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Abstract. The nitrogen content of plant tissue is low relative to that of herbivores; as
a consequence, dietary N can limit the growth and reproduction of herbivores and select
for attributes that increase N acquisition. Bark beetles face a particularly severe challenge
because the phloem that they consume is very low in nitrogen and phosphorus relative to
their requirements. We quantified variation in the phloem concentrations of N and P in the
host tree, Pinus taeda, and evaluated the following hypotheses regarding the role of sym-
biotic fungi in nutrient budgets of the herbivore Dendroctonus frontalis: D. frontalis ex-
perience variation in phloem nutrient concentrations across several spatial scales (H1);
mycangial fungi enhance the diet of D. frontalis larvae by contributing to the acquisition
of N and P (H2); Ophiostoma minus, an apparently antagonistic fungal symbiont, hinders
D. frontalis larvae because it does not enhance nutrient concentrations of the phloem as
much as mycangial fungi do (H3); and larvae of bark beetle species that lack mycangial
fungi must consume more phloem to accomplish the same growth as larvae of D. frontalis
(H4). In addition, we developed a general model for the N budgets of herbivorous insects
that identifies the possible combinations of dietary and physiological parameters that can
allow developmental success on low-nutrient diets.

Spatial variation in phloem N was mostly at the level of trees within sites (a scale of
meters) while P mostly varied among sites (a scale of kilometers). Trees with higher N
content produced larger D. frontalis adults. Prior to infestation by beetles, phloem nutrient
concentrations were very uniform within trees and very low relative to that of the bark
beetles (N and P concentrations of D. frontalis adults were 28 and 8 times greater, re-
spectively). During infestation, phloem nutrient concentrations increased overall and be-
came highly variable within trees. Nitrogen concentrations increased from 0.40 6 0.01%
(mean 6 1 SE) in uninfested phloem to 0.86 6 0.03% in the phloem surrounding successfully
developing D. frontalis larvae, which are typically associated with one or two species of
mutualistic mycangial fungi. Nitrogen concentrations were intermediate in other micro-
habitats within infested trees, including regions with no adult colonization, with failed
larval development, or colonized by the antagonistic bluestain fungus O. minus. We pa-
rameterized a general nutrient-budget model for D. frontalis and a sympatric non-mycangial
bark beetle, Ips grandicollis, which indicated that (1) mycangial fungi provide their benefits
by concentrating dietary N for larvae; (2) O. minus may exert its antagonistic effects on
D. frontalis larvae by failing to concentrate dietary N as much as mycangial fungi do; (3)
non-mycangial bark beetles meet their N budgets through high consumption of unaltered,
low-N phloem; and (4) larvae should easily meet their P requirements with any combination
of consumption rate and development time that allows them to meet their N requirements.
Alternative strategies for N acquisition may have general consequences for the population
dynamics and community interactions of bark beetles.

Key words: bark beetles and dietary N; Dendroctonus frontalis; fungi, bluestain and mycangial;
herbivory; Ips grandicollis; mutualism; mycangial fungi and N acquisition; nitrogen acquisition by
herbivores; Ophiostoma minus; phosphorus; symbiotic fungi.

INTRODUCTION

The nitrogen content of plant tissue is very low rel-
ative to that of herbivores. As a consequence, dietary
nitrogen can limit the growth and reproduction of her-
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bivores and select for attributes that increase nitrogen
acquisition (Mattson 1980). Herbivores can potentially
solve the problem of low dietary nitrogen by (1) in-
creasing nitrogen-use efficiency, (2) increasing con-
sumption rate, (3) protracting the duration of the feed-
ing life stage, (4) adjusting life histories to exploit sea-
sonal pulses in plant nutrient content, (5) feeding in
tissue microsites of relatively high nitrogen content,
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and/or (6) manipulating the diet to increase nitrogen
content (Forcella 1981, Tabashnik 1982, Robbins 1983,
Ayres and MacLean 1987, Clancy et al. 1988, Clancy
1992, Slansky and Wheeler 1992, Slansky 1993, White
1993, Yang and Joern 1994, Trier and Mattson 1997).
Phosphorus also occurs in lower concentrations in
plants than in herbivores and is also a potentially lim-
iting nutrient for herbivores (Ayres and MacLean 1987,
Popp et al. 1989, Skinner and Cohen 1994). Bark bee-
tles (Coleoptera: Scolytidae) face a particularly severe
challenge because of the very low nutritional value of
phloem (Scriber and Slansky 1981, Slansky and Scriber
1985). For example, nitrogen content of the phloem in
healthy loblolly pine is ;0.38% (Hodges and Lorio
1969) compared to 1–5% in plant foliage (Mattson
1980). Because insects are typically 6–10% nitrogen
themselves, growing bark beetles must therefore con-
centrate dietary nitrogen by 16–26 fold.

Some bark beetles, including Ips grandicollis (Ei-
chhoff), appear to meet their nutritional needs with high
consumption rates. Other bark beetles, including the
southern pine beetle (Dendroctonus frontalis Zimmer-
man), appear to have relatively low consumption rates,
but are thought to benefit from associations with fungi
and other microorganisms that improve the nutritional
quality of ingested phloem (Henry 1962, Becker 1971,
Barras and Perry 1975, Martin 1979). Phloem nitrogen
in one loblolly pine increased to 131% of control levels
following the introduction of D. frontalis and associ-
ated microorganisms (Hodges et al. 1968). Adult fe-
male D. frontalis have elaborately modified structures
(mycangium) that house and nurture two species of
mutualistic fungi: Ceratocystiopsis ranaculosus Perry
and Bridges and Entomocorticium sp. A (formerly SJB
122) (Barras and Perry 1972, Hsiau 1996). As the
adults construct oviposition galleries, the fungal hy-
phae are exuded from the mycangium and begin to
grow within the phloem tissue as D. frontalis progeny
are hatching. Larvae subsequently feed upon the phlo-
em–fungal complex. D. frontalis adults that lacked my-
cangial fungi laid half as many eggs as control beetles
(Goldhammer et al. 1990) and D. frontalis larvae feed-
ing in the absence of mycangial fungi had reduced
survival and increased development time (Barras 1973,
estimated potential population growth rate, r, to be
0.026 vs. 0.057 beetles·beetle21·d21 in no-fungi and
control populations, respectively).

The nutritional challenge for bark beetles can be
compounded by intraspecific and interspecific com-
petition for phloem. Interspecific competitors include
other beetles (chiefly Scolytidae, Buprestidae, and Cer-
ambycidae) and phoretic microorganisms. D. frontalis
is not only associated with two species of apparently
beneficial mycangial fungi but also with numerous oth-
er microorganisms such as the bluestain fungus
(Ophiostoma minus H. & P. Sydow). Some bluestain
fungi are thought to be mutualistic with some bark
beetle species (Lewinsohn et al. 1994, Paine et al. 1997,

Ross and Solheim 1997), but accumulating evidence
suggests that O. minus is an antagonist of D. frontalis.
There are strong negative correlations between the
abundance of O. minus and the reproductive success
of D. frontalis across infestation sites within a region,
across trees within infestations, and across phloem
patches within individual trees (Bridges 1983, Bridges
1985, Bridges et al. 1985, M. P. Ayres, personal ob-
servations). Experimental additions of O. minus in the
laboratory reduce the growth performance of D. fron-
talis larvae (Barras 1970, Bridges and Perry 1985). The
mechanisms underlying antagonistic effects of O. mi-
nus are not clear. It is possible that O. minus impedes
beetle growth because it does not elevate nutrients as
much as mycangial fungi do. Field and laboratory stud-
ies suggest that O. minus strongly outcompetes the mu-
tualistic mycangial fungi (Bridges and Perry 1985, Kle-
pzig and Wilkens 1997), indicating that the presence
of O. minus may preclude the establishment of my-
cangial fungi in larval feeding chambers. It is also pos-
sible that secondary metabolites produced by O. minus
(e.g., isocoumarins, Hemingway et al. 1977) have al-
lelopathic effects on mycangial fungi or D. frontalis
larvae.

In this study we evaluated the following hypotheses:
(H1) D. frontalis experience variation in phloem nu-
trient concentrations across many scales (within the
bole of individual trees, among trees within infesta-
tions, and among infestation sites); (H2) mycangial fun-
gi enhance the diet of D. frontalis by contributing to
their intake of nitrogen and phosphorus; (H3) O. minus
negatively impacts D. frontalis larval development be-
cause it does not enhance the nutrient concentrations
of the phloem to the same degree as the mycangial
fungi do; (H4) larvae of I. grandicollis, which lack
mycangial fungi, must consume more phloem to attain
the same mass as D. frontalis larvae. In addition, we
develop a general model for the nitrogen budgets of
herbivorous insects that identifies the possible com-
binations of dietary and physiological parameters that
can allow developmental success on low-nutrient diets.

METHODS

Phloem nitrogen and phosphorus

Phloem samples were collected from five natural in-
festations of Dendroctonus frontalis within the Kis-
atchie National Forest of Louisiana and the Indian
Mounds wilderness area of Texas (USA). Infestation
sites were separated by 10–200 km. Within each in-
festation site, phloem samples were collected from five
infested trees and five uninfested trees (all loblolly
pine, Pinus taeda L., 15–30 cm in diameter at breast
height). The infested trees that we sampled were all at
the same stage of attack (most D. frontalis were late
in the final larval stadium). The uninfested trees that
we sampled within each site were within 40 m of the
infested trees but were just outside the perimeter of the
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infestation at the time of sampling. Within a site, in-
fested and uninfested trees appeared to be comparable
in all respects except for the presence or absence of D.
frontalis. Samples from each infested tree were drawn
from each of four mutually exclusive phloem classes
(Fig. 1): (1) within 7 mm of adult galleries with suc-
cessful brood (5 good brood); (2) within 7 mm of adult
galleries with unsuccessful brood (5 failed brood); (3)
separated from adult and larval galleries by .10 mm
(5 no brood); and (4) covered with fruiting bodies
(perithecia) of O. minus (5 bluestain). Phloem samples
from the good brood, failed brood, and sometimes from
the bluestain classes included the tissue that D. fron-
talis larvae were consuming. Good brood was defined
by the presence of well-developed, oval, feeding gal-
leries, while failed brood was defined by narrow, me-
andering feeding galleries that typically indicate larval
mortality. We never observed successful larval devel-
opment in regions with O. minus perithecia. Two rep-
licate tissue samples from each phloem class in each
tree were drawn from regions of phloem separated by
40–150 cm. Similarly, two replicate samples were
drawn from each of the unattacked trees, but in this
case there was only one phloem class (unattacked
healthy phloem). Thus, each infestation site yielded a
possible total of 50 phloem samples (40 from attacked
trees and 10 from unattacked trees). In a few trees, not
all possible phloem classes were represented (3 of 25
trees lacked O. minus samples and 5 of 25 trees lacked
‘‘no brood’’ samples). In 10 other trees, we could only
obtain one sample from one of the phloem classes. In
total, we analyzed 224 phloem samples.

Phloem samples were freeze-dried, ground, then an-
alyzed for total nitrogen and phosphorus with a stan-
dard micro-Kjeldahl procedure (sulfuric acid digestion
followed by analysis with a Technicon Auto-Analyzer
[Pulse Instrumentation, Ltd., Saskatoon, Saskatche-
wan, Canada]). We also analyzed D. frontalis larvae
(feeding final instars) and adults (;2 d after eclosion)
that had been feeding upon the phloem. Plant tissue of
known nitrogen concentration (National Institute of
Standards and Technology, United States Department
of Commerce) was included with each digestion lot to
ensure quality control. Because results showed a sur-
prising increase in the nitrogen concentration of adults
relative to larvae, we made additional measurements
on larvae, pupae, and adults removed from their feed-
ing chambers (larvae) or pupation chambers (pupae and
callow adults). Subsets of the callow adults were al-
lowed to mature prior to measurements for 2 or 4 d
within humidified petri dishes at ;248C with no food
(adults do not normally feed between emergence from
one tree and attack of another tree).

Beetle success as a function of phloem nutrients

We evaluated patterns of variation in the size of adult
beetles emerging from different trees and different in-
festation sites. D. frontalis adults from each of the at-

tacked trees were collected as they emerged. A sub-
sample of these beetles (8–10 of each sex from each
tree) were measured for total length using an ocular
micrometer (ntotal 5 5 infestation sites 3 5 trees 3 2
sexes 3 8–10 beetles 5 446 total adults sampled).

Statistics

We used an ANOVA to test for variation in phloem
N and P content among infestation sites, trees nested
within infestation sites, and (in the case of attacked
trees) phloem classes within trees. Infestation sites and
trees were treated as random effects, while phloem clas-
ses were treated as a fixed effect. We estimated the
variance attributable to random effects (Sokal and
Rohlf 1981). Infested and uninfested trees were ana-
lyzed separately because the phloem classes only ap-
plied to infested trees. A similar ANOVA model was
used to evaluate variation in adult beetle size attrib-
utable to infestations, trees nested within infestations,
and beetle sex (sex treated as a fixed effect). Correlation
analyses tested for associations across trees between
the average size of emerging beetles and the nitrogen
and phosphorus content of phloem from the tree in
which each developed; these analyses used nitrogen
and phosphorus concentrations from the ‘‘good brood’’
phloem class because by definition most emerging bee-
tles fed on phloem of this class.

Consumption and nitrogen-use efficiency

We estimated the consumption of phloem by D. fron-
talis larvae by measuring the size of successful larval
galleries within five trees at each of two natural infes-
tations within unthinned loblolly pine stands in the
Homochitto National Forest of Mississippi (ntotal 5
100). We traced the galleries on clear mylar and cal-
culated the area of phloem consumed using a video
capture system. Some simpler measurements (with cal-
ipers) of D. frontalis gallery size in infestations within
Lousiana, East Texas, and Alabama (USA) verified that
there was no conspicuous variation in gallery size
among forests. Virtually every successful D. frontalis
gallery is in the range of 3 3 5 mm to 4 3 7 mm (see
Fig. 1). We also measured the larval galleries of Ips
grandicollis (3–13 individual galleries from each of
four loblolly pine logs encompassing a range of phloem
thicknesses). I. grandicollis galleries are long (40–130
mm) and narrow (,2 mm), not spherical like those of
D. frontalis. So we measured initial and final gallery
widths with digital calipers, measured the lengths with
a digital planimeter after tracing the galleries on clear
mylar, and estimated gallery size as the area of a trap-
ezoid of these dimensions. For both species the mass
of consumed phloem was calculated by multiplying the
gallery area by phloem mass per unit area. Our primary
estimate of phloem specific mass was based on two
1.25-cm2 phloem samples collected from each I. gran-
dicollis log during early larval development (logs: 29.8
6 7.4 mg/cm2 [mean 6 1 SD]). Because phloem specific
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FIG. 1. Two patches of inner bark from Pinus taeda infested with Dendroctonus frontalis. D. frontalis had high reproductive
success in the patch at left and low success in the patch at right. Darkly stained areas in the the patch at right are perithecia
of the putatively antagonistic symbiotic fungi, Ophiostoma minus. Adult oviposition gallery (aog), successful larval feeding
chambers (sfc), and meandering larval galleries (mlg; characteristic of dying larvae) are indicated. Ellipses show patches
representative of the subsamples on which we measured the N and P concentrations of phloem: GB 5 good brood, NG 5
no gallery, and BS 5 bluestain. The remaining class, failed brood, was sampled from microhabitats with meandering larval
galleries but no bluestain. At the time of our phloem sampling, successful feeding chambers still contained feeding late-
instar larvae. In these photos, animals are pupating just out of sight in the outer bark below successful feeding chambers.

mass can vary depending upon tree physiological status
(Wilkens et al. 1997), and because we could not mea-
sure phloem mass in the same individual trees where
we measured D. frontalis galleries, we performed sen-
sitivity analyses to evaluate the effects of phloem mass
on estimates of D. frontalis nitrogen budgets. For this,
we used phloem measurements from a survey of 11
loblolly pine stands that were chosen to span the range
of growth conditions in our study area (12 trees/stand,
8 measurements/tree; M. P. Ayres, unpublished data).

We estimated nitrogen-use efficiency (NUE, per-
centage N consumed that is converted to insect tissue)
for each beetle species using measurements of adult
mass (Madult), neonate mass (Mneonate), nitrogen concen-
tration of adults (Nadult), total consumption (TC) and
dietary nitrogen concentration (Ndiet):

(M 2 M ) 3 Nadult neonate adultNUE 5 3 100. (1)
TC 3 Ndiet

For I. grandicollis, estimates of Mneonate came from
drying and weighing 4–7 eggs from each of 3–4 ovi-
position galleries on each of two logs, and estimates
of Madult and Nadult came from measurements of 3–10
adults from each of four logs and two multi-bolt emer-
gence traps. For D. frontalis, estimates of Mneonate came
from 5–10 eggs from each of three oviposition galleries
in naturally infested trees, and estimates of Madult came
from measurements of 446 adults that emerged from
the bark samples collected for phloem nutrient analyses
(lengths were converted to dry mass as Mdry 5 (0.76
3 length) 2 1.45; Clarke et al. 1979). Eq. 1 assumes
that the percentage nitrogen in eggs is similar to that
of adults; this assumption has little consequence be-
cause the mass of eggs is so small that they contain
very little N regardless of the concentration.

Modeling insect nitrogen budgets

Eq. 1 can be rearranged to show that the minimum
total consumption required for insect development
(TCmin) is a function of adult mass (Madult), neonate mass
(Mneonate), adult nitrogen concentration (Nadult), nitrogen-
use efficiency (NUE) and dietary N concentration
(Ndiet). Given a specified larval development time (Tdev),
TCmin can be used to calculate the minimum relative
consumption rate (RCR, in milligrams of biomass con-
sumed per milligram of larva per day) as a function of
minium total consumption (Eq. 2), which itself is a
function of dietary nitrogen given NUE (Eq. 1). Eq. 2
follows Gordon (1968) where Mexp 5 mean exponential
mass 5 (Madult 2 Mneonate)/ln(Madult/Mneonate). Alternative-
ly, if RCR is specified, minimum development time
(Tdev, min) can be calculated as a function of minimum
total consumption (Eq. 3) or dietary nitrogen given
NUE (Eq. 1).

TCminRCR 5 (2)min M ·Texp dev

TCminT 5 .dev,min
RCR RCR   

2   
M M   adult adultln 3 M ln 3 M   neonate adult1 2 1 2M M neonate   neonate 

(3)

Calculations used mean values of adult mass, neo-
nate mass, and adult N concentration reported in this
study. Larval development time for D. frontalis larvae
(egg hatch to pupation) ranges from ;17 to 40 d at
258C (Barras 1973, Gagne et al. 1982, Wagner et al.
1984) . Relative consumption rate and nitrogen-use ef-
ficiency have not been measured for D. frontalis larvae,
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FIG. 2. Concentrations of nitrogen and phosphorus in four
classes of phloem within infested trees and within the phloem
of healthy uninfested trees. Data are means and 1 SE and are
based on samples of five infested trees and five uninfested
trees at each of five infestations within the Kisatchie National
Forest in Lousiana, USA. Phloem classes (see Methods: Phlo-
em nitrogen and phosphorus) with the same uppercase letter
are not significantly different at P , 0.05 (Student-Newman-
Keuls post-hoc multiple comparisons).

TABLE 1. Results from ANOVAs of phloem nitrogen and phosphorus concentration, for four phloem classes within loblolly
pines infested with late-instar Dendroctonus frontalis (see Fig. 2).

Source of variation df

Nitrogen (%)

MS 3 104 F

Phosphorus (%)

MS 3 106 F

Phloem class
Infestation site
Phloem class 3 Infestation site
Tree (Infestation site)
Phloem class 3 Tree (Infestation site)
Error

3
4

21
13
39
63

2029
627
210
763
120

46

9.64**
0.82
1.76

16.44***
2.58***

7250
11 092

610
542
379
101

11.88***
20.46***

1.61
5.38***
3.76***

Notes: The F-test denominator for Phloem class was MSPhloem class 3 Infestation site; for Infestation site, it was MSTree (Infestation site); and
for Phloem class 3 Infestation site, it was MSPhloem class 3 Tree (Infestation site). Others were tested over MSerror. (Table 2 shows corre-
sponding analysis of uninfested trees.)

* P , 0.05; ** P , 0.01; *** P , 0.001.

but, based on measured values for other insects (and
theoretical limits of 0 to 1 for efficiencies), probably
fall within the range of 1.5–3.5 mg·mg21·d21 for RCR
(at 258C) and 30–90% for NUE (Scriber and Slansky
1981, Slansky and Scriber 1985).

Nitrogen concentration of fungi associated
with D. frontalis

Replicated pure cultures of Entomocorticium, Cer-
atocystiopsis ranaculosus, and Ophiostoma minus were
grown in a malt-extract medium (15 g dehydrated malt
extract/L distilled water), in a shaking water bath (150
rpm), for 14 d at 258C. The resulting fungal tissue was
isolated by filtration (0.2-mm pore size), lyophilized,
and analyzed for nitrogen content.

RESULTS

Nitrogen and phosphorus concentrations of phloem

The N concentration of phloem around successfully
developing Dendroctonus frontalis larvae was more
than twice as high as that of the phloem in uninfested
trees (0.86 6 0.03% vs. 0.40 6 0.01% [mean 6 1 SE],
respectively, P , 0.0001; Fig. 2). The N concentration
of phloem within infested trees that was associated with
failed D. frontalis brood, bluestain, or no D. frontalis
gallery was significantly higher than that of uninfested
trees but significantly lower than that found in regions
of good brood development (0.69–0.73%; Fig. 2,
Phloem class in Table 1). Phosphorus concentrations
in phloem averaged 6–7 fold less than N concentra-
tions; the pattern across phloem classes matched that
for nitrogen (Fig. 2, Table 1). Because D. frontalis
attack virtually every pine tree along the advancing
front of an outbreak (Thatcher et al. 1980), differences
in N and P concentrations between infested and un-
infested trees were almost certainly due to the intro-
duction of microbes rather than to selection by the bee-
tles for trees that were already high in phloem nutrients.
Indeed, many of the trees included in our sample of
uninfested phloem were subsequently infested by D.
frontalis.

Within phloem classes, N concentrations varied con-
siderably among trees within sites (Tables 1 and 2: Tree
within infestation site). Among 18 infested trees, the
N concentration in phloem with successful brood
ranged from 0.52 to 1.08%. Variance among trees ac-
counted for 76% of the total random variance in N
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TABLE 2. Results from ANOVAs of phloem nitrogen and phosphorus concentration in healthy uninfested loblolly pines
adjacent to those infested with Dendroctonus frontalis (see Fig. 2).

Source of variation df

Nitrogen (%)

MS 3 104 F

Phosphorus (%)

MS 3 106 F

Infestation site
Tree (Infestation site)
Error

4
20
25

83
52

7

1.61
7.58***

2211
109

66

20.22***
2.51*

Note: The F-test denominator for Infestation was MSTree(Infestation), and for Tree, it was MSerror.
* P , 0.05; ** P , 0.01; *** P , 0.001.

FIG. 3. Correlation between concentrations of nitrogen
and phosphorus in the phloem of loblolly pine. Solid circles
represent phloem samples from within infested trees that were
associated with successful development of southern pine bee-
tle brood; open circles represent healthy uninfested trees.
Each symbol represents one tree.

concentration in infested trees and 60% in uninfested
trees. The variance in N concentration was dramatically
higher among infested trees than uninfested trees (ŝ
among trees 5 0.196 vs. 0.047% N; F13,20 5 17.36, P
, 0.001). The pattern of N concentrations among phlo-
em classes within infested trees remained quite con-
stant; although the phloem class 3 tree interaction was
significant, it accounted for only 8% of the total random
variance. There was no significant variation in phloem
nitrogen attributable to infestation site (Tables 1 and 2).

In contrast to nitrogen, phloem concentrations of
phosphorus varied markedly among infestation sites
but relatively little (although still detectable) among
trees within infestations (Tables 1 and 2). Variance
among infestation sites accounted for 44% of the total
random variance in P concentrations in infested trees
and 74% in uninfested trees ( among infestations 5ŝ
0.0149 and 0.0203% phosphorus, respectively). Vari-
ance among trees within infestation sites accounted for
11% and 15% of the total random variance in P con-
centrations among infested and uninfested trees, re-
spectively (Tables 1 and 2). As with N concentrations,
the variance in P concentrations among infested trees
was significantly greater than among uninfested trees
( 5 0.0153 vs. 0.0057% phosphorus; F13,20 5 7.20, Pŝ
, 0.001). The pattern of P concentrations among phlo-
em classes within infested trees remained quite con-
stant across infestation sites and trees within infesta-
tions (phloem class 3 infestation site interaction was
nonsignificant and phloem class 3 tree interaction, al-
though statistically significant, accounted for only 16%
of the total random variance). The variance among rep-
licate phloem samples within trees (i.e., the error term
in Tables 1 and 2) was also low, accounting for only
9–19% of the total random variance in N and P con-
centrations in infested and uninfested trees.

Concentrations of N and P in phloem seemed to vary
independently of each other across uninfested trees, but
were positively correlated across infested trees (Fig.
3). Among infested trees, there was a significant pos-
itive correlation between phloem nitrogen and phos-
phorus for all phloem classes except those without any
D. frontalis gallery (r 5 0.58, 0.58, and 0.62 for good
brood, poor brood, and bluestain, respectively; r 5 0.25
for no gallery).

Beetle size and phloem nutrition

Beetle size varied among trees within infestations
(F18, 400 5 6.77, P , 0.0001), and infested trees with
higher N concentrations tended to produce larger bee-
tles of both sexes (Fig. 4). Given the relationship be-
tween female adult size and fecundity (Clarke et al.
1979), the range in beetle size among trees translates
into an 18% difference in fecundity (152 vs. 180 eggs/
female at 0.5% vs. 1.1% N, respectively). Beetle size
did not vary between sexes (F1,4 5 5.39, P 5 0.081)
or among infestation sites (F4,18 5 2.49, P 5 0.080).
Phosphorus concentration was weakly related to male
size (r2 5 0.25, P 5 0.035) and unrelated to female
size (r2 5 0.15, P 5 0.12). Multiple regressions that
included both N and P did not provide a better fit than
models that included only N.

N and P concentrations of bark beetles

The nitrogen content of Dendroctonus frontalis
adults averaged 11.53 6 0.13% (mean 6 1 SE; n 5 45
individuals), which is 13.4-fold higher than the con-
centration of phloem in regions of successful brood.
The phosphorus content of D. frontalis adults averaged
0.749 6 0.058% (n 5 17 individuals), which is ;5.8-
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FIG. 4. Relationships between phloem nitrogen and the
average size of emerging beetles in 18 naturally infested lob-
lolly pines. For females, length 5 2.89 1 0.35 3 N (P 5
0.048, r2 5 0.22); for males, length 5 2.92 1 0.26 3 N (P
5 0.020, r2 5 0.29). The right-hand axis shows the expected
fecundity (number of eggs per female) for southern pine bee-
tle adults as a function of size (eggs 5 140 3 length 2 277;
after Clarke et al. [1979]).

FIG. 5. Nitrogen content of Dendroctonus frontalis at dif-
ferent developmental stages following the cessation of larval
feeding. Total dry mass decreased following adult eclosion,
but total N content remained quite constant at 80–120 mg.

fold higher than the concentration of phloem in regions
of successful brood. Males and females did not differ
in their concentrations of N or P (P . 0.19). D. frontalis
larvae had significantly lower concentrations of N than
adults (8.13 6 0.35% N [mean 6 1 SE], t59 5 3.40, P
, 0.0001), but similar concentrations of P (0.672 6
0.026% P, t19 5 0.62, P 5 0.54). The increase in N
concentration from larvae to adults was due to decreas-
es in total dry biomass (with no change in total N
content) during developmental processes following
adult eclosion (Fig. 5). Pupae, callow adults, and ma-
ture adults (2–4 d after eclosion) all contained an av-
erage of ;105 mg of N, but the total biomass decreased
from an average of 1.3 mg in pupae and callow adults
to 0.96 mg two days after eclosion (N concentration:
7.8 6 0.2% N [mean 6 1 SE] for pupae, 8.2 6 0.3%
N for callow adults, 11.7 6 0.4% N for adult at 2 d,
and 13.4 6 0.3% N for adults at 4 d). This develop-
mental change (also reported by Barras and Hodges
[1974]) does not affect the nitrogen-budget model so
long as Madult and Nadult in Eq. 1 were measured on the
same developmental stage (the numerator of Eq. 1
equals ;105 mg N in any case). Our N budgets were
based on 2-d-old adults, which were estimated to be
11.49 6 0.13% N in one sample (biomass: 0.93 6 0.05
mg) and 11.67 6 0.46% N in another sample (biomass:
0.95 6 0.07 mg). These measurements indicate that the
outer bark through which prepupae and adults bore
before emergence is nutritionally inert. The N concen-
tration of 2-d-old adult Ips. grandicollis was 8.61 6
0.27% N, significantly less than that of D. frontalis (t72

5 10.81, P , 0.0001 for comparison between species).

Nitrogen concentration of fungi

Nitrogen concentrations of fungi were 8.7–11.6 fold
higher than that of uncolonized phloem and the N con-

centration of Entomocorticium was significantly higher
than that of the other two species: 4.62 6 0.07% N,
3.86 6 0.23% N, and 3.55 6 0.07% N (mean 6 1 SE)
for Entomocorticium, Ceratocystiopsis ranaculosus,
and Ophiostoma minus, respectively (F2, 9 5 21.95, P
5 0.0006).

N and P budgets

Although D. frontalis adults were larger than I. gran-
dicollis adults, D. frontalis larvae appeared to acquire
their mass by consuming only 21% as much phloem as
I. grandicollis (5.7 vs. 27.4 mg; Table 3). Analysis of
nitrogen budgets indicated that I. grandicollis could meet
their physiological demands with a realistic nitrogen-use
efficiency of 46% (Table 3). The requisite consumption
rate for I. grandicollis to complete development in 25–
35 d is 3.5–4.0 mg biomass·(mg larva)21·d21 (Fig. 6). This
consumption rate is in the upper range of those reported
for insects (Scriber and Slansky 1981, Slansky and Scriber
1985) and this development time is somewhat longer than
the 20–30 d that appeared to be required for our colony,
but in general it seems easy to reconcile the N budgets
of I. grandicollis with an empirically and physiologically
reasonable parameterization of Eqs. 1–3.

In contrast, the nitrogen budgets of D. frontalis could
not be immediately reconciled (note impossible nitro-
gen-use efficiency in Table 3; see also analyses of
Mishra et al. [1985] for a cerambycid beetle). D. fron-
talis larvae appeared to accumulate over twice as much
nitrogen as was present in the phloem that they con-
sumed from their feeding chamber (NUE 5 216%, Ta-
ble 3). Because a nitrogen-use efficiency .100% is
impossible, one or more of the estimates used in our
initial parameterization of Eq. 1 must be incorrect. If
NUE is 80%, D. frontalis N budgets could be explained
if the actual dietary nitrogen content is 1.5–2.0% (vs.
estimate of 0.86%) and the actual total consumption is
8.8–6.6 mg (vs. estimate of 5.7 mg). This scenario is
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TABLE 3. Estimated consumption and nitrogen-use efficiency (and values used in the estimates) for larvae of Dendroctonus
frontalis and Ips grandicollis.

Variable

D. frontalis

Mean 1 SE n

I. grandicollis

Mean 1 SE n

Egg mass (mg)
Adult mass (mg)
Adult N content (%)
Adult N content (mg)
Area of feeding gallery (mm2)†
Specific mass of phloem (mg/cm2)†
Mass of consumed phloem (mg)†
Relative consumption (mg/mg)‡
Nitrogen in consumed phloem (%)†
Nitrogen in consumed phloem (mg)
Nitrogen-use efficiency, NUE (%)§

0.015
0.93

11.56
107

19.1
29.8

5.7
6.2
0.86

49
216

0.001
0.05
0.13

1.1

0.03

10
446

45

10

25

0.018
0.78
8.61

67
92.8
29.8
27.4
35.9

0.52
142
46

0.001
0.09
0.27

13.5
3.9
5.0

0.03

37
35
29

4
4
4

26

† n 5 number of trees (based on 5–10 replicate measurements per tree).
‡ Consumed phloem mass/(adult mass 2 egg mass).
§ Calculated from Eq. 1. Note that the estimated NUE for I. grandicollis is reasonable, but that of D. frontalis is impossibly

high.

FIG. 6. Theoretical combinations of nitrogen-use effi-
ciency (NUE), relative consumption rate (RCR), and devel-
opment time that could allow successful development of Ips
grandicollis larvae on diets with a range of nitrogen concen-
trations. Minimum consumption rates (top panel) were cal-
culated from Eq. 2 assuming a larval development time of
30 d. Minimum development times (bottom panel) were cal-
culated from Eq. 3 assuming NUE of 40%. Shaded ellipses
indicate the realized parameter space for successful I. gran-
dicollis larvae.

consistent with the hypothesis that D. frontalis feed
extensively on fungal hyphae that grow within the feed-
ing chamber and that import biomass and N into the
feeding chamber. Any realistic budgets also require
higher NUE for D. frontalis than the 46% estimated
for I. grandicollis. The N budgets for D. frontalis can-
not be reconciled by any realistic adjustments of phlo-
em specific mass. Even if phloem mass was 45 mg/
cm2, which is 50% higher than our best estimate, and
15% higher than the maximum from a survey of 11
stands, the calculated nitrogen-use efficiency is still
143%. We could not identify any plausible N budgets
for D. frontalis that do not require higher dietary ni-
trogen content and higher biomass consumption than
the estimates in Table 3.

What are the consequences of variation in dietary
nitrogen for bark beetle larvae? If consumption rate
and NUE are held to some constant upper limit (as
expected if larvae are routinely consuming and assim-
ilating at their physiological limits; Ayres and Mac-
Lean 1987), then larvae would be forced to compensate
for reduced dietary N with increased larval develop-
ment time (Figs. 6 and 7, lower panels). For example,
if the dietary nitrogen of I. grandicollis is 0.8% N in
one tree vs. 0.5% N in another tree, then the minimum
development time increases from 23.8 to 38.1 d (with
NUE 5 46% and RCR 5 3.7 mg·mg21·d21; Fig. 6, lower
panel). If the dietary nitrogen of D. frontalis larvae
decreases from 1.5% to 0.5% (e.g., due to the absence
of mycangial fungi) the minimum development time
increases from 19.9 to 59.6 d (with NUE 5 80% and
RCR 5 2.0 mg·mg21·d21; Fig. 7, lower panel).

Similar calculations with phosphorus indicate that
larvae should easily meet their P requirements with any
combination of consumption rate and development
time that allows them to meet their N requirements
(because the factor by which insects must concentrate
N is 2.3 times greater than the factor by which they
must concentrate P). Phosphorus requirements of D.
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FIG. 7. Theoretical combinations of nitrogen-use effi-
ciency (NUE), relative consumption rate (RCR), and devel-
opment time that could allow successful development of Den-
droctonus frontalis larvae on diets with a range of N con-
centrations. Minimum consumption rates (upper panel) were
calculated from Eq. 2 assuming a larval development time of
17 d. Minimum development times (bottom panel) were cal-
culated from Eq. 3 assuming NUE of 80%. Shaded ellipses
indicate the realized parameter space for successful D. fron-
talis larvae.

frontalis could theoretically be met even from the 5.7
mg of phloem that is consumed out of their feeding
chamber (phosphorus-use efficiency calculated from
Eq. 1 5 92%). If I. grandicollis have the same P con-
centration as D. frontalis, their P budgets could be met
with a phosphorus-use efficiency of only 21%.

DISCUSSION

H1: Dendroctonus frontalis experience variation in
phloem nutrient concentrations across many scales

D. frontalis experience significant variation in the
nitrogen and phosphorus content of loblolly pine phlo-
em (Fig. 2, Tables 1 and 2). However, the spatial scale
of variance in these two dietary elements differed. For
N, variance among trees within sites dominated the
random sources of variation (a scale of meters), while
for P, variance among infestation sites dominated the
random variation (a scale of kilometers). There was
great additional variation in both N and P content
across phloem classes within infested trees (scale of
centimeters). Our data provide strong correlative evi-
dence for the importance of dietary nitrogen to D. fron-

talis larvae. Regions of phloem where larvae survived
to pupate were those with the highest N content (Fig.
2) and trees that produced the largest adults were those
with the highest N content (Fig. 4). For both bark beetle
species, analysis of N budgets provides additional ev-
idence that dietary N is likely to be limiting for larval
development.

H2: Mycangial fungi enhance the diet of D. frontalis
by increasing the concentrations of N and P

Elevation of dietary nitrogen provides a mechanism
to explain the beneficial effects of mycangial fungi for
D. frontalis. Phloem with the highest N content (Fig.
2) was in regions of infested trees with small oval larval
feeding chambers that are characteristically associated
with thriving colonies of mycangial fungi (Barras and
Perry 1972). We propose that the hyphae of mycangial
fungi extract N from the phloem surrounding larval
feeding chambers and concentrate it within the hyphae
and conidia that grow into the feeding chamber (Barras
and Perry 1972). When grown in culture, N concen-
trations in the hyphae of Entomocorticium are 4.6%,
which is higher than the other fungal associates of D.
frontalis, and very high relative to the 2.8% N that has
been measured in soil-dwelling fungal species (also
grown in culture, Laursen 1975). High N content may
be an adaptation of Entomocorticium that is favored
because of its benefits for D. frontalis, on which it
depends. The high N content of Entomocorticium com-
pared to the other mycangial associate, Ceratocystiop-
sis ranaculosus, may explain the higher rates of pop-
ulation growth, and higher lipid content, of D. frontalis
populations with a high abundance of Entomocorticium
relative to C. ranaculosus (Bridges 1983, Goldhammer
et al. 1990, Coppedge et al. 1995). Also, transport of
amino acids and proteins from the phloem to the feed-
ing chamber could be facilitated by the multinucleate
cellular morphology of Entomocorticium (Happ et al.
1975). This hypothesis to explain the elevation in phlo-
em N predicts a depletion of N in the phloem tissue
outside feeding chambers, especially when the mycan-
gial fungi within the chamber is Entomocorticium rath-
er than C. ranaculosus. It further predicts that the mid-
guts of D. frontalis larvae contain significant amounts
of fungal tissue; specifically, 2–3 mg of fungal tissue
(at 4–3% N, respectively) added to 5.7 mg of phloem
tissue at 0.86% N can reconcile the nitrogen budgets
of D. frontalis larvae (see Fig. 7: ellipse of realized
solutions). Additional tests of this hypothesis would
benefit from protocols that isolate and identify the fungi
occupying microsites within and around individual
feeding galleries.

Alternative mechanisms to explain the elevation of
N in colonized phloem include: (1) a relative increase
due to depletion of carbon by microbial respiration, (2)
a relative increase due to carbohydrate export from the
phloem to support secondary metabolism in resin ducts
during beetle attack, and (3) an increase due to activity
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of N-fixing bacteria. Alternative 1 must be true to some
extent (Martin 1979) because there is considerable CO2

evolution from microbially infested phloem (M. P. Ay-
res, unpublished data), but neither it, nor alternative
2, can easily explain the differences in N content be-
tween phloem infested with mycangial fungi and
Ophiostoma minus. Alternative 3 has been suggested
(Peklo and Satava 1949, Peklo 1968), but discredited
because of the very low abundance and metabolic ac-
tivity of nitrogen-fixing bacteria associated with D.
frontalis (Bridges 1981). Assuming that actual dietary
N is 1.5–2.0%, a nitrogen budget model (Eq. 3) with
nitrogen-use efficiency (NUE) of 80% and relative con-
sumption rate (RCR) of 2.0 mg biomass·(mg lar-
vae)21·d21 accurately predicts that the minimum de-
velopment time for D. frontalis larvae in the presence
of mycangial fungi would be ;18 d vs. .40 d in the
absence of mycangial fungi (Fig. 7; Barras 1973, Wag-
ner et al. 1984).

H3: Ophiostoma minus negatively impacts the larval
development of D. frontalis

At the scale of our sampling (Fig. 1), phloem nitro-
gen concentrations were significantly lower in patches
colonized by O. minus than in patches presumably
dominated by mycangial fungi (Fig. 2). This difference
in N content (0.86% vs. 0.70% N, respectively) would
be enough to increase minimum development time of
larvae from 34.7 d to 42.6 d (with RCR of
2.0 mg·mg21·d21 and NUE of 80%; Fig. 7). There are
no apparent concentrations of O. minus tissue analo-
gous to the feeding chambers of D. frontalis. Instead,
O. minus appears to be very evenly dispersed within
patches of ;1 dm2 or more. D. frontalis larvae feeding
in phloem infested with O. minus create meandering
tunnels (and almost always die) rather than the small
feeding chamber typical of successful larvae (Fig. 1).
Thus the larvae in phloem infested with O. minus are
feeding at a similar scale to our sampling and the di-
etary nitrogen of these larvae is probably close to the
0.70% that we measured. If, as we hypothesize, the
dietary N in bluestain vs. mycangial feeding sites is
0.70 vs. 1.5–2.0%, then the nutritional benefit of the
mycangial fungi vs. O. minus is to more than halve
larval development time from 42.6 d to ;20 d (with
RCR of 2.0 mg·mg21·d21 and NUE of 80%; Fig. 7). We
cannot reject the hypothesis that O. minus further im-
pedes D. frontalis reproduction by allelopathic effects
of isocoumarins (Hemingway et al. 1977) or other sec-
ondary metabolites. However, Yearian et al. (1972)
found no negative effects of O. minus on larvae of Ips
avulsus, I. calligraphus or I. grandicollis. In any case,
O. minus appears to be an antagonist of D. frontalis,
and the antagonism is strengthened by strong compet-
itive inhibition of mycangial fungi by O. minus (Kle-
pzig and Wilkens 1997). Consequently, any factors that
favor colonization of phloem by O. minus will have a
negative impact on the potential reproduction of D.

frontalis. Factors that might affect O. minus abundance
and growth include phloem chemistry, temperature,
relative humidity, and the abundance of Tarsonemus
mites that are phoretic on D. frontalis adults and act
as vectors of O. minus spores (Bridges and Moser 1986,
Bridges 1987, Cook and Hain 1987, Lieutier and Yart
1989, Paine et al. 1997).

H4: Ips grandicollis, which lack mycangial fungi,
must consume more phloem to attain the

same mass as D. frontalis

D. frontalis and I. grandicollis employ different
strategies to meet their nitrogen budgets. I. grandicollis
consumes large quantities of low-N phloem, while D.
frontalis modifies the diet by introducing mutualistic
fungi and consumes much less of a relatively high-N
diet. We hypothesize that these two species represent
alternative nutritional strategies of bark beetles. The
Scolytidae includes ;6000 species worldwide (1430
species in the Nearctic). Based on the morphological
diversity of specialized anatomical structures that
house and nurture fungal associates, close mutualistic
relationships between scolytids and fungi have evolved
at least 6 times (Wood 1982). Genetic studies of the
fungal associates also indicate multiple evolutionary
origins (Cassar and Blackwell 1996). It seems unlikely
that nutritional strategies intermediate to that of D.
frontalis and I. grandicollis would be viable because
the high consumption rates necessary without mycan-
gial fungi are incompatible with the small feeding
chambers needed to maintain physical associations
with slow-growing mycangial fungi (Klepzig and Wilk-
ens 1997). In this case, evolutionary transitions be-
tween strategies should be relatively rapid. Estimates
of relative consumption provide one easily obtained
measure for comparing the nutritional strategies of spe-
cies; I. grandicollis larvae consume ;35.9 mg/mg
compared to ;6.2 mg/mg for D. frontalis (Table 3).
We predict that similar measurements of additional spe-
cies will reveal a bimodal frequency distribution with
the two peaks corresponding to alternative strategies.
Sterilization studies allow a more direct, but technically
challenging, means to test for effects of microbial as-
sociates on bark beetle development and reproduction
(Barras 1973, Fox et al. 1992, Colineau and Lieutier
1994, Six and Paine 1998).

Population and community consequences of
alternative nutritional strategies

The suite of traits that are correlated with mycangial
vs. non-mycangial strategies may have general con-
sequences for population dynamics and community in-
teractions. For example, we predict that nonmycangial
species (e.g., I. grandicollis) will generally be more
sensitive than mycangial species (e.g., D. frontalis) to
variation among trees in phloem nitrogen (because a
unit change in dietary N has the greatest impact on
larval nutrition at low dietary N; Figs. 6 and 7). Thus,
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one effect of mycangial associations may be a damping
of ecological effects for the consumer of variation in
host plants (Auerbach and Strong 1981).

While populations of mycangial beetle species might
be less sensitive than their non-mycangial counterparts
to exogenous forces, they may be more influenced by
complex endogenous dynamics because they exist
within a community matrix that involves numerous
strong interactions and therefore a greater potential for
delayed density dependence (Berryman 1979, Turchin
1991, Hanski and Henttonen 1996). In fact, D. frontalis
populations tend to cycle with a period of ;8 years
and an amplitude of ;503, but the cause of the cy-
clicity is unknown (Turchin et al. 1991, Reeve et al.
1995). We hypothesize that these cycles are produced
by delayed density dependence resulting from the pos-
itive effect of growing beetle populations on the trans-
mission of O. minus, which has an inverse effect on
beetle population growth because O. minus outcom-
petes the mycangial fungi on which beetles depend to
meet their nitrogen budgets. Similar community inter-
actions may be common in mycangial species. At least
it seems that a disproportionate number of the most
economically important bark beetle species are my-
cangial: e.g., D. ponderosae, D. jeffreyi, D. brevicomis,
D. adjunctatus, Ips acuminatus, I. sexdentatus, and
Scolytis ventralis (Francke-Grosmann 1963, Barras and
Perry 1971, Livingston and Berryman 1972, Paine and
Birch 1983, Berryman 1986, Liebhold et al. 1986, Ber-
ryman and Ferrell 1988, Raffa 1988, Lévieux et al.
1991, Six and Paine 1996). In contrast, non-mycangial
beetles exist within a weaker matrix of community in-
teractions and should be less likely to experience en-
dogenous feedback from the rest of the community
(Hochberg and Holt 1990, Wilson et al. 1996).

Mycangial species should generally have higher re-
source-use efficiency (which translates into lower rel-
ative consumption, Table 3). Bark beetles frequently
experience strong intra- and inter-specific competition
(Raffa and Berryman 1983, Miller 1984, Flamm et al.
1987, Rankin and Borden 1991, Zhang et al. 1992,
Schlyter and Anderbrandt 1993, Gara et al. 1995, Reeve
et al. 1998). When phloem resources are limiting, and
other factors are equal, mycangial species should be
able to sustain larger populations than non-mycangial
species and be favored in interspecific competition (Til-
man 1982). Also because of their higher resource-use
efficiency, populations of mycangial species may be
less likely to experience intense intraspecific compe-
tition (larger numbers of beetles could successfully
complete development in the same tree bole), and there-
fore be less likely to experience instantaneous density
dependence and stable population dynamics. Studies
that characterize the N acquisition strategies of addi-
tional bark beetle species will allow tests for the pop-
ulation and community consequences of alternative nu-
tritional strategies.
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