lattice. We
therefore proceed by introducing an alternative scheme
which improves locality of the resulting qubit Hamilto-
nian.

B. The Bravyi-Kitaev Transform

The first of the two fermionic transformations intro-
duced in [17], the Bravyi-Kitaev (BK) transform, can be
described by a classical data structure, the Fenwick tree
[23], which we will introduce below. The BK transform
has been previously reviewed in [18, 19] and formulated
in terms of recursive prescription for transformation ma-
trices. This carried an implicit constraint on the number
of qubits being a power of 2. Our approach defines the
scheme for an arbitrary number of qubits.

1. Fenwick Trees

In context of classical computation, a Fenwick tree can
be used to map binary strings n0 n1 . . . nN , ni ∈ {0, 1}
to binary strings x0 x1 . . . xN , xi ∈ {0, 1} such that both

the prefix sum
(
∑k−1

m=0 nm

)

and bit-flip operations have

O(logN) access costs in the encoded representation.
This optimization is achieved by storing partial occu-
pancy sums (xi) rather than occupancies/bits (ni) in
a way we now describe. The partial occupancy sums
xi are dictated by the tree constructed using Algorithm 1:

Define Fenwick(L,R):
IF L 6= R:

Connect R to ⌊R+L

2
⌋;

Fenwick(L,⌊R+L

2
⌋);

Fenwick(⌊R+L

2
⌋+ 1, R);

ELSE:
Terminate.

ALGORITHM 1: Fenwick Tree Generation

A tree generated by Fenwick(0, N − 1) has depth
d = ⌈log2 N⌉ and number of root-children equal to n =
⌊log2 N⌋. An example of a Fenwick tree for N = 7, d = 3
is shown in Fig. 1. The partial sums xj of the en-
coded representation are given by a (mod 2) sum of j-th
fermionic occupancy nj with the descendants of j in the
Fenwick tree. For example the zeroth bit encoded by a
Fenwick tree in Fig. 1 stores only the occupancy of the
zeroth fermionic site as it has no descendants, while the
first bit stores x1 = n1 + x0 = n1 + n0. Likewise, the
sixth bit has {3, 5} as its children and therefore stores
x6 = n6 + (x3 + x5) = n0 + n1 + n2 + n3 + n4 + n5 + n6.
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0 1 2 3 4 5 6

n6+
x5+
x3

n5+
x4

n4n3+
x2+
x1

n2
n1+
x0

n0

FIG. 1: Fenwick tree of depth 3 for N = 7. The structure
can be constructed by taking the first node and making it

dependent on contents of the node half way (rounded down)
in the lattice and proceeding recursively for halves of the
site array. The example here is illustrated for N = 7. Odd
N has been chosen in order to show a construction of the

mapping for N not being a power of 2, a restriction
implicitly imposed in [18]. Content of the white boxes
corresponds to the information stored in each node.

7

6

5

3

4

2

1

0

111

110

101

011

100

010

001

000

FIG. 2: Fenwick tree of depth 3 for N = 8. Fenwick trees for
N = 2d can be also described by a partial ordering on tree
node indices. Suppose we write the indices in binary as in
the tree on the right. Then a bitstring with h > 0 zeroes

labels a child of another bitstring with h− 1 zeroes given by
flipping the last 0 of the string to 1. For example, 101, 011
and 110 are all children of 111. This construction manifests
a possible connection to algebraic coding, as every path from

the root to a leaf gives a Gray code[23, 24]. Other
definitions can be found, but working out examples is the
fastest way to familiarize oneself with the construction.

The remaining bits are given by:

x0 = n0, x1 = n1 + x0, x2 = n2,

x3 = n3 + x2 + x1, x4 = n4, x5 = n5 + n4.

As a specific example, n0 n1 . . . n6 = 0111010 is en-
coded as x0 x1 . . . x6 = 0111010.

2. Bravyi-Kitaev Transformation

The BK transform uses Fenwick trees to improve qubit
operator locality of the fermionic parity counting string
to O(logN), while increasing fermionic occupancy up-
date cost to O(logN). The raising/lowering operators
are hence mapped with O(logN) operator locality over-
head, which is substantially better than O(N) for JW.

Starting with the simplest example, consider a†2 ap-
plied to the second fermionic site in a qubit register
|x0 x1 . . . x6〉 encoding an occupancy state |n0 n1 . . . n6〉
of 7 fermionic sites as in Fig. 1. This operator acts as:

a†2 → Z1 |1〉 〈0|2 X3 X6 ,

on the encoded states, as one needs to count the ex-
citation parity of 0 and 1 by applying Z1, change the
occupancy of the second node by applying |1〉 〈0|2 and
ensure consistency of the encoding by updating sites 3
and 6 (ancestors of 2) with X3 and X6.

Mapping a†j for a general j is more complicated, as

one has to condition application of |0〉 〈1|j or |1〉 〈0|j on
content of children of j in the Fenwick tree. This is the
case for j = 3 in Fig. 1 for example. If the third fermionic
site is initially unoccupied (n3 = 0), the raising operator
changes n3 from 0 to 1. In the encoded representation,
the third qubit stores x3 = n0 + n1 + n2 + n3 = (x1 +
x2) + n3. So if (x1 + x2) = 1, a qubit lowering operator
|0〉 〈1|3 should be applied in the encoded representation
instead of |1〉 〈0|3. It follows that one has to condition this
operation on the children’s parity. The operator hence
maps to:

a†3 →− (|1〉 〈1|1 |0〉 〈0|2 + |0〉 〈0|1 |1〉 〈1|2) |0〉 〈1|3 X6

+ (|0〉 〈0|1 |0〉 〈0|2 + |1〉 〈1|1 |1〉 〈1|2) |1〉 〈0|3 X6 .

The above description considerably simplifies by work-
ing in the Majorana basis:

c3 = a†3 + a3 → Z1 Z2 X3 X6 .

Consider now the set of children with indices less than j
of all ancestors of j. We label this set as C(j). For exam-
ple, the set of children of all ancestors of qubit 9 in Fig. 3
is given by {7, 9, 10, 11, 13, 14} and out of this, only 7 is
less than 9 and hence C(9) = {7}. For consistency with
refs. [18, 19], we denote the set of children of the j-th site
by F (j) and work with a set P (j) = C(j)∪F (j). If U(j)
labels the set of all ancestors of j, then:

cj = aj + a†j → ZP (j) Xj XU(j) , (2)

dj = i
(

a†j − aj

)

→ ZP (j)/F (j) Yj XU(j) = ZC(j) Yj XU(j) ,

(3)

where ZP (j) implies Pauli Z operators applied to qubits
in a set P (j).

Note that P (j) ∩ U(j) = ∅, since all nodes in U(j)
have indices greater than j while P (j) have all indices
less than j. Also note that the dj operator acts trivially
on the F (j) qubits. Locality of the cj Majorana on qubits
is hence never better than dj , since no operators are ap-
plied to children of the j-th node (Eq. 3). The worst-case
locality for the cj Majorana operator is therefore given
by |U(j) ∪ P (j)|+ 1 = |U(j)|+ |P (j)|+ 1. In fact, for a
Fenwick tree of N = 2d sites, the locality of cj becomes
exactly log2 N + 1 as we now show:

Proof. Let d = 0. Then N = 1 and the cj locality is
log2 1 + 1 = 1 as there is only single node in the tree.
Now suppose the locality is log2 N + 1 for a tree with
N = 2d nodes. The 2N = 2d+1 tree is constructed by
connecting roots of two N trees - compare for example
the descendants of 7 to the tree of the remaining nodes
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FIG. 3: An example of c9 Majorana operator mapped with
the Bravyi-Kitaev method. The white colored nodes of the
Fenwick tree correspond to P (9) = {7, 8} and are the qubits
to which Pauli Z operators are applied. The black nodes are

in U(9) = {11, 15} to which X is applied.

in Fig. 10. Any node in the right subtree has to update
the new root, which worsens the locality by 1 - hence
the terms are now log2 2N + 1 local. Operators on the
rest of the tree will have to lookup an additional node to
obtain the parity, which also implies log2 2N +1 locality.
So every cj on a tree with N = 2d nodes is log2 N + 1
local.

We now provide a unifying framework for JW and
BK encodings and introduce an optimized variant of the
method suitable for rectangular lattice geometries.

C. Fenwick Trees as a Class of Fermionic Encodings

The recursive Algorithm 1 from the previous section
gives rise to a class of fermionic encodings with JW and
BK schemes as limiting cases. Instead of using a single
Fenwick tree to encode all fermionic modes, we partition
the fermionic sites into Fenwick trees of varying depth
and include the set of all roots of segmented trees less
than j to P (j). The definition of P (j) in this context
becomes:

P (j) = F (j) ∪ C(j) ∪ {set of all roots i, i < j} .

In particular, we could choose to put each node in its own
Fenwick tree of depth 0, which would correspond directly
to the JW transformation (Fig. 4).

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

FIG. 4: Recursion steps of the Fenwick tree algorithm shown
for N = 8. The bottom case of corresponds to the JW

transformation.

Every iteration of the algorithm defines new rep-
resentation of fermionic algebra with qubit operators.
With increasing recursion depth, the occupancy update
cost worsens, while the parity counting costs improve.
Asymptotically, the representation transitions from op-
erator locality overheads of O(1) → O(logN) for occu-
pancy update and O(N) → O(logN) for parity compu-
tation.

D. Segmented Bravyi-Kitaev (SBK) transform

It is possible to use the segmented transform for opera-
tor locality improvement of specific fermionic Hamiltoni-
ans on rectangular lattices. As already discussed, the BK
transform optimizes update and lookup costs simultane-
ously. Composition of these operations describes the ac-
tion of fermionic raising/lowering operators, but does not
strictly correspond to operators occurring in the Hubbard
model - or in fact any other physical fermionic Hamilto-
nian. For closed systems, physical fermionic Hamiltoni-
ans only contain pairs of raising and lowering operators
[17], which places further constraints on the set of opera-
tors we need to map to qubits. If we additionally restrict
our attention to operators which are local (as is the Hub-
bard model), there is a lot of redundancy one can exploit
for further qubit operator locality optimization.

We focus on the case of a w × h, w ≤ h rectangular
lattice and build a Fenwick tree for every row - this is
a specific example of segmented Fenwick tree as defined
in the previous section. At first sight, this appears to
worsen locality of the qubit operators as the locality of
single raising/lowering operators now scales asymptoti-
cally as O(h logw). If we however restrict the set of pos-
sible operations to on-site and nearest-neighbor terms,
the single-qubit operators on segmented tree roots can-
cel and the locality becomes O(logw) - a substantial im-
provement, as the operator locality is now independent
of the lattice height.

It turns out to be slightly more optimal to store two
disconnected trees per lattice row, as shown in Fig. 5.
This is because the full parity of the row is not necessary
for the vertical nor horizontal hopping terms.

E. Loop-Stabilized Fermion Simulation (LSFS)

We now shift our attention to the second method in-
troduced in Ref. [17] which finds an alternative repre-
sentation of the local fermionic Hamiltonians on qubits
in a line graph (i.e. on graph edges - see Fig. 6).
The method, referred to as a “Superfast Simulation of
Fermions” in [17] improves qubit operator locality to a
constant for any bounded-degree graph. The newly pro-
posed name “Loop-Stabilized Fermion Simulation” is mo-
tivated by the fermionic algebra being represented in a
subspace defined by a stabilizer condition on the set of
all possible loops in the line graph.
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FIG. 5: Locality of vertical hopping terms as a function of
the segment tree size for W = 64. The optimal tree size is
W/2. The hopping term localities of segments of W = 64
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1. Loop-Stabilized Fermionic Simulation

As discussed in the construction of the SBK method,
physical fermionic Hamiltonians are sums or products of
fermionic raising/lowering operator pairs. Equivalently,
all fermionic Hamiltonians can be obtained by combining
the following operators [17]:

Bk = 1− 2a†kak for a vertex k ,

A(jk) = −i(aj + a†j)(ak + a†k) for an edge (j, k) .

Here, the subscript on B corresponds to a vertex and
the subscript on A labels a graph edge. Specifically, the
fermionic site to site hopping is expressed by:

a†kaj + a†jak = −i
(
A(jk)Bk +BjA(jk)

)
/2 .

More formally, the A(jk), Bj operators generate the al-
gebra of physical fermionic Hamiltonians. The algebra
defining rules are [17]:

A(jk)Bl = (−1)δjl+δklBlA(jk), [Bk, Bl] = 0,

A(jk)A(ls) = (−1)δjl+δjs+δkl+δksA(ls)A(jk) ,

In other words, A(jk) anticommutes with any other gen-
erator as long as they share precisely one vertex. Further-

more note that B†k = Bk, A
†
(ij) = A(ij), B

2
k = A2

(ij) = 1

and A(ij) = −A(ji). Additionally:

(i)pA(j0j1)A(j1j2) . . . A(jpj0) = 1 , (4)

for any closed path j0 j1 j2 . . . jp.
Bravyi and Kitaev found in [17] qubit operators

B̃l, Ã(jk) obeying the above algebra, subject to further
constraints on excitation parity sector that we now im-
pose. For an even number Nf of fermions, one has that:

∏

k∈V

Bk =
∏

k∈V

(1k − 2a†kak) = (−1)Nf1 = 1 ,
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FIG. 6: (left) Fermionic site ordering used with the BK
scheme. Qubits ( ) are on edges of the lattice. (right) A

stabilizer on (5, 9, 6, 10) plaquette. There are 9 such
stabilizers for 4× 4 lattice corresponding to the 9 plaquettes.

If a state is a simultaneous eigenstate of all stabilizers, it
encodes a physical fermionic state. If a qubit operator is to

be applied to the edge outside the lattice, ignore it.

as an additional rule to the above set. This motivates
the following choice for the qubit operator B̃k:

B̃k =
∏

j∈n(k)

Z(jk) ,

where n(k) is the set of nearest neighbors of k. The
∏

k∈V B̃k = 1 condition is then trivially satisfied for
the operator since each edge shares precisely two vertices
(this is colloquially known as the “handshaking lemma”).

We now derive the form of Ã(jk). Firstly assume that

Ã(jk) is a tensor product of Pauli operators and/or iden-
tity on edges adjacent to vertices j, k. In order to sat-
isfy A(jk)Bl = (−1)δjl+δklBlA(jk), we first address the
case for which k 6= l, j 6= l, so that the fermionic oper-
ators commute. If Ã and B̃ are to obey the same rela-
tion, all single qubit operators of A(jk) on edges adjacent
to j, k, except for the edge (j, k), must be Hermitian
and identity-squaring operators in a subspace spanned
by {1, Z}. There are only two options - either Z or 1.
Focusing on the case l ∈ {j, k}, the A(jk)Bl operators
anti-commute, implying that the operator on the (j, k)
edge qubit is a Hermitian and identity-squaring operator
in the subspace spanned by {X,Y } - again X or Y are
the only possibilities.

It remains to satisfy the condition imposed by the gen-
eralized commutator of two A(jk), A(lm) operators. These
anticommute iff they share a vertex. An example of
qubit operators Ã(jk) satisfying this and the previous
constraints on a square lattice is given in Fig. 7. An
example of operators satisfying these constraints on a
general lattice is given by:

Ã(jk) ∝ X(jk)

n(j)
∏

l<k

Z(lj)

n(k)
∏

s<j

Z(sk) ,

and is a specific case of the prescription found in Ref. [17].
Lastly, we impose anticommutation of A(jk) using anti-
symmetric tensor ǫjk which is +1 when j > k and −1
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FIG. 7: Example of LSFS generators A(9,10) and A(6,10).

when j < k. Thus,

Ã(jk) = ǫjkX(jk)

n(j)
∏

l<k

Z(lj)

n(k)
∏

s<j

Z(sk) .

Even though this implies the generator itself is multi-
ply defined for each edge, we will see that all interesting
physical operators will be independent of ǫjk.

The loop condition of Eq. 4 will be imposed by a set
of stabilizer operators which can be concisely presented
with a specific lattice geometry in mind. We therefore
postpone its discussion until after the following example.

2. Example: 2D Hubbard Model

We illustrate this method by mapping the Hubbard

Hamiltonian on rectangular lattice to qubits. Let Z↑k
denote a Pauli Z operator applied to the qubit on the
vertical edge adjacent to the vertex k - if there is no such
edge, substitute the term with an identity operator (for

example, Z↑1 = 1 in the diagram in Fig. 6). Operators
on other adjacent edges are defined analogously by using
{→,←, ↑, ↓} superscripts.

The B̃k operator is represented with a “cross” of Pauli
Z operators:

B̃k =
∏

j∈n(k)

Zjk = Z←k Z↑kZ
→
k Z↓k , for a vertex k .

The form of Ã(jk) differs for horizontal and vertical
edges, which we denote by EH and EV respectively. It
also depends on a specific lattice indexing - we choose
the simplest one shown in Fig. 6 and leave it an open
question whether a better ordering exists. The operator
Ã(jk) is then given by:

Ã(jk) =

{

ǫjkXjkZ
←
j Z↑jZ

→
j for (j, k) ∈ EV ,

ǫjkXjkZ
↑
jZ
↑
kZ
←
j for (j, k) ∈ EH .

It remains to satisfy the loop condition of Eq. 4, since
in order to represent the fermionic algebra, the qubit
operators must obey the same relation. Because the
fermionic operators obey:

A(αβ)A(βγ)A(γδ)A(δα) = (−i)4cαcβcβcγcγcδcδcα = 1 ,

cα =
(
aα + a†α

)
,

for any plaquette (αβγδ) and an arbitrary closed loop
of Eq. 4 can be obtained by taking product of such
plaquette operators, encoded physical fermionic states
correspond to qubit states which are +1 eigenstates of
Ã(αβ)Ã(βγ)Ã(γδ)Ã(δα). Formally, we restrict the qubit
states by a set of stabilizer operators:

C(αβγδ) = Ã(αβ)Ã(βγ)Ã(γδ)Ã(δα) ,

where (αβγδ) labels vertices of the plaquette. An exam-
ple of such stabilizer is worked out in Figure 6 for a trivial
lattice ordering. Since C(αβγδ) is a Krönecker product of
Pauli matrices, its eigenvalues are ±1, implying that vio-
lation of a single stabilizer condition costs 2 units. Note
that if the simulation starts in the subspace encoding
physical fermionic states, it stays in it, as the generating
operators Bk, A(jk) commute with the stabilizers [17].

Inspired by the toric code construction [25], we note
that one can restrict the system to the physical codespace
by including a penalty term Hpenalty = −∆

2

∑

k Ck,
where ∆ ≫ t, U, ǫ corresponds to the “energy gap” of
the system and k runs over all plaquettes.

The above representation is now applied to the
fermionic nearest-neighbor hopping operator. The
nearest-neighbor couplings for horizontal edges maps to
5-qubit-local operators:

a†k+1ak + a†kak+1 →
1

2
Y→k (Z↓kZ

↑
k+1 − Z↑kZ

←
k Z→k+1Z

↓
k+1) .

Analogously, the vertical nearest-neighbor couplings are
encoded by 7-local operators:

a†jak + a†kaj →
1

2
Y ↑j

(

Z←k Z→k Z↑kZ
←
j Z→j Z↓j − 1

)

.

It remains to account for the Hubbard repulsion term.
The simplest way to implement it is by simulating the
above on two lattices labeled with ↑, ↓, coupled by the
density-density interaction term. We obtain that:

H↑ = −t
∑

(i,j)∈E

(a†i↑aj↑ + a†j↑ai↑) + ǫ
∑

i∈V

a†i↑ai↑ ,

H↓ = −t
∑

(i,j)∈E

(a†i↓aj↓ + a†j↓ai↓) + ǫ
∑

i∈V

a†i↓ai↓ ,

which leads to the following expression for the full Hamil-
tonian:

H = H↑ +H↓ + U
∑

i∈V

ni↑ni↓ .

The H↑ and H↓ Hamiltonian terms are decoupled and
have been already mapped to spins. The density-density
interaction term maps to:

nk↑nk↓ →
1

4
(1− Z←k Z↑kZ

→
k Z↓k)(1− Z←k′ Z

↑
k′Z
→
k′ Z

↓
k′) ,

where the primed indices correspond to fermions in spin
↓ lattice and the unprimed ones to the sites in the spin
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FIG. 8: (left) Snake pattern used for G1 in a w = l = 3 in
the auxiliary fermion method. (right) Optimal JW ordering

for geometrically local fermionic models.

↑ lattice. It hence follows that in order to implement
this inter-lattice coupling on spins, the density-density
Hamiltonian term acts on 8 qubits simultaneously in the
worst case. This presents an upper bound on the spin
Hamiltonian locality in this setting.

F. The Auxiliary Fermion Scheme

The auxiliary fermion (AF) scheme [20–22] was in-
troduced in [20] and also (independently) by [21]. The
scheme uses auxiliary fermionic modes to allow fermionic
models on general lattice geometries to be simulated lo-
cally. We recall the relevant details from [22] to al-
low comparison against the other fermionic encoding
schemes.

A given set of site-to-site hopping terms can be charac-
terized by a graph G = (E, V ), where vertices correspond
to sites and the edges to pairs of sites participating in the
hopping. In one dimension, this graph is a linear path,
G1, where the degree of the endpoints is one and all other
sites have degree two. In higher dimensional settings such
as the 2D Hubbard model studied here, the degree of the
sites may be greater than two. The non-local degree dnl
of a site is the number of edges that are not included in
the linear path G1. Therefore, it is important to choose
a path which overlaps maximally with the desired in-
teraction graph G. In the case of 2D Hubbard, this is
accomplished by a snake-like pattern (Fig. 8). Next, we
must account for spin in the Hubbard model. One re-
quires 2wh spinless fermionic sites if the model is defined
on w × h rectangular lattice. If we take the first half of
these sites to be spin down and the second half to be spin
up, there is no need to track phase factors between the
spin up and spin down subsets. This is because the Hub-
bard model preserves spin; thus, there are no hopping
terms between the first half of the sites and the second
half. The density-density terms are each a product of
two one-point coupling terms which does not require the
tracking of antisymmetric phase factors.

The nonlocal degree of each node (when G1 is a sub-
graph of G) is dnl = d(G)−d(G1) and, as we’ve previously
shown, each auxiliary fermionic site can facilitate up to
two non-local couplings [22]. Hence the number of auxil-
iary sites required per fermionic site is given by ⌈dnl/2⌉.
Since each non-local degree in the 2D Hubbard model is
less than or equal to two, only a single auxiliary mode is
needed for each site with non-local degree greater than
zero. The (1, w) and (h, 1) corners (for each spin) require
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FIG. 9: (left) Degrees of fermionic sites in the 3× 3 2D
Hubbard lattice. (middle) Degrees along the linear path G1

through each sublattice (right). The nonlocal degree of each
node determines the number of auxiliary modes to be used.

no auxiliary sites since the edge set of G1 is sufficient for
coupling them to their nearest neighbors.

As an example, we illustrate these ideas using a square
lattice of width w = 3 and height h = 3. In the general
case, there are (w−2)(h−2) sites with degree four in the
interior of the graph G. Each of these sites has non-local
degree two and hence each needs just a single auxiliary
fermionic site. Then there are 2(h − 2) + 2(w − 2) sites
along the boundary with degree three. Each of these sites
have non-local degree of 1 and will also require one auxil-
iary fermionic site each. Finally, the four sites occupying
the corners of the lattice to be simulated have degree
two. Presuming that the snake-like pattern is used, two
of the corners will have non-local degree zero while the
other two each have non-local degree 1. Summing all the
cost together we find that the total number of qubits is
4wh− 4.

The locality of simulation operators was detailed in our
previous publication [22]. For a hopping term from site
i to a non-consecutive site j, the qubit operator acts on
site i and on site j as well as auxiliary modes associated
with site j and with site i. Hence, the qubit operator
is either 4-local or 3-local in the Hubbard model. The
density-density operators are 2-local [22].

III. COMPARISON

In the following we assess the various methods in con-
text of the 2D Hubbard Hamiltonian. We analyze local-
ity of the nearest-neighbor fermionic hopping and den-
sity operators. The first subsection goes through locality
analysis for 2D Hubbard model. We then present results
in higher dimensions.

A. 2D Hubbard Model

We consider a Hubbard model defined on a w×h, w <
h rectangular lattice. For JW, we order the fermions as
in Fig. 8. The longest string of Z operators introduced
by the mapping has then length (w + 1).

For LSFS, we have already shown that the density-
density terms in the Hubbard Hamiltonian are all 8-local
for lattices with w, h ≥ 3. It is therefore only sensible to
use LSFS for locality reduction if w ≥ 8. Likewise AF
only improves locality compared to JW if w ≥ 4, since
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FIG. 10: The worst case for hopping operator locality, if
all-to-all couplings are allowed is the hopping from the first
to the last node. In the diagram above, this corresponds to

0 ↔ 15 - the nodes with raising/lowering operators are
colored white. The set F (15) of all children of node 15

corresponds to the black nodes. The update set U(0) of 0 is
the set of square nodes. This implies that XZ = iY will be

applied at node 7.

the most nonlocal term of the qubit Hamiltonian is the
4-local vertical hopping term.

The AF transform is hence superior to LSFS for the
Hubbard model defined on a rectangular lattice. Both
methods use more qubits than fermionic sites of the orig-
inal model. For a w×h rectangular lattice, LSFS requires
4(w−1)(h−1) qubits, while the auxiliary fermion method
needs 4wh− 4, compared to a minimum of 2wh.

We now compare these methods to the BK transform
and its optimized SBK variant introduced in subsec-
tion II D. The density operator can be written in Ma-
jorana basis and converted by BK transform as:

nj =
1+ icjdj

2
→

1

2

(
1− ZF (j)∪{j}

)
. (5)

Its locality therefore only depends on |F (j)|, i.e. the
number of children of a node j in the Fenwick tree.
The root has the largest number of children, which im-
plies that the worst-case locality is (⌊log2 N⌋+ 1). The
density-density term is hence (2⌊log2 N⌋+ 2)-local.

Using the expression for Majorana operators in the
Bravyi-Kitaev mapping (Eq. 3), we have for the hopping
operator that:

a†kaj + a†jak =
i

2
(ckdj + cjdk) . (6)

If all-to-all couplings were allowed, the worst-case locality
would be ⌊log2 N⌋ + ⌈log2 N⌉ - the sum of tree depth d
and the number of root children n. This corresponds to
hopping from the first to the last site of the lattice (see
Fig. 10).

Focusing our attention to the nearest-neighbor hopping
in the SBK transformation, we have to analyze the verti-
cal and horizontal hoppings independently. For hopping
along horizontal edges, a loose bound on worst case lo-
cality is given by 2⌈log2 w⌉− 1 = 2d− 1 and corresponds
to hopping to the root child with smallest index j from
the (j + 1)-th node.

The worst case locality for hopping along the verticals
is given by 2⌈log2 w⌉ + 2 = 2d + 2 (where d is the tree

depth) and corresponds to hopping between two deepest
leaf nodes. This can be reduced to 2⌈log2 w⌉+1 = 2d+1
by splitting the segmented trees in half, which however
increases the worst case locality for horizontal hoppings
to 2⌈log2 w⌉. The scheme hence provides locality advan-
tage compared to JW for lattices of width w > 2. The
worst case localities for 2D are sumarized in Tab. I and
in Fig. 11.
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Lattice width

0

2

4

6

8

10

12

14

16

Lo
ca

lit
y

LSFS

AUX

JW

SBK

FIG. 11: Worst case locality of qubit operators with lattice
size in the 2D Hubbard model.

B. Hypercubic Lattices

We now extend the previous analysis to higher dimen-
sions and consider mapping of the hopping term in a gen-
eral hypercubic lattice of D > 0 dimensions with side w.
With the simplest ordering, the hopping term in Jordan-
Wigner transformation becomes wd−1 + 1 local, where
w is the number of sites along a side of the hypercubic
lattice.

In the case of AF, the number of auxiliaries per site
scales as D−1, since in D-dimensional hypercubic lattice,
each vertex has 2D nearest neighbors. This translates to
dnl = 2D−2 non-local degree and D−1 auxiliary fermion
sites per each site of the original lattice. The worst case
hopping term locality hence goes as 2D− 2, whereas the
number of qubits scales as D × wD.

Since each vertex has 2D neighbors, locality of the
LSFS hopping term goes as 4D − 1 in a bulk of the hy-
percube (one neighbor is shared), while locality of the
density-density term becomes 4D. The number of edges
in a hypercubic lattice of side w in dimension D is given
by E(D,w) = D(w − 1)wD−1, which is also the number
of qubits required for the mapping.

Proof. One has that E(2, w) = 2(w − 1)w, as there are
2 edges per vertex with the exception of the bound-
ary, where we over-count by 2w. In 3 dimensions, we
construct a w × w × w cube by connecting vertices of
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Method Density-density Horizontal Vertical Qubits

JW 2 2 w+1 2wh
BK 2⌊log

2
(wh)⌋+ 2 ⌊log

2
(wh)⌋+ ⌈log

2
(wh)⌉ ⌊log

2
(wh)⌋+ ⌈log

2
(wh)⌉ 2wh

SBK 2⌊log
2
w⌋+ 2 ⌊log

2
w⌋+ ⌈log

2
w⌉ 2⌊log

2
w⌋+ 1 2wh

AF 2 2 4 4(wh− 1)
LSFS 8 7 7 4wh− 2h− 2w

TABLE I: Operator locality and qubit resource overheads for transformation of a 2D rectangular lattice Hubbard model.

Method Worst-case locality Qubits

JW wD−1 + 1 2wD

BK 2⌊log
2
wD⌋ 2wD

SBK 2⌊log
2
wD−1⌋ + 1 2wD

AF 2D 2DwD

LSFS 4D 2D(w − 1)wD−1

TABLE II: Worst-case locality of the hopping term as a
function of the hypercubic lattice dimension.

w × w squares by (w − 1)w2 edges. It follows that
E(3, w) = wE(2, w) + w2(w − 1) = 4w2(w − 1). To
count the number of edges in a w×D hypercube, one
can take w (D − 1)-dimensional hypercubes and con-
nect them by (w − 1)wD−1 edges. This implies that
E(D,w) = wE(D− 1, w) +wD−1(w− 1). It follows that
E(D,w) = D(w − 1)wD−1.

The BK method requires N = wD qubits in gen-
eral, while its worst-case locality scales as ⌈log2(w

D)⌉ +
⌊log2(w

D)⌋ = d+n. For nearest neighbour hopping, this
can be further optimized to 2⌈log2(w

D−1)⌉+ 1 = 2d+ 1
by using the segmentation trick of the SBK method at
the highest level of the lattice. Hopping term locality as
a function of hypercubic lattice dimension is summarized
in Tab. II.

IV. CONCLUSION

Which scheme is superior depends on the type of quan-
tum simulation. For digital quantum simulation on a
universal quantum computer with logical qubits, N -qubit
operators can be simulated with just linear overhead in

N . On such devices the main limitation will be the num-
ber of available logical qubits and then our proposed
modification of the Bravyi-Kitaev transform leads to the
best locality improvement of O(log2 w)-local spin opera-
tors, where w is the lattice width.

For analog simulations, on the other hand, operator lo-
cality will be the decisive factor. On such quantum sim-
ulators natively only few-qubit couplings are available,
typically only two-qubit terms. In that setting multi-
qubit terms have to be generated using perturbative gad-
gets [26, 27]. These, however, require large energy penal-
ties to be sufficiently deep inside the perturbative regime
where the effective higher-order interactions appear. One
hence wants to optimize the locality of the terms and aim
for transformations with the most local terms. The pre-
sented analysis shows that it is possible to map the 2D
Hubbard to a 4-local qubit Hamiltonian by the Auxiliary
Fermion method, at the expense of using number of an-
cillary qubits. This is the optimal fermion representation
for 2D lattices of width w ≥ 4.
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