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In this paper, we propose Auracle, a wearable earpiece that can automatically recognize eating behavior. More speci�cally, in
free-living conditions, we can recognize when and for how long a person is eating. Using an o�-the-shelf contact microphone
placed behind the ear, Auracle captures the sound of a person chewing as it passes through the bone and tissue of the head.
This audio data is then processed by a custom analog/digital circuit board. To ensure reliable (yet comfortable) contact
between microphone and skin, all hardware components are incorporated into a 3D-printed behind-the-head framework. We
collected �eld data with 14 participants for 32 hours in free-living conditions and additional eating data with 10 participants
for 2 hours in a laboratory setting. We achieved accuracy exceeding 92.8% and F1 score exceeding 77.5% for eating detection.
Moreover, Auracle successfully detected 20-24 eating episodes (depending on the metrics) out of 26 in free-living conditions.
We demonstrate that our custom device could sense, process, and classify audio data in real time. Additionally, we estimate
Auracle can last 28.1 hours with a 110 mAh battery while communicating its observations of eating behavior to a smartphone
over Bluetooth.
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1 INTRODUCTION
Chronic disease is one of the most pressing health challenges faced in the United States, and around the world.
According to one report, over 133 million Americans su�er from at least one chronic disease, and the number
is likely to rise to 157 million by 2020 [8]. Chronic diseases are a tremendous burden to the individuals, their
families, and to society. By 2023, diabetes alone is estimated to cost $430 billion to the US economy [8]. Many
chronic diseases are an outcome of, or exacerbated by, an individual’s lifestyle. Eating behaviour, in particular, is
strongly related to chronic diseases like obesity, diabetes, and metabolic disorders. Scientists are still trying to
fully understand the complex mixture of diet, exercise, genetics, sociocultural context, and physical environment
that lead to these diseases.

Wearable devices present an opportunity to measure health-related behavior [23]. Many commercially available
wearable devices can monitor a person’s activity level, which can be related to caloric output. There is, however,
no commercially available device that can automatically detect eating behavior in free-living conditions. The
availability of such automatic dietary monitoring (ADM) systems would be a huge bene�t to health-science
research.

An ideal embodiment of an ADM system has several challenges: (a) identifying when and for how long an
individual performed an eating activity, (b) identifying what and how much is consumed during the eating activity,
and (c) ensuring that the system is usable in real-world settings, i.e., it is unobtrusive, energy-e�cient, robust to
environmental noise, and easy to use. In this paper, we focus on accurately identifying when an individual is
eating and for how long the activity lasted. These two goals are the foundation for automatic dietary monitoring,
and could help trigger other kinds of sensing or inquiries.

To automatically recognize eating in free-living conditions, we designed and built a wearable eating-recognition
system Auracle.1 We assume that chewing is a �rst-level indicator of eating activity, so Auracle uses a contact
microphone mounted behind the ear to detect chewing sounds.

Although several researchers have proposed approaches to monitor eating activity, it is not yet possible to
accurately and automatically recognize eating outside the lab; thus our interest is to develop a wearable system,
which is e�ective and robust enough to automatically detect when people eat in out-of-lab, day-long, free-living
conditions. Indeed, we designed our system for use primarily by health-science researchers. For instance, a
health-science researcher may want to study how the eating habits of college students change during a semester;
when and how often do they eat? for how long? how do these patterns change during exam periods? Auracle
could be used for such research purposes.

In this paper, we make the following contributions:

• Auracle is the �rst system that demonstrates the possibility of using a self-contained, ear-mounted system
with an in-built contact microphone for eating detection in free-living conditions.
• Auracle runs feature extraction and classi�cation algorithms in an ultra-low-power microcontroller

(MCU) (ARM Cortex M3). Previous researchers run their models for eating detection using platforms
that are signi�cantly more power hungry (such as a laptop, smartphone, or Arduino). Based on our
power measurements, we estimate Auracle could last for 28.1 hours with a 110 mAh battery, all while
transmitting eating noti�cations to a subject’s smartphone.
• We demonstrated the success of Auracle in a �eld deployment involving 14 participants, despite challenges

with environmental noise (ambient sound, motion artifacts), in a setting di�erent from training conditions
(e.g., subjects eating while walking), and with widely varying food types.

1http://auracle-project.org
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Fig. 1. Tip of mastoid bone

2 BACKGROUND
In most (if not all) previous reports of eating-detection technologies, researchers do not provide a precise de�nition
of eating, even though they set out to detect eating. We de�ne eating in this paper as “an activity involving the
chewing of food that is eventually swallowed." This de�nition may exclude drinking actions which usually does
not involve chewing. On the other hand, consuming “liquid foods" that contain solid content (like vegetable soup)
and requires chewing is considered eating. Our de�nition also excludes chewing gum, since gum is not usually
swallowed.

For our work in this paper, we de�ne an eating episode as: “a period of time beginning and ending with eating
activity, with no internal long gaps, but separated from each adjacent eating episode by a long gap, where a
gap is a period in which no eating activity occurs, and where long means a duration greater than a parameter
δ ." We chose δ = 15 minutes in our studies as suggested by Leech et al. [16]. We used this de�nition for the
episode-based evaluations in Section 6.2.

Although several researchers have designed systems that use various cues to determine eating (e.g., audio
information from the ear canal [1, 17, 22, 27, 31] or throat [20, 25, 27, 28, 37], �rst-person or third-person
images [26, 32, 33], wrist-based gesture recognition [10, 29]), these systems have practical limitations. They are
either obtrusive (microphone on throat), uncomfortable (bulky), privacy invasive (images capturing other people)
or unnatural (wearing a watch on the dominant hand).

Distinct from all these prior approaches, we have designed a head-mounted device that is similar to a behind-
the-head earphone and is comfortable to wear in everyday settings. Our device can detect eating infers episodes,
in real-time, on the wearable device, and logs these events as they occur, or opportunistically alerts a smartphone
or smartwatch about detected eating behaviors. We chose to place the sensor behind the ear, right on the tip of
mastoid bone (Figure 1); this location has been shown to give a stronger chewing signal to a contact microphone
than other locations on the jaw or neck [25]. Besides, a device placed behind the ear does not impede hearing,
unlike earbuds or ear-canal sensors. Moreover, this location, once the device is miniaturized, may allow a user to
wear the device privately, i.e., other people would not see it and would not know that it is there (as in modern
hearing aids).

No other researchers have developed an eating-recognition system that can run on-board, real-time feature-
extraction and classi�cation algorithms, which can signi�cantly decrease the latency, improve power e�ciency,
and protect user privacy. Auracle can locally capture, process, and classify sensor data collected in out-of-lab,
day-long, free-living scenarios.

Similarly, prior eating-detection research has traditionally worked to detect eating without considering energy
e�ciency and battery life—both critical factors for improving the size, weight, comfort, cost, and usability of
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Fig. 2. Auracle prototype

any wearable device. In order to develop an eating detection system that works well beyond carefully-controlled
laboratory settings, we developed Auracle using an ultra-low-power MCU (Section 3.3), evaluated Auracle’s
energy e�ciency (Section 7) and estimated that our prototype can monitor eating continuously while lasting
28.1 hours when paired with a 110 mAh rechargeable battery.

3 SYSTEM DESIGN
The Auracle system (shown in Figure 2) includes a contact microphone (Figure 3), a battery, a custom-designed
printed circuit board (PCB) for data acquisition, and a wearable mechanical housing. The PCB (Figure 4) incorpo-
rates an analog front end (AFE) for signal ampli�cation, �ltering, and bu�ering, an MCU for signal sampling
and processing, feature extraction, eating activity classi�cation, and system control, a Bluetooth radio for data
transmission, and a micro-SD card socket for long-term data storage. The signal and data pipeline from the
contact microphone includes AFE-based signal shaping, MCU-based analog-to-digital conversion, on-board
feature extraction and classi�cation, and data transmission and storage. We implemented data-logging functions
to write raw data, feature values or prediction results to the SD card for our research. We also implemented
Bluetooth Low Energy (BLE) functionality in the MCU so the Auracle prototype can also transmit these data
through BLE, if needed. The total cost of the current prototype, including PCB fabrication and component costs,
is $80 per unit, and would drop to $66 if ordered in quantities of 1,000 or more.

We developed Auracle in three stages. In Stage I, we built three prototypes and used them for acquiring �eld
data (Section 4.1) and additional eating data (Section 4.2). We implemented only the functions required for data
acquisition on the MCU. We analyzed the data (Section 5) and evaluated eating-detection performance (Section 6)
o�ine on a laptop. In Stage II, we implemented on-board feature extraction and classi�cation based on the most
promising features (Table 1) and classi�cation models determined in Stage I. We trained the classi�cation model
(Section 5.3) o�ine on a laptop using the in-lab and �eld data recorded (Section 4.1 and 4.2); the classi�cation
model was then implemented in embedded-C and ported to the MCU. The on-board classi�cation model uses the
feature values extracted from windows of audio samples as inputs to classify windows as periods of eating or
non-eating. In Stage III, we added a Bluetooth radio on our PCB and implemented the BLE functionality in the
MCU, which could be used to provide users with real-time interventions.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 3, Article 92. Publication date: September 2018.
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Fig. 3. Contact microphone

Fig. 4. Auracle’s PCB Design

3.1 Contact Microphone
We used an o�-the-shelf contact microphone (CM-01B from Measurement Specialties), shown in Figure 3,
to capture chewing sound. This microphone uses a PVDF piezo �lm combined with a low-noise electronic
preampli�er to pick up sound applied to the central rubber pad; a metal shell minimizes external acoustic
environmental noise. The 3dB bandwidth of the microphone ranges from 8 Hz to 2200 Hz, and covers our
frequency range of interest. According to the data sheet, when powered by 3.3V the power consumption of the
microphone is 0.33 mW. This microphone has been used in electronic stethoscopes and, based on preliminary
studies, we found it to be su�ciently sensitive to detect chewing sounds.

3.2 Analog Front End (AFE)
To make the most of the MCU’s analog-to-digital converter’s (ADC) input dynamic range, the contact microphone
signal is conditioned by an analog front end (AFE). The AFE level-shifts the contact microphone signal, ampli�es
it by 15 dB, and bandlimits it to the 20–250 Hz frequency range. We chose the frequency range and ampli�cation
gain based on the experiment results from previous work [7].

3.3 Microcontroller Unit
An embedded microcontroller (MCU) samples the output signal from the AFE, processes data, and communicates
results. A 500 Hz sampling rate with 10 bits of resolution is required to sample typical eating signals from a contact
microphone [7]. To meet these requirements, the Auracle prototype employs a Texas Instruments (TI) CC2640R2F
Simplelink Wireless MCU (ARM Cortex M3) with an integrated sensor controller and BLE module. The MCU
samples and stores data over a 3-second window to construct a 1500-value array from which features are extracted
and classi�ed as eating or non-eating events. The MCU can record to the SD card raw data, summary data (i.e.,
feature values or prediction results), or both, depending on operating mode. The MCU can also transmit these
data through BLE, if needed. The Auracle application leverages TI’s operating system (TI-RTOS) for simpli�ed
task threading and automatic low-power optimization. We developed programs for the main CPU in TI’s Code
Composer Studio and designed and generated the �rmware image for the Sensor Controller using TI’s Sensor
Controller Studio.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 3, Article 92. Publication date: September 2018.
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Fig. 5. Mechanical housing of Auracle

3.4 Printed Circuit Board
The Auracle prototype hardware integrates a custom printed circuit board (PCB) housed in a 3D-printed head-
mounted plastic enclosure, detailed below. Figure 4 shows the PCB, which comprises the CC2640R2F MCU, a 110
mAh battery, the contact microphone (Section 3.1), a Bluetooth radio, a micro-SD card socket, and the custom
AFE (Section 3.2). Our PCB implementation is small enough to be deployed in free-living conditions and its
unique shape was designed to �t within the wearable form-factor of the head-mounted housing. The semicircular
arc was added to the PCB design to provide a structured �t for the contact microphone.

3.5 Mechanical Housing
The Auracle enclosure consists of a 3D-printed ABS plastic frame that wraps around the back of a wearer’s head
and houses the PCB, battery, and contact microphone (Figure 5). Soft foam supports the enclosure as it sits above
a wearer’s ears. There are grooves in the enclosure making Auracle compatible with most types of eyeglasses.
The contact microphone is adjustable, backed with foam that can be custom �t to provide adequate contact on
di�erent head shapes. This adjustment is necessary because Auracle is built on the premise that the contact
microphone has proper contact with the mastoid bone. An adjustable microphone mount ensures that Auracle
can cater to several head shapes and bone positions.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 3, Article 92. Publication date: September 2018.
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Version 1 Version 2 Version 3

Fig. 6. Three versions of mechanical housing design

There are three versions of the enclosure to �t various head shapes (Figure 6). Version 1 wraps lower around
the head than Versions 2 and 3. Version 3 has an extra extrusion to hold the contact microphone closer to the
wearer if their mastoid bones are more recessed relative to their ears. All versions are 12.7cm × 12.7cm × 8.6cm.

3.6 Power Management
We plan to add a wake-up circuit in our AFE, which will keep the core MCU (i.e., Cortex M3) in the sleep state
when the microphone signal is silent. Figure 7 shows the circuit we propose, which detects a surrogate measure
of signal variance and compares with a preset threshold. As shown in Figure 8, when the wake-up circuit detects
sound, it triggers the MCU to switch from sleep state to wake-up state and begin sampling, processing, and
recording data. This process is similar to the �rst stage of our classi�cation model (Section 5.4), in e�ect replacing
the �rst software stage with hardware and allowing the Auracle to stay in low-power sleep state more than half
of the time. There are three AD8609 in the circuit and theVdd is 3.3 V. According to the data sheet, the total power
consumption would be 0.5 mW, which we used as the estimated power consumption of the wake-up circuit.

4 DATA COLLECTION
Using sensor data recorded with Auracle in both �eld and laboratory settings, we determined an optimal set of
features and an appropriate classi�cation algorithm to implement in the digital back-end running on our PCB.
We also used these data as training data for our classi�cation model, and to derive the performance (Section 6) in
terms of accuracy and power-consumption evaluation (Section 7). Under a protocol approved by our Institutional
Review Board (IRB), we collected data in both free-living scenarios and a laboratory setting.

4.1 Field Data Collection
Auracle is aimed at use in free-living conditions, so we conducted a �eld study with 14 participants. The goal
of this study was to collect raw audio data for the purpose of developing and evaluating the Auracle itself, as

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 3, Article 92. Publication date: September 2018.
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Fig. 7. Wake-up circuit

Fig. 8. State diagram

noted above. To do so, we had to address a critical challenge – we need a reliable way to obtain “ground truth” in
free-living conditions. In short: when did the participants actually eat?

We thus developed an approach for ground-truth measurement. It is important to note that this mechanism
is not part of the envisioned use of Auracle – just part of its development. We fused an o�-the-shelf wearable
miniature camera into a baseball cap and used the camera to record video during the �eld studies (Figure 9). The
camera was �xed under the brim of the cap and directed at the mouth of the participants only; this orientation
made it di�cult to identify the participant by watching videos and also avoided recording anyone else, other than
the study participant. The ambient microphone built into the camera was physically removed before the study so
no audio would be captured. All the videos recorded during the study were stored in an SD card for later annotation.
Compared with other similar apparatus [3], our ground-truth collector is relatively unobtrusive. Figure 10 shows
two screen shots of the video recorded by the camera during eating and non-eating periods, respectively. Again,
the ground-truth collector is not part of the operational Auracle and is used just for development and evaluation
purpose.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 3, Article 92. Publication date: September 2018.
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Fig. 9. Ground-truth collector

Fig. 10. Screen shots of the video recorded by ground-truth collector during eating and non-eating periods

4.1.1 Field Studies. We collected data from 14 participants (2 females, 12 males; aged 20-33; 10 wore glasses; 2
had long hair). These participants were mostly college students and sta�. For each session, the participant was
compensated with a $20 gift card. Among the 14 participants, 12 participants chose to participate in 1 session
of the study while 2 participants chose to participate in 2 sessions. Each session lasted 2 hours. Overall, we
collected a total of 32 hours of �eld data. After preliminary review, we found 2 sessions (4 hours) of the �eld
data, collected from 2 di�erent participants, could not be used for further analysis. In one session, the video
recorded by cap-mounted camera was totally blocked by the participant’s nose, making it hard to determine
whether the participant was eating. In another session, the contact microphone signal was too weak due to poor
contact and barely changed during session. We excluded the data collected during these two sessions. We used
the remaining 28 hours of data recorded from 12 participants for analysis (Section 5) and evaluation (Section 6).
During these 28-hour periods of �eld data acquisition, participants ate various types of food including rice, bread,
noodles, meat, vegetables, fruit, eggs, nuts, cookies, crackers, soup and yogurt. Participants recorded data in
diverse environments including houses, o�ces, cars, restaurants, dining halls, kitchens and streets.

Before the start of each session, the participant was asked to wear the Auracle prototype in Stage I (Section 3)
and the ground-truth collector (Figure 9). To ensure the contact microphone in our prototype had good contact
with mastoid bone (Figure 1), we �rst visually inspected whether the central rubber pad of the contact microphone
remained in contact with the skin when the participant turned her or his head back and forth. We then asked
the participant to stay silent for 10 seconds, followed by chewing a baby carrot for another 30 seconds. If the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 3, Article 92. Publication date: September 2018.
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Fig. 11. Temporal signature of one session of field-data collection (black boxes indicate periods of eating)

amplitude of the data recorded during the chewing period was larger than that in silent period, we concluded
there was good contact between the microphone and skin.

At the beginning of each session, we asked the participant to tap on their cheek and the mechanical housing
of the prototype using their hands three times, which could be recorded by both head-mounted camera and
Auracle. We then asked the participants to go about their normal daily activities outside the lab. Their behavior
and location were uncontrolled, but the participants were asked to wear the Auracle and the cap continuously
during their time in the �eld. Also, we requested that at least one eating episode take place at anytime during the
session. At the end of the session, we asked the participant to perform the same three-tap event. We used these
three-tap events at the beginning and end of the session to synchronize the video and audio data collected. A
example of one session of �eld data collection is shown in Figure 11, where the parts in black boxes represent
eating periods.

4.1.2 Video Annotation. To annotate the videos (i.e., labeling moments as eating or not eating), we used the
video annotation service from Baidu.2 We uploaded all �eld study videos to the Baidu Drive for review. Three
Baidu annotators independently watched and annotated the periods of eating in each video, with 1-second
resolution.

We calculated the proportion of the annotation-mismatch periods across each of the 3 reviews. Each 1-second
window over which the three annotators disagreed were de�ned as annotation-mismatch periods. The proportion
of the annotation-mismatch periods in 14 the �eld-study videos was small (mean: 2.79%; standard deviation:
1.85%). Thus we concluded all the videos were annotated carefully by three annotators.

We converted the three annotation results into a single label �le used for experiments in Section 5 and 6. The
label �le was generated based on the majority annotation results from three annotators. For example, if two
or more annotators annotated a 1-second period of video as eating, it was labeled eating in the �nal label �le;
otherwise it was labeled non-eating.

Finally, since our predictions were based on 3-second windows, we converted the resolution of the labeling
result from 1 second to 3 seconds. We found that there were very few 3-second windows (less than 0.78% ) that

2http://zhongbao.baidu.com/
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Fig. 12. Six types of food used for additional eating-data collection

contained both eating and non-eating labels. We labeled a 3-second window eating if it contains any eating labels
within the window; otherwise we labeled that window non-eating.

4.2 Additional Eating-data Collection
Since the data collected in free-living scenarios is unbalanced (i.e., much less time spent on eating than non-eating),
we collected additional in-laboratory eating data to augment the training dataset. The additional data allowed us
to explore whether the addition of in-laboratory eating data would improve the classi�cation results (Section 6.2).

We collected data from 10 participants (2 females, 8 males; aged 21–33; 8 wore glasses; 2 had long hair) in the
laboratory condition. At the start of each session, each participant was asked to wear the Auracle prototype
described in Section 3. We used the same visual and data inspection methods used (Section 4.1.1) to verify Auracle
placement in this cohort.

We asked the participants to eat six di�erent types of food, one after the other. The food items (Figure 12)
included three crunchy types (protein bars, baby carrots, crackers) and three soft types (canned fruits, instant
foods, yogurts). We asked the participants to chew and swallow each type of food for two minutes. During this
eating period, participants were asked to refrain from performing any other activity and to minimize the gaps
between each mouthful. After every 2 minutes of eating an item, participants took a 1-minute break so that they
could stop chewing gradually and prepare for eating another type of food. A signal plotting of one entire session
of lab data collection is shown in Figure 13, where the parts in black boxes represent eating periods. We removed
data collected during the 1-minute break periods and concatenated all 2-minute eating periods into the additional
eating dataset we used in Section 6.1.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 3, Article 92. Publication date: September 2018.
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Fig. 13. Temporal signature of one session of additional eating-data collection (black boxes indicate periods of eating)

5 DATA ANALYSIS
In this section, we describe our evaluation metrics and multiple stages of our data processing pipeline (Figure 14)
including data preprocessing, feature extraction, feature selection, classi�cation, classi�cation aggregation and
ground-truth label aggregation.

5.1 Evaluation Metrics
We performed a Leave-One-Person-Out (LOPO) cross-validation to evaluate our classi�er’s performance in both
window-based evaluation (described in Section 5.1.1) and episode-based evaluation (described in Section 5.1.2).
A LOPO model is relatively unbiased because the classi�er detects eating for a new person whose data it has
not seen before. The model iterates over all possible combinations of the training and testing data set. For each
iteration, the data set was divided into two subsets: the testing set (data from one participant) and the training
sets (data from all other participants). The classi�er is trained on the training sets and outputs metrics on the
testing set for each iteration; we then compute average metrics across all iterations. For the LOPO experiments
using additional eating data (Section 6.1), we added the additional eating dataset (Section 4.2) to the training sets
in each iteration.

5.1.1 LOPO Window-based Evaluation. To evaluate the accuracy of our classi�er, we compared its output
for each 1-minute time window against the ground-truth label for that time window. In other words, each time
window was an independent test case that resulted in one of four outcomes:

True positive: Both the classi�er and ground truth indicated Eating.
False positive: The classi�er indicated Eating and ground truth indicated Non-eating.
True negative: Both the classi�er and ground truth indicated Non-eating.
False negative: The classi�er indicated Non-eating and ground truth indicated Eating.
We de�ned TP, FP, TN and FN as the number of true positive, false positive, true negative and false negative

cases in the testing set, respectively. We then evaluated our method using �ve metrics:

Accuracy =
TP +TN

TP + FN + FP +TN
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Fig. 14. Data-processing pipeline

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 score =
2 ∗ Precision ∗ Recall
Precision + Recall

Weiдhted accuracy =
w ∗TP +TN

w ∗ (TP + FN ) + FP +TN

wherew is the ratio of non-eating period vs. eating period; settingw = 1 yields Accuracy (non-weighted) [10, 21].
We set w in weighted-accuracy metrics based on the ratio of non-eating and eating period in the testing set
for each LOPO iteration. As summary metrics, we calculated the mean and standard deviation of these �ve
scores across all iterations. Using this evaluation method, each participant a�ected the summary metrics equally,
regardless of whether they had 2-hour or 4-hour data recordings.
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5.1.2 LOPO Episode-based Evaluation. We evaluated our method’s ability to detect eating episodes using two
metrics, the Jaccard similarity coe�cient and the activity-recognition metrics proposed by Ward et al. (Ward’s
metrics) [36].

Using an approach similar to previous work by Papapanagioto et al. [21], we matched each detected eating
episode with either 0 or 1 ground-truth eating episode. We used the Jaccard similarity coe�cient to determine
whether this match led to a Correct Detection, False Detection or Missed Detection.

Let the detected episode be represented as Ed = [ts , te ], where ts is the start of the detected eating episode and te
is the end of the detected eating episode. Similarly, the actual eating episode (obtained from ground truth) is repre-
sented by Ea = [t ′s , t ′e ], where t ′s is the start of the actual eating episode and t ′e is the end of the actual eating episode.

We then use Jaccard similarity coe�cient:

J =
Ea ∩ Ed
Ea ∪ Ed

Each detected eating episode is an independent test case that results in one of three outcomes:

Outcome =


J ≥ 0.55, Correct Detection

0 < J < 0.55, False Detection
J = 0, Missed Detection

For each Correct Detection, we also calculated the mean and standard deviation of the delay and duration
di�erence. The delay is de�ned as the absolute value of the di�erence between the starting time of a detected and
corresponding actual eating episodes. The duration di�erence is de�ned as the sum of the absolute value of the
di�erence between the starting time and ending time of a detected and corresponding actual eating episodes.

Additionally, we evaluated our method using Ward’s metrics. Ward et al. de�ne an event as a variable duration
sequence of positive frames within a continuous time-series [36]. In our case, an eating episode represents an
event and a 1-minute time window within the event represents a frame. An event can then be scored as either
correctly detected (C); falsely inserted (I’), where there is no corresponding event in the ground truth; or deleted
(D), where there is a failure to detect an event [36].

5.2 Data Preprocessing
As mentioned in Section 3.2, we �rst bandlimited signals to the 20–250 Hz frequency range using our AFE.
The �ltered signals were then segmented into non-overlapping windows of uniform duration. Based on some
preliminary experiments testing a range of window sizes from 1 second to 5 seconds, we found that the 3-second
window size gave us the best results so we chose 3 seconds as our default window size. Furthermore, because the
signal amplitude was a�ected by the pressure applied to the contact microphone, which varied in each session
due to di�erent head shapes and microphone positioning, we used the RobustScaler function in Python’s scikit
learn package to normalize the data of each participant.

5.3 Feature Extraction and Selection
In our original �eld data set, the number of windows labeled as non-eating was signi�cantly larger than that
of the ones labeled as eating (the time-length ratio of data labeled as non-eating and eating is 6.92:1). When we
selected features on this dataset, the top features returned provide us relatively good accuracy, but not always
good recall and precision. However, recall and precision may be important metrics for some eating-behavior
studies, so we �rst converted the original unbalanced dataset to a balanced dataset by randomly downsampling
the number of non-eating windows so that we had equal number of non-eating windows and eating windows. We
then performed feature extraction and selection on the balanced dataset (See Figure 14).

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 3, Article 92. Publication date: September 2018.



Auracle: Detecting Eating Episodes with an Ear-mounted Sensor • 92:15

Table 1. Top 40 features selected by RFE algorithm

Feature category Description Number of features

FFT coe�cients Fourier coe�cients of one-dimensional
Discrete Fourier Transform 29

Range count Count of values within a speci�c range 1

Value count Count of occurrences of a speci�c value 1

Number of crossings Count of crossings of a speci�c value 3

Sum of reoccuring values Sum of all values that present more than once 1

Sum of reoccuring data points Sum of all data points that present more than once 1

Count above mean Number of values that are higher than mean 1

Longest strike above mean Length of the longest consecutive subsequence
that is bigger than mean 1

Number of peaks Number of peaks at di�erent width scales 2

For each time window, we used the open-source Python package tsfresh3 to extract a common set of 62
categories of feature from both time and frequency domains. Each feature category in this set can consist of
up to hundreds of features when the parameters of the feature category vary. In our case, we extracted more
than 700 features in total. We then selected relevant features based on feature signi�cance scores and the
Benjamini-Yekutieli procedure [6]. We evaluated each feature individually and independently with respect to its
signi�cance in detecting eating, and generated a p-value to quantify its signi�cance. Then, the Benjamini-Yekutieli
procedure evaluated the p-value of all features to determine which ones to keep. After removing irrelevant
features, considering the limited computational resources of wearable platforms, we further selected a smaller
number of k features using the Recursive Feature Elimination (RFE) algorithm with a Lasso kernel (5 ≤ k ≤ 60).
Table 1 summarizes the top 40 features.

Finally, we then extracted the same k features from the original unbalanced dataset to run the classi�cation
experiments (5 ≤ k ≤ 60).

5.4 Classification
We designed a two-stage classi�cation model to perform a binary classi�cation on the original unbalanced dataset,
using the set of features selected above. In Stage I, we used simple thresholding to �lter out the time windows that
seemed to include silence. We calculated the threshold by averaging the variance of audio data across multiple
silent time windows. We collected this silent data during a preliminary controlled data-collection session. We
identi�ed time windows in the �eld data that had lower variance than the pre-calculated threshold and marked
them as evident silence periods. After separating training and testing data, we trained our classi�er on the training
set excluding the evident silence periods. During testing, we labeled the time windows in the testing set that were
evident silence periods as non-eating. In the future, this Stage I software will be replaced by the wake-up circuit
discussed in Section 3.6.

In Stage II, after experimenting with di�erent commonly used classi�ers (shown in Table 2), we chose a Logistic
Regression (LR) classi�er to perform a 2-class classi�cation to classify eating and non-eating using the features
3http://tsfresh.readthedocs.io/en/latest/
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Table 2. Results when using di�erent classifiers with 40 features

Classi�er Accuracy Precision Recall Weighted accuracy F1 score

Logistics regression (LR) 0.928 0.757 0.808 0.879 0.775
K-nearest neighbors (K = 5) 0.888 0.621 0.810 0.858 0.689
Random forest 0.891 0.629 0.866 0.881 0.718
Decision tree 0.753 0.394 0.914 0.819 0.539
Gradient boosting 0.924 0.769 0.757 0.856 0.751

Fig. 15. Results when using only field data for training
classification model

Fig. 16. Results when using both field data and additional
eating data for training classification model

we described in Section 5.2. We chose the LR classi�er because it yielded the best F1 score in our experiment
(shown in Table 2) and it is lightweight enough to be implemented in a resource-limited wearable such as our
CC2640R2F MCU (Section 3.3). Figure 15 and Figure 16 show performance of the classi�cation model in detecting
eating or non-eating, when the top k features were used (5 ≤ k ≤ 60).

5.5 Classification Aggregation
Given the classi�cation results produced by the classi�er on each 3-second window, we then decided to aggregate
these results into coarser windows. We conducted a two-stage aggregation process. In Stage A, since completing
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Fig. 17. Stage A aggregation (e indicates time window labeled as eating; n indicates time window labeled as non-eating)

Fig. 18. Stage B aggregation (e indicates time window labeled as eating; episode indicates eating episode)

a mouthful usually lasts longer than 3 seconds, we chose to aggregate prediction results of twenty 3-second time
windows to a result every 1 minute according to a threshold: if more than 10% of the windows in a minute were
labeled eating, we labeled that minute as eating ( shown in Figure 17). The evaluation results in Section 6.1 are
based on the results after Stage A aggregation. Additionally, in Stage B, we aggregated 1-minute prediction results
from Stage A to eating episodes, which can last for several minutes. We used 50% overlap between consecutive
1-minute time windows. We used one parameter γ to achieve eating episodes: if the gap between two 1-minute
time windows prediction result is less than γ , we merged them into one eating episode ( shown in Figure 18). We
chose γ = 15 minutes, which is same as δ used in our de�nition of eating episode (Section 2). The evaluation
results in Section 6.2 are based on the results after stage B aggregation.
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Table 3. Results when using field data only and combining additional eating data for training (mean value ± standard
deviation)

Training data Accuracy Precision Recall Weighted accuracy F1 score

Field data 0.928 0.757 0.808 0.879 0.775
±0.042 ± 0.158 ±0.133 ±0.074 ±0.128

Field data with 0.913 0.736 0.724 0.834 0.707
additional eating data ±0.047 ± 0.155 ±0.224 ±0.108 ±0.174

5.6 Ground-truth Label Aggregation
We used a similar two-stage aggregation approach on the ground-truth data to obtain ground-truth labels of
1-minute windows and eating episodes, and used them for window-based evaluation (Section 6.1) and episode-
based evaluation (Section 6.2), respectively. In Stage A, we aggregated the ground-truth labels using the same
method and threshold as in Section 5.5. In Stage B, we merged the 1-minute ground-truth labels into eating
episodes using our de�nition in Section 2.

6 PERFORMANCE EVALUATION
To evaluate the performance of our approach, we evaluated Auracle’s accuracy at two levels of detail: how well
Auracle detected short periods of eating (using 1-minute windows of data) and how well those windows were
aggregated into longer eating episodes.

6.1 Window-based Evaluation
Using the LOPO cross validation from Section 5.1, Figure 15 shows how well our classi�er detects eating and
non-eating data windows, when we vary the number of top features, k , from 5 to 60. In the experiment, adding
features improved the F1 score up to k = 40, after which adding more features yielded little-to-no improvement.
To achieve a reasonably high F1 score and avoid high power consumption when we later run feature-extraction
algorithms in a wearable platform, we chose to use the top 40 features (Table 1) for evaluation in Section 6.2 and
implemented these features in the MCU of our prototype (Section 3.3).

We also tried adding the laboratory-based eating data we collected in Section 4.2 into the training data set for
each iteration of LOPO cross validation, and explored whether it helped to improve results. Figure 16 shows the
performance of the classi�cation model for di�erent feature set sizes. Table 3 shows summary metrics in the two
above cases when using top 40 features. From the �gure and table, we see that the addition of this data did not
improve the classi�cation performance. We speculate that the reason is eating behaviour of participants in the
laboratory and free-living conditions are di�erent. Participants sat and ate without many body movements in the
laboratory, but they sometimes ate while moving (and even walking) in free-living conditions.

To better understand the di�erence between the eating data collected in the laboratory and free-living
conditions, we conducted another experiment. We trained another LR classi�er with all the �eld data and used all
the laboratory eating data for testing. The data prepossessing and feature extraction and selection approach are
same as those mentioned in Sections 5.2 and 5.3. We found this classi�er could only recognize 61.9% of laboratory
eating data as eating and misclassi�ed other laboratory eating data as non-eating. As a result, adding eating data
collected in the laboratory setting did not help the classi�er to better recognize eating in free-living conditions.
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Table 4. Results for episode-based evaluation using Jaccard similarity coe�icient

Ground truth CD MD FD

Number 26 20 6 12

Maximum duration (minutes) 42 49 42 21.5

Minimum duration (minutes) 1.5 1.5 0 1

Mean duration (minutes) 17.8 19.7 12.8 5.2
± standard deviation (minutes) ±11.9 ± 10.9 ±15.8 ±6.7

Fig. 19. An example of Missed Detection (Ea indicates the actual eating episode; Ed indicates the detected eating episode)

6.2 Episode-based Evaluations
According to our de�nition of eating episode in Section 2, there were 26 actual eating episodes in our �eld data,
ranging in duration from 1 minute to 41 minutes. As shown in Table 4, when using Jaccard similarity coe�cient as
metrics, we correctly detected 20 eating episodes out of 26 and missed 6 eating episodes. We also falsely detected
12 eating episodes. For the Correct Detection (CD) cases, the mean and standard deviation of delay and duration
di�erence were 3.0 ± 3.8 minutes and 5.3 ± 5.9 minutes. As we aggregated 1-minute time windows with 50%
overlap to eating episodes, the resolution of episode-based evaluation is 30 seconds. In other words, our method
will take at least 30 seconds to detect an eating episode.

To understand the source of Missed Detection (MD), we visually analyzed the data. In certain cases we identi�ed
the eating episode correctly, but within the subsequent (or previous) 15 minutes, the participant performed an
activity (e.g., face touching) that our 1-minute window inferred as eating. This widened the span of the detected
eating episode, with low overlap between the detected eating episode and actual eating episode. Thus, the Jaccard
similarity coe�cient in these scenarios was less than 55% and the eating episode was considered as MD. Figure 19
shows an example.
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Fig. 20. Results for episode-based evaluation using Ward’s metrics

Fig. 21. Eating-episode assignment for 14 field-study sessions (each red box indicates a di�erent session)

Moreover, we found 5 of the 12 False Detections (FD) lasted only for 1 minute, which is shorter than all the
actual eating episodes. It may be necessary to better tune the thresholds used, or the metrics used, for future
analysis.

In addition, we evaluated our method to detect eating episodes using Ward’s metrics [36]. As shown in Figure 20,
we achieved 24 correct detection (C) among 26 actual eating episodes with 12 false insertions (I’) and 2 deletions
(D). Figure 21 shows the eating episode assignment for 14 two-hour sessions in the �eld study.

7 POWER AND MEMORY EVALUATION
In this section, we estimate the power consumption of the Auracle during operation. Although the current
prototype runs continuously at full power, we anticipate adding a wake-up circuit (Section 3.6) that would allow
the MCU to remain in a lower-power, sleep mode when no sound is detected. We model the power consumption
of the Auracle, with that addition, but must �rst measure the consumption of the current prototype. We used
a Monsoon Power Monitor (Monsoon Solutions Inc., FTA22J) to conduct all power measurements. For each
measurement, we use the Monsoon to recorded power data for half a hour at each activity level, from which we
calculated the average power consumption.

We �rst de�ne three di�erent modes: verbose mode Pv , development mode Pd and realistic mode Pr . In verbose
mode, the MCU logs both raw data and summary data to the SD card whenever it is not sleeping. In development
mode, the MCU logs summary data to the SD card whenever it is not sleeping. In realistic mode, the MCU
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Table 5. Average power consumption of each component

Average Power Draw (mW)

Sleep state (Ps ) 0.89

Data processing (Pd ) +18.29

Summary data logging (Pc1) +2.29

Raw data and summary data logging (Pc2) +7.28

BLE (Pb ) +3.37

continuously transmits prediction results through Bluetooth Low Energy (BLE) to a smart phone (and logs no
data to SD card).

We estimated the power consumption in verbose mode Pv , development mode Pd and realistic mode Pr as
follows:
Pv = S ∗ Ps + (1 − S) ∗ (Pd + Pc1)
Pd = S ∗ Ps + (1 − S) ∗ (Pd + Pc2)
Pr = S ∗ Ps + (1 − S) ∗ Pd + Pb
where S is the fraction of time spent sleeping, and Ps indicates the power consumption when the system is

sleeping. We estimated Ps by summing the power consumption of the wake-up circuit (0.5mW – as shown in
Section 3.6), the power consumption of the contact microphone (0.33mW – as shown in Section 3.1) and the
power consumption of the MCU in standby mode (0.06mW – as measured by Monsoon). By summing the power
consumption of these three parts, We achieved Ps to be 0.89mW. Based on the fraction of 3-second windows
when the audio signal was below threshold in the �eld data we collected (Section 4.1.1), we estimate that S =
0.503.
Pd indicates the power consumption when the MCU samples sensor data, and runs feature extraction and

classi�cation algorithms on chip. We achieved Pd by directly measuring the power consumption of our PCB
when data is processing on board.

Pc1 indicates the power required to write the raw data (500Hz sampling rate, 1000 bytes written / second)
and summary data (feature values and prediction results; less than 200 bytes written / 3 seconds) to the SD card.
Pc2 indicates the power required to log only the summary data to SD card. We determined both Pc1 and Pc2 by
calculating the di�erence in the power consumption of our PCB with and without SD card writing enabled.
Pb indicates BLE power consumption of our PCB when transmitting only classi�cation results (2 bytes / 3

seconds) to an IPhone via BLE. We used the TI BLE-Stack software development kit to interface with the on-chip
BLE radio, and the LightBlue4 iOS and Android app to receive the data on smartphone. We determined Pb by
calculating the di�erence in the power consumption of our PCB with and without BLE transmission enabled.

Based on above assumptions, we estimated the power consumption of each component in Table 5 and power
consumption in each system mode in Table 6.

Auracle is powered by 3.3 V. Assuming use of a 110 mAh battery, we estimated Auracle can last 27.6 hours,
34.0 hours, and 28.1 hours in verbose mode, development mode, and realistic mode, respectively.

We also implemented our feature extraction and classi�cation algorithms in the 20 KB SRAM of the MCU.
Based on our measurement of the memory usage, we used 8.2KB SRAM when the MCU is in sleep date, and
19.2KB SRAM during other periods.

4https://punchthrough.com/
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Table 6. Average power consumption in each system mode

System Mode Average Power Draw (mW)

Verbose mode (Pv ) 13.16

Development mode (Pd ) 10.68

Realistic mode (Pr ) 12.91

8 DISCUSSION AND FUTURE WORK
Handling misclassi�cation: To identify the reasons that lead to misclassi�cation of eating as non-eating and vice
versa, we watched the videos during all the periods that were misclassi�ed by our system. Some scenarios where
false positives occurred include instances when the monitored individual was talking while walking, continuously
touching face, excessively moving body, or making constant contact between neck or hoods and the mechanical
housing. We also observed that several false negatives occurred when the individual was eating while walking or
eating a soft food item like yogurt. We found that among all these reasons, the motion artifacts caused by walking
and body movement played an important role in the misclassi�cation. We believe that adding an accelerometer
or an IMU to Auracle in the future may reduce the e�ect of the motion artifacts. One possible technique to reduce
classi�cation errors is to design non-standard features based on the data. In the future, we intend to explore such
features.

Personalized modeling: As shown in Section 5, we used the same feature set and a general classi�cation model
for all participants, and evaluated the performance using LOPO cross validation. We assumed a general feature
set and classi�cation model would be preferred over a personalized model for most health-science projects, as
researchers do not have to collect training data every time there are new participants. In certain cases, however,
researchers may require higher eating-detection performance than we show in Section 6. In the future, we
plan to explore whether personalization of feature set or classi�cation model can help to further improve the
eating-detection results in free-living conditions.

Additional sensing modality: Auracle relies heavily on chewing detection. Based on the chewing action, Auracle
determines whether a person is eating. However, if a participant performed an activity with a signi�cant amount
of chewing but no swallowing (e.g., chewing gum), which is not ‘eating’ based on our de�nition, our system may
output false positives. In the future, fusing data from additional sensors (e.g., a throat microphone for swallowing
detection or wrist-worn devices for eating gesture recognition) might help handle situations that involve chewing
but are not eating.
Day-long monitoring: The goal of a system like Auracle is to monitor an individual throughout the day and

identify periods where the person was eating. In this project, we performed �eld studies where each session
lasted for 2 hours. In the future, we plan to conduct day-long �eld studies with Auracle. As noted in Section 3.6,
we plan to add a wake-up circuit to our AFE. This optimization will ensure Auracle can monitor an individual’s
eating behavior for more than a waking day. In the future day-long deployment, we will be able to measure the
power consumption more accurately for di�erent scenarios. Moreover, we also plan to make the mechanical
housing comfortable enough for day-long experiments.
Real-time intervention: During the �eld data collection (Section 4.1), we used a micro-SD card to store all the

raw data. However, the MCU used in Auracle has an on-chip BLE module, which we plan to use to communicate
with a smartphone. Using smartphone apps, we can provide real-time interventions to users or collect additional
contextual or self-report data.
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Mechanical design: The current design of Auracle works for individuals with standard head-shapes and is
compatible with eyeglasses. However, we noticed that the standard deviation of F1 score for eating detection
results among all the participants is relatively large (0.128 as shown in Table 3 ). One reason could be that the
pressure between contact mic and the skin of some participants was signi�cantly di�erent from that of others.
More speci�cally, the mechanical housing was either too tight or to loose for them. In the future, we will further
re�ne our mechanical housing design (e.g., enable the adjustment of both the distance and angle between the
microphone and skin) to ensure it can �t better for di�erent head shapes. More personalization of mechanical
design can be explored to achieve this goal.

9 RELATED WORK
Health-science researchers are interested in various measurable parameters including eating-speci�c data such
as the time, duration and rate of eating, and meal-speci�c data such as food quantity, food group classi�cation
and calorie estimation [24]. For all of these parameters, accurate recognition of when people eat is the foundation
of e�ective automatic dietary monitoring (ADM) systems. Several review papers [2, 14, 24, 35] covered aspects of
eating detection and summarized ADM systems developed. Here we focus only on technologies developed to
recognize when people eat using wearable sensors; the variety of sensors explored include acoustic, physiological,
piezoelectric, proximity, visual, inertial and fusion approaches in both laboratory and free-living scenarios.

9.1 Laboratory Studies
Below is a brief overview of existing methods evaluated in laboratory conditions, which we categorize into two
types: acoustic and other. Acoustic approaches can be further classi�ed as air (using microphones designed for
recording sound from the air) and contact (using microphones designed for recording sounds conducted through
the body). For the second type, these microphones typically require direct contact with the skin.
Air-conducted sound: Amft et al. evaluated the air-conducted sound intensity of chewing and speech when a

microphone is placed at di�erent locations on the body [1]. They identi�ed the optimal location to be the inner
ear, directed towards the eardrum, rather than 2 cm in front of mouth, at the cheek, collar bone, behind the outer
ear or 5 cm in front of the ear canal opening. Since then, much e�ort has been put in developing ADM systems
using air microphones positioned in the ear [17, 22, 27]. Sazonov et al. explored the option of using the neck as
the sensing locations and achieved 84.7% average weighted accuracy in detection of swallowing events [27, 28].

Body-conducted sound: To capture and recognize a diverse range of body-conducted sounds, including eating
sounds, Rahman et al. designed a mobile sensing system consisting of a customized contact microphone placed
on the neck, an ARM microcontroller and Android smartphone [25]. They achieved an average recall of 71.2% for
a nine-class classi�cation of di�erent body sounds (eating, drinking, deep breathing, clearing throat, coughing,
sni�ing, laugh, silence, speech) in laboratory conditions. Several other acoustic-based ADM systems also used
body-conducted sound recorded from the neck [20, 27, 37] or in the ear canal [31] to detect swallowing or chewing
events.

Compared with normal air microphones, contact microphones capture internal vibrations directly from the
body surface and are naturally immune to ambient noise, making these sensors promising for eating detection in
out-of-lab, free-living scenarios, where ambient noise is variable and can be large in magnitude. Because we are
most interested in detecting eating in free-living scenarios, Auracle was designed with a contact microphone as
the eating-detection sensor.

Other eating-detection approaches evaluated in laboratory conditions include physiological, piezoelectric,
proximity and fusion approaches. The two primary physiological signals explored for eating detection include
electroglottography (EGG) and electromyography (EMG). EGG sensors capture the motion-induced variations of
electrical impedance recorded between two electrodes positioned on the larynx [15]. Farooq et al. placed an EGG
setup around participants’ necks to capture swallowing events and achieved an average per-epoch classi�cation
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accuracy of 90.1% [11]. Zhang et al. fused three EMG electrodes into an eyeglasses frame to capture muscle
signals during eating [38, 39, 41]. Using dry fabric electrodes, they could detect chewing with a precision and
recall of 80%. Piezoelectric sensors can produce a voltage at their terminals in response to mechanical stress [13].
To automatically monitor eating behavior, piezoelectric �lm sensors were placed on the jaws [12] or throat [13]
for motion capture. Kalantarian et al. developed a necklace to capture swallowing events [13] and were able to
detect more than 81.4% of swallows. Finally, many systems fused two or more of these approaches with the aim
of improving automatic intake monitoring systems [9, 18, 21]. Merck et al. presented a multi-sensor study of
eating recognition, which combines head motion, wrist motion and audio [18]. In their study, using audio sensing
alone achieved 92% precision and 89% recall in �nding meals, while motion sensing was needed to �nd individual
intakes.

9.2 Field Studies
Ultimately, we aim to develop an ADM system that works in real life; thus �eld studies in free-living scenarios will
be crucial for evaluating an ADM system. Bedri et al. evaluated optical, inertial and acoustic sensors, and ended up
using a behind-the-ear inertial sensor and achieved an F1 score of 80.1% for detecting eating episodes [3]. Using a
proximity sensor, Chun et al. developed a necklace that captures head and jawbone movement [9]. They achieved
78.2% precision and 72.5% recall for detecting eating episodes in the free-living study. In another ADM system,
Outer Ear Interface (OEI), three proximity sensors are encapsulated in an earpiece to monitor jaw movement
by measuring ear-canal deformation during chewing [4, 5]. In a �eld experiment, OEI classi�ed �ve-minute
segments of time as eating or non-eating with 93% (user dependent) and 82% accuracy (user independent) [4].
Thomaz et al. collected wrist-mounted audio data and tried to use ambient sound to infer eating activities [34].
Their system was able to identify meal eating with an F1 score of 79.8% in a person-dependent evaluation. Sen
et al. built and tested an approach based on wrist motion and achieved false-positive and false-negative rates of
6.5% and 3.3% respectively [29, 30]. Zhang et al. evaluated smart eyeglasses they proposed in free-living scenarios
and achieved precision and recall more than 77% for chewing detection [40]. Mirtchouk et al. experimented
with di�erent combinations of motion (head, wrist) and audio (air microphone) data collected in laboratory and
free-living conditions [19]. They found a combination of sensing modalities (audio, motion) was needed; yet
sensor placement (head vs. wrist) was not critical.

In these previous �eld studies, researchers logged �eld data in free-living scenarios and ran o�ine experiments.
Even though we currently run experiments o�ine, the Auracle can do real-time eating detection. We have
developed an ADM system that can locally capture, process, and classify sensor data collected in out-of-lab,
day-long, free-living scenarios.

10 CONCLUSION
In this paper, we propose Auracle, a wearable system for eating detection in free-living scenarios. We �rst
implemented the Auracle hardware, which includes a contact microphone, battery, wearable mechanical housing
and PCB with data acquisition function. Using this device, we collected �eld data with 14 participants for 32
hours in free-living scenarios and additional eating data with 10 participants for 2 hours in laboratory scenarios,
respectively. Based on these data, we designed a data-processing pipeline and evaluated its performance using
LOPO cross validation. We achieved accuracy exceeding 92.8% and F1 score exceeding 77.5% of eating detection,
and successfully detected 20-24 eating episodes (depending on the metrics) out of 26 in free-living conditions.
Finally, we implemented the data-processing method on our prototype and estimated the power consumption of
Auracle. We anticipate Auracle can last 28.1 hours with a 110 mAh battery in realistic mode. Please follow us at
auracle-project.org.
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