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REVIEW Open Access

Neurovascular unit dysfunction with blood-brain
barrier hyperpermeability contributes to major
depressive disorder: a review of clinical and
experimental evidence
Souhel Najjar1,2*, Daniel M Pearlman1,3, Orrin Devinsky2, Amanda Najjar4 and David Zagzag4,5

Abstract

About one-third of people with major depressive disorder (MDD) fail at least two antidepressant drug trials at 1 year.
Together with clinical and experimental evidence indicating that the pathophysiology of MDD is multifactorial, this
observation underscores the importance of elucidating mechanisms beyond monoaminergic dysregulation that can
contribute to the genesis and persistence of MDD. Oxidative stress and neuroinflammation are mechanistically
linked to the presence of neurovascular dysfunction with blood-brain barrier (BBB) hyperpermeability in selected
neurological disorders, such as stroke, epilepsy, multiple sclerosis, traumatic brain injury, and Alzheimer’s disease. In
contrast to other major psychiatric disorders, MDD is frequently comorbid with such neurological disorders and
constitutes an independent risk factor for morbidity and mortality in disorders characterized by vascular endothelial
dysfunction (cardiovascular disease and diabetes mellitus). Oxidative stress and neuroinflammation are implicated in
the neurobiology of MDD. More recent evidence links neurovascular dysfunction with BBB hyperpermeability to
MDD without neurological comorbidity. We review this emerging literature and present a theoretical integration
between these abnormalities to those involving oxidative stress and neuroinflammation in MDD. We discuss our
hypothesis that alterations in endothelial nitric oxide levels and endothelial nitric oxide synthase uncoupling are
central mechanistic links in this regard. Understanding the contribution of neurovascular dysfunction with BBB
hyperpermeability to the pathophysiology of MDD may help to identify novel therapeutic and preventative
approaches.

Keywords: Major depressive disorder, Blood-brain barrier, Neurovascular unit, Neuroinflammation, Oxidative stress,
Nitric oxide synthase, eNOS uncoupling, Peroxynitrite

Background
Major depressive disorder (MDD) is the second leading
global cause of years lived with disability [1], with about
one-third of patients with MDD failing two or more
conventional antidepressant drug trials within the first
year of treatment [2,3]. Current evidence suggests that
the pathophysiology of MDD is multifactorial, involving
heterogeneous and inter-related mechanisms that affect

genetic, neurotransmitter, immune, oxidative, and in-
flammatory systems [4]. Supporting this interpretation,
whereas biomarkers for individual abnormalities possess
limited predictive validity for MDD, the predictive valid-
ity of several composite biomarker assays is particularly
high [5]. For example, one study of 36 patients with
MDD showed that a compositive biomarker test—com-
prising nine individual biomarker assays (α1 antitrypsin,
apolipoprotein CIII, myeloperoxidase, soluble tumor ne-
crosis factor α (TNFα) receptor type II, epidermal
growth factor, cortisol, brain-derived neurotropic factor,
prolactin, and resistin)—had 91.7% sensitivity and 81.3%
specificity for MDD [6]. A follow-up study involving a
distinct sample of 34 MDD patients and using the same
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composite assay, replicated these results with a high de-
gree of precision: 91.1% sensitivity, 81.0% specificity [6].
Oxidative stress and neuroinflammation are implicated

in the neurobiology of MDD [7-14] (recently reviewed
by our group [4,15-19]). Neuropathological studies com-
paring brain tissue from individuals with MDD to that
from non-depressed controls have documented associa-
tions between MDD and (a) decreased levels of antioxi-
dants, such as glutathione [11,15,16] and (b) increased
levels of lipid peroxidation end products, such as 4-
hydroxy-2-nonenal [8]. Studies assessing peripheral
markers of oxidative stress have reported similar findings,
including: (a) altered activity of antioxidant enzymes,
such as glutathione peroxidase, catalase, superoxide
dismutase 1, (b) increased activity of pro-oxidant enzymes
such as, xanthine oxidase, (c) increased activity of indu-
cible nitric oxide synthase (iNOS) in leukocytes, (d) in-
creased levels of superoxide (O2

-), and (e) increased levels
of 8-hydroxy-2-deoxyguanosine (a marker for oxidative

damage to DNA) [11,12]. Evidence deriving from genetic,
neuropathological, cerebrospinal fluid, and serum studies
in humans with MDD and from animal models of
depressive-like behavior and chronic stress reveal numer-
ous neuroinflammatory abnormalities in MDD, including
[4]: (a) microglial activation [17-19], (b) astroglial loss and
activation [20,21], (c) upregulated ratios of T helper 1
(Th1) cells and proinflammatory cytokines [22-24],
and (d) decreased CD4+CD25+FOXP3+ regulatory T
(TReg) cell counts [25]. Both oxidative stress and neuroin-
flammation may contribute to decreased serotonergic and
increased glutamatergic tone, and increased glutamatergic
tone may in turn contribute to oxidative stress and
neuroinflammation in a positive feedback loop [4]. In
addition, experimental evidence suggests that increased re-
active oxygen species (ROS) synthesis (oxidative stress) and
neuroinflammation themselves exhibit a bidirectional rela-
tionship (Figure 1). Indeed, ROS can activate microglia and
increase proinflammatory cytokine synthesis—for example,

Figure 1 Putative mechanisms involving the synthesis of reactive oxygen species (ROS) and their bidirectional interaction with
neuroinflammation in major depressive disorder. This figure shows potential mechanistic links among ROS, inflammation, and
hyperglutamatergia. Abbreviations: BBB, blood-brain barrier; COX2, cyclo-oxygenase 2; CRH, corticotropin-releasing hormone; eNOS, endothelial
nitric oxide synthase; iNOS, inducible nitric oxide synthase; MMP, matrix metalloproteinase; NAD(P)H, nicotinamide adenosine dinucleotide
phosphate; NMDAR, N-methyl-D-aspartate receptor; NO, nitric oxide; PLA2, phospholipase A2.
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by stimulating transcription factor nuclear factor κB
(NFκB)—whereas activated microglia and proinflam-
matory cytokines can in turn perpetuate oxidative
stress [8,11,26-28].
Collectively, data from postmortem neuropathological

human studies and in vivo neuroimaging human and
animal studies provide strong evidence of neurovascular
unit dysfunction with blood-brain barrier (BBB) hyper-
permeability in association with oxidative stress and
neuroinflammation in selected neurological disorders,
such as stroke, epilepsy, Alzheimer’s disease, traumatic
brain injury, and multiple sclerosis [29-43] (Table 1). In
these disorders, BBB breakdown, oxidative stress, and
inflammation are thought to impair neuronal function
[44]. MDD, in contrast to other major psychiatric dis-
orders, is frequently comorbid with such neurological
disorders as well as disorders characterized by vascular

endothelial dysfunction, such as cardiovascular disease
and diabetes mellitus [45-52]. Whether neurovascular dys-
function with BBB hyperpermeability occurs in primary
MDD (without neurological comorbidity), however, re-
mains less clear.
Shalev and colleagues have previously reviewed evi-

dence through 2009 linking BBB hyperpermeability to
psychiatric disorders generally [168]. We review emer-
ging clinical and experimental evidence implicating oxi-
dative stress, eNOS uncoupling, and reduced endothelial
NO levels in the pathophysiology of peripheral vascular
endothelial dysfunction associated with MDD. We
present a theoretical integration of human and animal
data linking these mechanisms and those involving
neuroinflammation to findings suggesting that neuro-
vascular dysfunction can occur in primary MDD. We
also discuss putative links between neurovascular

Table 1 Putative mechanisms of neurovascular dysfunction and blood–brain barrier hyperpermeability in major
depressive disorder in the context of established mechanisms in various neurological disorders

Mechanisms Major depressive disorder Neurological disorders

Human Sources Animal Sources Human Sources

Oxidative stress

eNOS uncoupling, decreased NO ■ [53-59] ■ [60] ● [61-63]

Increased ROS synthesis ● [10,14-16,64-84] ● [64,85] ● [42,63,86]

Cerebral hypoperfusion ● [87-91] N/A … ● [92-96]

MMP activation ■ [97] ? … ● [39,42,98-101]

Decreased E-cadherin activity ? … ? … ?a [38,102]

Tight junction alteration ? … ? … ● [31,38,41,103-106]

Endothelial cytoskeletal alteration ? … ? … ● [31]

Increased NMDAR expressionb [107-111] ● [40] ● [112]

Mitochondrial alterations ● [65,113-121] ● [65,122] ● [11,123-125]

Neuroinflammation

Astroglial loss ● [20,21,126-133] ● [134-138] ● [139-141]

Decreased AQP4 ● [142] ● [143] ● [144-146]

Microglial activation ● [18,147,148] ● [149-152] ● [42,98,153,154]

Proinflammatory cytokines ● [23,155] ● [156,157] ● [42,98]

Bradykinin alteration ●c [158] ● [159] ● [159,160]

Hyperglutamatergia ● [4,161-163] ● [164] ● [165-167]

Mast cell activation ●c [168,169] ? … ● [170,171]

Increased ICAM-1 and VCAM-1 [172-174] ? … ● [175-178]

Other mechanisms

Increased P-glycoprotein activity ● [179,180] ● [181] ● [179]

Symbol key: ●, documented in the central nervous system in major depressive disorder; ■, not documented in the central nervous system, but associated with
major depressive disorder; ?, insufficient data; , mixed evidence.
Abbreviations: AQP4, aquaporin 4; eNOS, endothelial nitric oxide synthase; ICAM-1, intercellular adhesion molecule 1; NMDAR, N-methyl-D-aspartate receptor;
MMP, matrix metalloproteinases; ROS, reactive oxygen species; VCAM-1, vascular cell adhesion molecule 1.
a. Refers to data that has only been shown in animal models.
b. Refers to human data in major depressive disorder refers to increased NMDAR expression that was not specific to the endothelium. Human data of NMDAR
subunit composition alteration in neurological disorders was shown in cultured human blood–brain barrier endothelial cells. Animal data refer to increased
cerebrovascular endothelial NMDAR subunit 1 (NR1) expression upon exposure to oxidative stress (this was not a depressive-like behavior or chronic stress animal
model, though this evidence may be relevant to MDD where oxidative stress is documented).
c. Refers to abnormalities for which only limited data exists.
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dysfunction with BBB hyperpermeability and neuronal
signaling abnormalities in MDD.

Neurovascular unit dysfunction
The neurovascular unit consists of cerebral microvessels,
glial cells (astroglia, microglia, oligodendroglia), and
neurons. It is the epicenter of several tightly controlled,
dynamic, and complex cellular interactions between glia
and neurons, and the coupling of neuronal activity with
endothelium-dependent cerebral blood flow [33]. Evi-
dence of an association between MDD and neurovascu-
lar dysfunction is indirect, deriving primarily from
studies assessing peripheral vascular endothelial dysfunc-
tion in MDD and from epidemiological data associating
MDD with vascular disorders.
One method for evaluating endothelial dysfunction in-

volves measuring the relative uptake ratio (RUR) of
blood flow in the brachial artery after hyperemic chal-
lenge via dynamic nuclear imaging. RUR is a measure of
the vascular dilatory response whereby a lower RUR im-
plies poorer vascular endothelial function. In a prospect-
ive cohort involving 23 patients with MDD, 23 with
minor depressive disorder, and 277 non-depressed con-
trols, the mean RUR was significantly lower in partici-
pants with MDD (unadjusted mean = 3.13, SD = 1.51)
or minor depressive disorder (unadjusted mean = 3.38,
SD = 1.00) compared with non-depressed controls (un-
adjusted mean = 4.22, SD = 1.74) (F = 6.68, P = 0.001)
[182]. This effect remained statistically significant after
adjusting for age, sex, socioeconomic factors, medical
comorbidity, and medications (F = 5.19, P = 0.006)
[182]. One study evaluating endothelial proapoptotic ac-
tivity, defined as the percentage of apoptotic nuclei in
human umbilical vein endothelial cells, found a signifi-
cantly increased percentage of proapoptotic nuclei in
participants with MDD compared with non-depressed
controls (4.4% vs 2.3%, P ≤ 0.001) [183]. This finding
remained statistically significant after adjusting for age
and cardiovascular comorbidity.
Linking vascular endothelial dysfunction to MDD, epi-

demiological studies reveal a strong and bidirectional
association between MDD and medical conditions char-
acterized by vascular endothelial pathology [184]. A re-
cent meta-analysis involving 16,221 study participants
found a significantly increased risk of MDD among
individuals with major vascular diseases compared with
those without vascular disease: diabetes (odds ratio (OR)
1.51, 95% confidence interval (CI) 1.30 to 1.76, P <
0.0005, 15 studies), cardiovascular disease (OR 1.76, 95%
CI 1.08 to 1.80, P < 0.0005, 10 studies), and stroke (OR
2.11, 95% CI 1.61 to 2.77, P < 0.0005, 10 studies) [45].
The same meta-analysis also found that MDD was more
common among individuals with two or more classic
risk factors for vascular disease compared with those

with one or no risk factors (OR 1.49, 95% CI 1.27 to 1.7,
P < 0.0005, 18 studies) [45]. These findings remained ro-
bust after statistical adjustments for chronic illness and
disability. Results from meta-analyses having assessed
the association from the reverse direction, indicate that
MDD is not only an independent risk factor for cardio-
vascular disease (relative risk (RR) 2.69, 95% CI 1.63 to
4.43, P < 0.001, 11 studies) [49], but is also associated
with a 3-fold increased cardiovascular disease mortality
rate (OR 2.61, 95% CI 1.53 to 4.47, P = 0.0004) [48].
Related studies report similar findings [50-52].

Blood–brain barrier unit hyperpermeability
The BBB consists of the neurovascular endothelium, extra-
cellular matrix basal lamina, and astrocytic end-feet pro-
cesses. The BBB secures the brain’s immune-privileged
status by restricting the entry of peripheral inflammatory
mediators (for example, cytokines, antibodies), which can
impair neurotransmission [37,168,185,186]. Neurovascular
endothelial cells regulate influx of essential nutrients, efflux
of toxic substances, ionic homeostasis of brain interstitial
fluid, and prevent brain influx of peripheral neuroactive
substances, neurotransmitters, and water-soluble molecules
[185]. Evidence of an association between BBB hyperper-
meability and MDD derives mainly from studies having
assessed cerebrospinal fluid (CSF)-to-serum ratios of
various molecules, as well as evaluations concerning
P-glycoprotein.
Evidence of an elevated CSF-to-serum albumin ratio in

some MDD patients is suggestive of mild hyperpermeability
of blood-brain and/or blood-CSF barriers [186,187]. A
cross-sectional study of elderly women without dementia
(11 MDD, 3 dysthymia, 70 non-depressed controls) found
an elevated mean CSF-to-serum albumin ratio among those
with MDD or dysthymia relative to non-depressed controls
(7.1 × 10-3 vs 5.4 × 10-3, age-adjusted P < 0.015) [186].
Another study (24 affective disorders, 4,100 age-matched
controls) found an increased mean CSF-to-serum albumin
ratio among 37.5% of the affective disorder group (9 of 24);
this value was 22% to 89% above the upper limit of healthy
age-matched controls (8.7 × 10-3 vs 5.0 × 10-3) [187]. A third
study (99 MDD) found that increased CSF-to-serum ratios
of albumin and urate were positively associated with EEG
slowing (a measure of cerebral dysfunction) and suicidality
[188]. Elevated levels of S100B protein (a marker of glial ac-
tivation) [189,190] and proinflammatory cytokines [23,191]
in the serum, CSF, and neuropathological specimens from
persons with MDD may be related to increased perme-
ability of blood-brain and blood-CSF barriers. Elevated
levels of these molecules may reflect their increased syn-
thesis and increased efflux from (a) brain parenchyma into
the blood (BBB hyperpermeability) [168,184], and (b)
blood into the CSF (blood-CSF hyperpermeability).
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Alteration of BBB endothelial expression of P-
glycoprotein (a multidrug efflux transporter) is docu-
mented in some persons with MDD [192]. Reduced
expression or function of P-glycoprotein may facilitate
BBB permeability to neurotoxic substances [192]. Posi-
tron emission tomography (PET) utilizing the [(11)C]-
verapamil radioligand for P-glycoprotein in humans
with MDD and in Wistar rats exhibiting depressive-
like behavior showed that chronic stress exposure and
administration of antidepressants inhibited and en-
hanced P-glycoprotein function, respectively [179,181]. A
human genetics study (631 MDD, 110 non-depressed con-
trols) revealed a significant association between alteration
of the P-glycoprotein encoding gene ATP-binding
cassette, subfamily B member 1 (ABCB1) and MDD
(P = 0.034) [180].

Theoretical integration with oxidative and
neuroinflammatory mechanisms

Oxidative stress
Common ROS include superoxide (O2

-), hydroxyl radical
(HO-), hydrogen peroxide (H2O2

-), and peroxynitrite
(ONOO-). ONOO- is a highly reactive oxidant generated
by the reaction of nitric oxide (NO) with O2

- [8,15,123].
The brain is particularly susceptible to oxidative stress
due to high levels of peroxidizable polyunsaturated fatty
acids and transition minerals (reduced form) that induce
lipid peroxidation and convert H2O2

- to HO-; addition-
ally, the brain’s oxygen demand is particularly high and
the presence of antioxidant defense mechanisms is rela-
tively limited [8,11,12].
Although ROS can limit injury and promote recovery

at low levels, ROS facilitate oxidative injury at high levels
by damaging biological macromolecules, such as lipids,
proteins, and DNA [8,11,12]. We hypothesize that
oxidative stress associated with MDD may impair neuro-
vascular function through several mechanisms, with an
emphasis on mechanisms that can shift the functional
balance between beneficial endothelial nitric oxide synthase
(eNOS)-generated NO versus harmful eNOS-generated O2

-

(Figure 2 and Table 1).
NO has been termed ‘Janus faced’ owing to its ability

to either protect vascular endothelial cell function in
some instances, while impairing it in others [193]. These
differential effects of NO are primarily determined by its
cellular source (non-endothelial vs endothelial) and con-
centration (high vs low). NOS isoforms regulate NO syn-
thesis in the brain. Of these, one is constitutively
expressed in endothelial cells and astrocytes (eNOS)
[194,195] (that is, eNOS), and another is expressed in
neurons (neuronal NOS (nNOS)).
eNOS regulates vascular smooth muscle tone and

nNOS modulates neurotransmission. The expression of

a third NOS isoform, iNOS, occurs in glial and inflamma-
tory cells and is induced by pathological inflammatory
states, such as following trauma [38]. More recently, a
fourth NOS isoform was described, mitochondrial
(mtNOS), which is an eNOS-like isoform that is constitu-
tively expressed in the inner mitochondrial membrane
[196,197]. When combined with O2

- , NO produced by
non-endothelial cellular sources (as regulated by nNOS,
iNOS) can impair the vascular endothelium and disrupt
BBB integrity [38,53]. nNOS activity itself is positively reg-
ulated by Ca2+ influx [198], whereas iNOS activity is posi-
tively regulated by proinflammatory cytokine [199] and
NFκB signaling [200].
NO produced by endothelial cells (as regulated by

eNOS) increases cellular levels of cyclic guanosine
monophosphate, which can increase cerebral blood flow
via mechanisms involving endothelium-dependent vaso-
dilation and platelet aggregation inhibition [38,53,201].
In vitro studies showed that endothelial-derived NO
may dilate cerebral vessels by inhibiting the synthesis
of 20-hydroxyeicostetranoic acid—an arachidonic acid
metabolite that promotes vasoconstriction [202,203].
Endothelial-derived NO can also limit endothelial vascu-
lar oxidative stress injury by scavenging free radicals
[38,53]. Endothelial eNOS mediates NO synthesis via
oxidative conversion of L-arginine to L-citrulline. Activ-
ity of eNOS is modulated by several factors, including
endothelial levels of Ca2+, arginine (eNOS substrate)
[204], as well as tetrahydrobiopterin (BH4) (eNOS cofac-
tor) [53-55,201,205,206] (Figure 2). Downregulation of
eNOS activity can decrease endothelial NO levels, po-
tentially resulting in (a) reduced cerebral blood flow, (b)
increased platelet aggregation, which may contribute to
the increased risk of cardiovascular disease in MDD, (c)
increased oxidative stress, and (d) decreased vascular re-
activity [38,53,201].
Under oxidative conditions, such as those associated

with MDD [4,8,11,12,15] (Figure 1), endothelial levels of
BH4 are decreased due to increased oxidative conversion
of BH4 to dihydrobiopterin (BH2). Decreased endothelial
levels of BH4 and increased endothelial levels of BH2

(which can also reduce BH4 binding to eNOS) uncouple
L-arginine oxidation from the electron transfer process
and shift the eNOS substrate from L-arginine to molecu-
lar oxygen (that is, eNOS uncoupling), thereby promot-
ing the synthesis of harmful O2

- instead of beneficial NO
[53-55,205,207,208]. Once formed, O2

- reacts with re-
sidual NO (still being produced at a lower rate) to form
ONOO- [205]. ONOO- in turn oxidizes BH4, thereby
further decreasing its levels in a positive feedback loop
[54,205] (Figure 2).
Data from in vitro animal models of neurological dis-

orders show that upregulation of iNOS and nNOS ex-
pression and downregulation of eNOS expression can
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worsen neuronal injury [209-213]. In murine models of
ischemic stroke, knocking out iNOS and nNOS de-
creased the size of infarct while knocking out eNOS ex-
panded infracted zone, compared to wild-type mice
[214,215]. In animal models of traumatic brain injury,
increased levels of endothelial ONOO- are associated
with BBB breakdown and neurobehavioral deficits [209];
additionally, treatment with the antioxidant S-nitroso-
glutathione enhances neural reparative mechanisms and
improves neurovascular unit function by decreasing
endothelial ONOO- synthesis [209].
Clinical and experimental studies suggest that eNOS

uncoupling can contribute to vascular endothelial

dysfunction in both cardiovascular diseases and MDD
[4,53-55,182,205,206,216]. In cardiovascular diseases,
eNOS uncoupling-mediated endothelial dysfunction is
thought to result from (a) increased O2

- synthesis
(through an NAD(P)H oxidase-dependent mechan-
ism), (b) increased ONOO- formation, and (c) de-
creased BH4 levels [54,55,182,206]. In MDD, however,
the potential contribution of eNOS uncoupling to
vascular endothelial dysfunction is inferred from less
direct evidence. For example, several clinical studies of
persons with MDD have shown significant reductions
in eNOS activity and NO levels in platelets and sera,
respectively [53-57]. In a study of 57 MDD patients

Figure 2 Theoretical integration of the human and animal data linking oxidative stress, eNOS uncoupling, low endothelial NO levels,
and neuroinflammation to indirect evidence of functional and structural abnormalities of neurovascular unit in major depressive
disorder. Adapted with permission from Abbott et al., [185]. This figure describes several putative mechanisms involving neuroinflammation,
oxidative stress, endothelial nitric oxide synthase uncoupling, and hyperglutamatergia, as well as their relationships to indirect evidence of
neurovascular dysfunction in MDD. Neurovascular endothelial lipofuscin granule accumulation is a marker of endothelial oxidative stress, which
we recently documented by ultrastructural analysis of cerebral microvasculature in brain biopsy from a patient with chronic refractory MDD [90].
Abbreviations: AQP4, aquaporin 4; BH2: dihydrobiopterin; BH4, tetrahydrobiopterin; CRH, corticotropin-releasing hormone; eNOS, endothelial nitric
oxide synthase; mGluR, metabotropic glutamate receptor; MDD, major depressive disorder; MMP, matrix metalloproteinase; NAD(P)H, nicotinamide
adenosine dinucleotide phosphate; Na+/K+ ATPase, sodium-potassium adenosine triphosphatase; NFκB, nuclear factor κB; NMDAR, N-methyl-D-aspartate
receptor; NO, nitric oxide, ONOO-, peroxynitrite; O2

- , superoxide; ROS, reactive oxygen species.
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randomized to either citalopram (n = 36) or placebo
(n = 21), a 3-month trial of citalopram was associated
with a statistically significant increase in serum NO
levels compared to placebo (P = 0.005) [58]. Another
study involving a 2-month trial of paroxetine repro-
duced similar results [59]. Fluoxetine treatment in a
chronic stress mouse model restored previously defi-
cient aortic endothelial NO levels [60], suggesting that
eNOS uncoupling may not only occur in MDD, but
also that eNOS recoupling may be one of the mecha-
nisms by which antidepressants exert their therapeutic
effects [8,11,14].
The antidepressant effect of L-methylfolate, which can

reverse eNOS uncoupling in vitro via upregulating BH4

synthesis [206], suggests that eNOS uncoupling contrib-
utes to the neurobiology of MDD. A randomized
controlled trial showed that adding L-methylfolate at
15 mg/day, but not at 7.5 mg/day, to a stable regimen of
selective serotonin reuptake inhibitors (SSRIs) had su-
perior efficacy to SSRIs plus placebo [217]. Although the
authors attributed BH4 augmenting the antidepressant
effects of SSRIs to direct activation of the rate-limiting
enzymes of monoamine synthesis (serotonin, norepin-
ephrine, dopamine), we suggest that these effects may
also be related to the ability of BH4 to reverse eNOS
uncoupling.
Although regionally selective (thalamic nuclei, pre-

frontal, anterior cingulate, temporal, and occipital corti-
ces) cerebral hypoperfusion abnormalities in MDD
have traditionally been attributed to depressed mood
states and reduced neuronal activity [87-91] [208], these
findings may also be related to eNOS uncoupling
[65,113,114,218] (Figure 2). Sustained cerebral hypoper-
fusion can impair endothelial mitochondrial oxidative
function, resulting in increased synthesis of endothelial
ROS [219-222]. ROS can in turn promote eNOS un-
coupling, leading to reduced vasodilatory endothelial
NO levels and cerebral hypoperfusion in a positive feed-
back loop [54,55,182,206]. In addition, SSRIs have been
shown to induce vasodilation through eNOS-mediated
downregulation of NO [223]. We recently reported a
case of chronic and refractory MDD with moderately se-
vere bifrontal cerebral hypoperfusion (seen via single
photon emission tomography (SPECT)) associated with
lipofuscin granule accumulation (a marker of oxidative
stress [224-228]) (Figure 2) identified exclusively within
the neurovascular unit (predominately within the endo-
thelium) [90]; restoration of cerebral hypoperfusion in
temporal association with intravenous immunoglobulin
and minocycline therapy was accompanied with signifi-
cant improvement of depressive symptoms, after more
than 20 years of refractoriness to conventional psychi-
atric treatments [90]. We suggest that eNOS uncoupling
may occur in MDD primarily as the result of non-

heritable factors such as oxidative mechanisms. Indeed, sev-
eral genetic studies show a non-significant association
between eNOS gene polymorphisms and MDD [229,230].
Under oxidative conditions, BBB endothelial cells are

not only the source of harmful eNOS uncoupling, but
also can be the target of oxidative damage [39]. In
neurological disorders associated with neurovascular
dysfunction, oxidative stress can also increase BBB per-
meability through several mechanisms (Table 1), which
include: (a) activation of metalloproteinase (MMP)-2/9
directly or indirectly through proinflammatory cytokines
[39]; (b) downregulation of endothelial expression of
E-cadherin [38]; (c) alteration of the expression, distribu-
tion, and phosphorylation of BBB tight junction proteins
(for example, claudin, occluding, ZO proteins) by molecules
such as phosphatidylinositol-3-kinase γ [38,41,103,104]; (d)
alteration of endothelial cytoskeletal structure; (e) induction
of endothelial NMDAR subunit expression such as NMDA
receptor subunit 1 (NR1) subunit, leading endothelial exci-
totoxicity [40]; and (f) impairment of vascular endothelial
mitochondrial oxidative metabolism [11,123]. The rele-
vance of these mechanisms to the neurobiology of MDD,
however, remains unclear (Table 1 and Figure 2).

Neuroinflammation
Neuroinflammation may impair neurovascular function
and increase BBB permeability in MDD [4,168] (Figure 2
and Table 1). Astroglial cells are an integral part of the
neurovascular unit. They are involved in regulating
blood flow, BBB permeability, energy metabolism, and
neuronal signaling [4,184]. Astroglial loss has been con-
sistently documented in functionally relevant areas (pre-
frontal and cingulate cortices, amygdala, hippocampus)
among persons with MDD [4,142,168,231-236]. Other
studies have documented decreased expression of the
astroglial end-feet process water channel, aquaporin 4
(AQP4) in the orbitofrontal cortical gray matter (but not
white matter) of individuals with MDD relative to non-
depressed controls [142]. Animal models of depressive-
like behavior also found decreased AQP4 density in as-
sociation with oxidative stress [143]. Decreased AQP4
density may impair critical glial-vascular homeostatic
pathways within the neurovascular unit and increase
BBB permeability (Figure 2). Reduced AQP4 density may
also contribute to cerebral perfusion and metabolic
abnormalities detected by SPECT and PET imaging in
human MDD [184].
Microglia provide immune surveillance and regulate

developmental synaptic pruning of the brain [237]. Al-
though transient microglial activation and proliferation
(MAP) can limit neuronal injury and enhance recovery
(beneficial phenotype), persistent MAP can induce and
exacerbate neuronal injury (harmful phenotype) [238].
Harmful MAP is implicated in the pathophysiology of
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MDD [4,17,19], though neuropathological evidence of
MAP in the brains of subjects with MDD is inconsistent
[4,18,148,239]. One neuropathological study found a
positive association between suicidality and both MAP
density and microglial quinolinic acid expression [17]. In
rats, chronic psychological stress promotes MAP in the
prefrontal cortex, amygdala, and hippocampus [19]. Re-
cent meta-analysis in MDD patients confirmed elevation
of serum levels of proinflammatory cytokines, such as
interleukin 6 (IL-6) and TNFα [23,240]. Multiple in vitro
studies of various neurological conditions showed that
MAP and proinflammatory cytokines could increase
BBB permeability [4,38-40,168,184,241] (Figures 1 and 2)
(Table 1). BBB hyperpermeability may in turn increase
crosstalk between innate and adaptive immunity, thereby
resulting in further upregulation of MAP and brain cyto-
kine production in a positive feedback loop [242]. MAP
can activate iNOS [8,11,26,27], increase ROS synthesis
[28], and promote COX2 expression within the neuro-
vascular unit [4]; these factors may increase BBB perme-
ability in vitro [38,53]. MAP and proinflammatory
cytokines can release and activate matrix metalloprotein-
ases (MMPs) [38,39,168], which have been shown
in vitro to disrupt BBB endothelial tight junction pro-
teins and increase BBB opening [38,39,168,184]. Serum
MMP-9 levels have been shown to correlate with depres-
sive symptom severity in humans (as assessed by the
Hamilton Depression Scale) [97]. Highly reproducible
in vitro data showed that proinflammatory cytokines
(TNFα, IL-1β, interferon γ (IFNγ)) can cause a dose-
dependent increase in BBB permeability by inducing ex-
pression of intercellular adhesion molecule 1 (ICAM-1)
on the luminal surface of BBB endothelial cells in ani-
mals [243-249] and humans [250,251]. One neuropatho-
logical study found a significant increase in the ICAM-1
expression in the deep white matter of the dorsolateral
prefrontal cortex in MDD relative to controls [172]. An-
other study showed SSRIs can reduce vascular endothe-
lial expression and serum levels of both ICAM-1 and
vascular cell adhesion molecule 1 (VCAM-1) [173].
Thus, increased BBB endothelial cell expression of adhe-
sion molecules may be one mechanism by
which BBB hyperpermeability occurs in MDD [174,252]
(Figure 2). However, contrary to this interpretation, a
separate postmortem study has shown decreased expres-
sion of VCAM-1 and ICAM-1 in the orbitofrontal cor-
tex in depressed subjects compared with non-depressed
controls [174]. Increased TNFα production occurring
after acute myocardial infarction is associated with
an increased risk of MDD and BBB endothelial hyper-
permeability [241]. In vitro animal studies showed
that TNFα could reduce mitochondrial density and im-
pair mitochondrial oxidative metabolism, leading to in-
creased ROS synthesis [11,253]. Several lines of human

[65,113-121] and animal [65,122] evidence implicate
mitochondrial abnormalities in MDD. In vitro data mech-
anistically link mitochondrial abnormalities to oxidative
injury-related vascular abnormalities [219] (Figures 1 and
2). Thus, proinflammatory cytokines may also induce de-
pression and increase BBB permeability by promoting oxi-
dative stress and impairing mitochondrial functions. The
relevance of these mechanisms to MDD, however, remains
unproven.
Bradykinin is a polypeptide that mediates inflamma-

tion, vasodilation, and increased capillary permeability.
Human data of bradykinin alterations in MDD are lim-
ited to evidence of functional single nucleotide polymor-
phisms of the bradykinin receptor B2 gene (BDKRB2)
[158] (Table 1). LPS-induced depressive-like behavior in
mice was associated with upregulation of bradykinin
activity and bradykinin B1 receptor expression [159];
further, selective bradykinin B1 receptor antagonists
improved depression-like behavior [159]. Activation of
bradykinin and its inducible B1 and constitutively
expressed B2 receptors induces inflammation, promotes
oxidative injury, and increases BBB permeability [160]
(Figures 1 and 2). Bradykinin activation can augment the
astroglial NFκB pathway-mediated IL-6 production,
which may increase BBB permeability [168,184]. Brady-
kinin activation can also stimulate phospholipase A2 ac-
tivity, which in turn enhances arachidonic acid release
and its metabolism, leading to increased malondialde-
hyde [12] and NO production [38] that may increase
BBB permeability. Activation of B2 receptor increases
endothelial Ca2+ influx, which can activate pro-oxidant
enzymes involved in ROS synthesis [38,168,184]. In-
creased ROS production can increase BBB permeability
and its susceptibility to the harmful effects of bradykinin
[12]. In vitro human studies showed that inflammation-
related upregulation of BBB endothelial bradykinin B1
receptor expression could increase BBB permeability [160].
Glutamatergic hyperfunction may contribute to neuro-

vascular dysfunction in MDD (Figure 2 and Table 1).
Numerous experimental paradigms such as, brain proton
magnetic resonance imaging, postmortem brain investiga-
tions, and CSF studies, have documented glutamatergic
hyperfunction in persons with MDD [4,161,162]. Neuroin-
flammation may contribute to hyperglutamatergia in a posi-
tive feedback loop through several potential mechanisms,
which include: (a) inhibition and reversal of astroglial exci-
tatory amino acid transporter-mediated glutamate reuptake
function (this process mediates more than 90% of glutam-
ate uptake [254]); (b) stimulation of microglial synthesis of
quinolinic acid, which can promote synaptosomal glutam-
ate release and increase astroglial glutamate and D-serine
release; and (c) upregulation of MAP expression of Xc anti-
porter system, which increases microglial glutamate release
[4]. Postmortem investigations of N-methyl-D-aspartate
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receptors (NMDARs) subunit expression in the brains of
MDD subjects compared with those of non-depressed
controls show (a) an increase or no change of NR1 subunit
expression in the hippocampus [107-109], (b) an increase
of NR2A and NR2B subunit expression in the hippocam-
pus [107,108], (c) a decrease or no change in NR1 subunit
expression in the prefrontal cortex [110,111], (d) a de-
crease of NR2A and NR2B subunit expression in the
prefrontal cortex [110], and (e) an increase of NR2A
subunit expression in the lateral amygdalae [255]. Binding
of excess glutamate to its dysregulated BBB endothelial
ionic NMDARs and metabotropic glutamate receptors
(mGluRs) can increase intracellular Ca2+ level-dependent
oxidative stress and BBB permeability via increasing Ca2+

influx and release from endoplasmic reticulum stores,
respectively [38,40,159,256]. Animal data showed that
NMDAR activation facilitates free radical production such
as ONOO- [38,40,256] (Figures 1 and 2). Administration of
glutamate receptor antagonists has been shown to attenu-
ate NMDAR-induced oxidative stress [40]. Animal studies
showed that oxidative stress in turn can alter cerebral endo-
thelial NMDAR subunit composition and upregulate NR1
subunit expression [40], thus setting up a positive feedback
loop that increases BBB endothelium vulnerability to both
glutamate excitotoxicity and oxidative stress [40]. Alteration
of endothelial NMDAR subunit compositions may also
reduce cerebral blood flow, as physiologic activation of
endothelial NMDAR may activate eNOS and increase
endothelial-derived NO [256]. BBB breakdown may also
increase CNS glutamate levels via disruption of endothelial-
bound glutamate efflux transporters [44]; in turn, hyperglu-
tamatergia may heighten BBB susceptibility to the harmful
effects of bradykinin. Administration of glutamate receptor
antagonists can block bradykinin-induced endothelial Ca2+

rise [38]. Thus, BBB hyperpermeability, increased endothe-
lial NMDAR expression, and increased CNS glutamate
levels may contribution to neuronal dysfunction in MDD.
Mast cells are tissue-bound granulated cells most com-

monly found in the skin and gastrointestinal tract. They,
like basophils, contain high levels of histamine and
heparin. In the brain, mast cells are particularly abun-
dant in the hypothalamic region. Mast cell activation has
been associated with MDD [169] (Table 1). Approxi-
mately 40% to 70% of persons with mastocytosis, an
uncommon and heterogeneous syndrome characterized
by increased mast cell density, exhibit depressive symp-
toms [257]. Increased corticotropin-releasing hormone
(CRH) secretion may contribute to mast cell activation
associated with MDD [168,170,171]. Experimental evi-
dence suggests that mast cells can cause inflammation
[170], modulate BBB permeability [170], and facilitate
NMDAR-induced neuronal excitotoxicity [170] (Figure 2).
Mast cell activation can release inflammatory substances
(for example, IL-6, TNFα, vascular endothelial growth

factor) and stimulate vascular endothelial cell adhesion
molecule expression [170]. These molecules can disrupt
BBB integrity and enhance inflammatory cell transmigra-
tion into the brain [170].

Future Directions
Human and animal studies are needed to evaluate the
validity of the BBB dysfunction hypothesis and to ex-
plore the mechanistic links between oxidative stress,
eNOS uncoupling, and neuroinflammation and neuro-
vascular unit dysfunction with BBB hyperpermeability
in MDD. Future postmortem studies investigating the
relationship between neurovascular unit dysfunction
with BBB hyperpermeability and MDD should focus pri-
marily on the neuroanatomical regions where astroglial
loss and MAP have been documented in MDD brains
such as anterior mid/cingulate cortex, prefrontal cortex,
amygdala, and white matter [4]. Developing methods
with increased sensitivity to detect and quantitate subtle
BBB hyperpermeability in MDD are likely to be inform-
ative [37]. These methods might utilize fluorescent dyes
in animal models of depressive-like behavior similar to
those developed for in vivo imaging of specific neurovas-
cular elements in animal models of various neurological
disorders associated with neurovascular dysfunction
[43]: sulforhodamine 101 dye, Ca2+ sensitive dyes, glial
fibrillary acidic protein (GFAP), AQP4 (astroglia), CX3C
chemokine receptor 1 (CX3CR1) (microglia), dextran-
conjugated dyes, alpha SMA-RFPcherry (pericytes), dex-
tran dyes, Tie2 (vasculature) and Thy1 (neurons) [43]. A
promising neuroimaging modality for visualizing MAP
in humans with psychiatric illnesses is PET imaging util-
izing microglial peripheral benzodiazepine receptor (also
known as translocator protein) C11-PK11195 radioli-
gand [4,258-260]. We suspect that various neurovascular
processes particularly those promoting endothelial (and
potentially astroglial) eNOS dysfunction may emerge as
key targets for cellular and molecular research in MDD.
Adequately powered randomized controlled trials inves-
tigating the effects of anti-inflammatory agents and anti-
oxidants in MDD [4,90] should also assess their effects
on cerebral microvascular endothelial functions (for ex-
ample, by utilizing techniques that measure peripheral
vascular dilatory response [182] and cerebral perfusion
[90]), as well as the relationship between the extent of
endothelial dysfunction and the severity of depressive
symptoms.

Conclusions
Neurovascular dysfunction with BBB hyperpermeability
may occur in MDD. Cumulative clinical and experimental
evidence implicates oxidative stress, eNOS uncoupling, and
reduced endothelial NO levels in the pathophysiology of
peripheral vascular endothelial dysfunction associated with
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MDD. Our theoretical integration of the human and animal
data links oxidative stress, eNOS uncoupling, low endothe-
lial NO levels, and neuroinflammation to putative neuro-
vascular and BBB abnormalities in MDD. If future studies
confirm their relevance to the pathophysiology of MDD,
novel agents correcting these abnormalities may prove to
be effective treatment strategies.
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