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Nonlinear signal processing is necessary in many emerging applications where form factor and power are at a premium. In order
to make such complex computation feasible under these constraints, it is necessary to implement the signal processors as analog
circuits. Since analog circuit design is largely based on a linear systems perspective, new tools are being introduced to circuit
designers that allow them to understand and exploit circuit nonlinearity for useful processing. This paper discusses two such tools,
which represent nonlinear circuit behavior in a graphical way, making it easy to develop a qualitative appreciation for the circuits
under study.

1. Introduction

Portable and implantable, always-on electronics stand to
benefit from analog signal processing, when only low levels of
precision are necessary [1, 2]. To achieve sophisticated signal
processing with low power and area overhead, an analog
processor can exploit the fundamental nonlinear dynamics
that are found in devices and simple circuits. So, the circuit
designer must depart from the traditional linear systems
paradigm, and learn to analyze and understand circuits from
a nonlinear dynamical systems theory perspective.

In order to make nonlinear circuit design relevant to
an engineer, it must be taught intuitively enough to foster
creativity, yet rigorously enough to be of practical benefit.
The two most popular tools for studying nonlinear circuits
are harmonic balance and Volterra series. Within certain
limitations, they are rigorous, but not necessarily intuitive.
Since harmonic balance is simulation-based, it can be used
to predict nonlinear behavior without ever requiring a
deep understanding [3] of the circuit. Volterra series is
an analytical tool that quickly leads to high entropy [4]
mathematical expressions, from which the causative physical
phenomena are hard to discern, much less purposefully
manipulate.

To bridge the gap between rigor and intuition, we
can use visual representation techniques. If the appropriate
visualization is formed from rigorous definitions of a circuit’s
dynamics, then the human vision system, with its pattern
recognition ability, will perceive the circuit’s qualitative
behavior [5].

We will present a filter block diagram for analyzing har-
monic distortion that is derived from perturbation analysis.
Unlike Volterra series kernels, our filter block diagram does
not include multidimensional Fourier transforms, and so is
accessible to an introductory-level engineering audience. In
the second part of this paper, we will discuss the creation
and use of phase plane plots of nonlinear circuits. We
will describe how to rapidly create the phase plane plots
with a reconfigurable hardware platform, instead of with a
numerical simulator.

This paper is an expansion of the work presented in [6].

2. Regular Perturbation

Whenever designers want to get an analytical handle on the
sources and causes of distortion, the most commonly-used
tool is Volterra series analysis. If a problem is tractable using
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Figure 1: General block diagram form of a first-order circuit. The
primary processing block is g(·), which is a nonlinear function of
the input u and of x via feedback. The nonlinearity h(x) models
such nonidealities as finite output impedance.

Volterra series, then it can also be solved with perturbation
theory, which will yield asymptotically-identical results [7].

There are certain problems for which Volterra series are
ill-suited—multiple-time-scale behavior and multiple steady
states, for instance [8]—that can be solved with perturbation
theory. Despite the power of perturbation theory, it is still a
relatively obscure concept in discussions about nonlinearity
and distortion in analog circuits.

We therefore find it worthwhile to give a basic treat-
ment of regular perturbation—the simplest perturbation
method—as applied to distortion analysis of first-order ana-
log circuits. In addition, a filter block diagram representation
of the circuit will naturally evolve from our analysis, making
it visually clear how the distortion terms are manifested,
and how well-known tenets of low-distortion design, such as
feedback, come about.

Consider the initial value problem

ẋ = f (t, x, ε); x(t0) = x0(ε), (1)

where ε is a small perturbation parameter such that ε = 0
yields an analytically-soluble equation. If f is sufficiently
smooth (the specific smoothness requirements of f are
discussed in [9]), then the problem has a unique solution
x(t, ε). As the solution for ε /= 0 may not be analytical, it
can be approximated as a power series in ε to an accuracy
of O(εn+1). That is, we can write the solution as

x(t, ε) =
n∑
i=0

(
xi(t)εi

)
︸ ︷︷ ︸

x̂(t,ε)

+ O
(
εn+1), (2)

where x̂(t, ε) is the approximate solution. To conduct regular
perturbation, we apply the substitution x(t, ε) ≈ x̂(t, ε) to
(1). The resulting system is then solved by equating like
powers of ε. The following sections will illuminate this idea.

3. The Basic First-Order Circuit

Most common first-order analog ciruits (simple amplifiers,
buffers, switches, etc.) are of the form depicted in Figure 1.
The governing equation is

ẋ = g(u− x) + h(x), (3)

where u is the a.c. input signal, x is the a.c. output signal and
g(·) and h(·) are nonlinear functions. The dependence of the

system on the output, other than through feedback to the
input, is modeled by h(x). In practice, h(x) is typically some
nonideality such as finite output resistance.

In order to apply perturbation analysis to (3), we begin
by assuming that the input signal has a small amplitude.
This is expressed as u = εv, where ε is a small perturbation
parameter and v is a suitably-scaled version of the input
signal. Note that with the definition of u, (3) is solvable via
separation of variables for the special case ε = 0.

With the introduction of the perturbation parameter ε,
we can approximate the solution to (3) with the power series

x(t) ≈
n∑
i=1

εixi(t). (4)

Note the ε0 term of (4) is set to 0. This corresponds to
analyzing a circuit about its d.c. bias point, where the d.c.
bias point is shifted to the origin. For ease of notation, define
z = u− x. The approximation of z is defined similarly to (4),
with z1 = v − x1 and zi = −xi, for all i > 1.

If ε is sufficiently small, then the functions g(z) and h(x)
can be approximated by their truncated Taylor series as

g(z) ≈ g1z + gn−1z
n−1 + gnz

n,

h(x) ≈ h1x + hn−1x
n−1 + hnx

n.
(5)

Functions g and h are assumed to be dominantly (n − 1)th-
order nonlinearities, with gi = g(i)(0)/i! and hi = h(i)(0)/i!.
Equation (5) assumes g(0) = h(0) = 0, which, again,
corresponds to analyzing a circuit about its d.c. bias point.

Substituting (4) and (5) into (3) and collecting powers of
ε, we get the following set of first-order linear equations

ẋ1 +
(
g1 − h1

)
x1 = g1v,

...

ẋk +
(
g1 − h1

)
xk = 0 ∀k < n− 1

...

ẋn−1 +
(
g1 − h1

)
xn−1 = gn−1z

n−1
1 + hn−1x

n−1
1

ẋn +
(
g1 − h1

)
xn = gnz

n
1 − ngn−1z

n−1
1 x2

+ hnx
n
1 − nhn−1x

n−1
1 x2.

(6)

The ε1 equation is the linearized portion of (3) with
input v. Taking the Laplace transform of this equation, we
write

X1(s) = g1H(s)V(s), (7)

where H(s) = 1/(s + g1 − h1).
The εk equations (k < (n− 1)) are filters with 0 input. As

such, the steady state solutions of these equations is 0.

4. Harmonic Distortion Terms

The inputs of the εn−1 equation are terms of zn−1
1 and xn−1

1 .
To understand the implications of these terms to harmonic
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Figure 2: Magnitude-frequency plots of the third harmonic. The “gain”, G of the g(z) function is varied from 10 to 1000. This causes the
band-pass shape of the z3

1-contributed harmonic to shift to the right, while that contributed by x3
1 falls in magnitude.

distortion, assume a single-tone input, v = cos(ωt). This
elicits the signals

x1 = g1
∣∣H( jω)∣∣ cos

(
ωt + φ

(
jω
))

,

z1 =
∣∣1− g1H

(
jω
)∣∣ cos

(
ωt + φz1

(
jw
))

,

=

∣∣∣∣∣∣∣∣∣(s− h1)H
(
jω
)︸ ︷︷ ︸

Hz1( jω)

∣∣∣∣∣∣∣∣∣ cos
(
ωt + φz1

(
jw
))

,

(8)

Here we have defined Hz1(s) = (1− g1H(s)). The phases φ(s)
and φz1(s) are the arguments of H(s) and Hz1(s), respectively.
The signals x1 and z1 are single tones of frequency ω as well,
since they are merely linearly-filtered versions of v.

Raising z1 and x1 each to the (n − 1)th power produces
harmonics as follows. If (n−1) is odd(even), then odd(even)
harmonics up to the (n − 1)th harmonic are generated. The
amplitude of the mω frequency term in xn−1

1 is

(n− 1)!g1

((n + m− 1)/2)!((n−m− 1)/2)!2n−2

∣∣H( jω)∣∣, (9)

while that of the mω frequency term in zn−1
1 is

(n− 1)!
((n + m− 1)/2)!((n−m− 1)/2)!2n−2

∣∣Hz1
(
jω
)∣∣. (10)

After filtering in the εn−1 equation, the amplitudes of these
terms will be, respectively,

(n− 1)!hn−1g1

((n + m− 1)/2)!((n−m− 1)/2)!2n−2

∣∣H( jω)∣∣∣∣H( jmω
)∣∣,

(11)

(n− 1)!gn−1

((n + m−1)/2)!((n−m−1)/2)!2n−2

∣∣Hz1
(
jω
)∣∣∣∣H( jmω

)∣∣.
(12)

Analogous to that of the εn−1 equation, the input to the
εn equation has terms in zn1 and xn1 . In general, the x2 terms
are identically zero, except for the special case n = 3.

5. Feedback and Distortion

We now make some observations about the harmonic
distortion results that were discussed in the previous section.

In the εn−1 equation, the amplitude of the mth harmonic
that the zn−1

1 term contributes is given by (12). We plot this
amplitude expression, along with that of (11), as a function
of frequency in Figure 2 for the third-order harmonic
generated by a dominantly-third order nonlinearity. That is,
n = 4 and m = 3. Also, we chose h1 = 1, h3 = 1/3, g1 = G,
g3 = G/3, where G was varied from 10 to 1000.

Notice from the figure that if g1 � h1, then, for a given
frequency, the amplitude of the zn−1

1 -contributed harmonic is
greatly reduced. In fact, if we ensure gi � hi for all i, then the
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Figure 3: Source follower amplifier. (a) Circuit schematic. (b) Block
diagram representation of source follower output. The fundamental
harmonic is a low-pass filtered version of the input. The second
order terms are generated by high-pass filtering the input, squaring
and then low pass filtering. The total output is a power series of ε
terms.

harmonic contribution of the xn−1
1 terms is negligible. This

would mean that the distortion is effectively due only to z1,
whose associated harmonics are band-pass filtered. This in
turn means that the distortion can be kept small if the circuit
is operated well below the corner frequency.

These two notions—that frequency and feedback gain
can be sacrificed for higher linearity—conform with the
traditional rules-of-thumb for low-distortion design.

6. Illustrative Examples

6.1. Source Follower Amplifier. According to KCL, the circuit
equation of the source follower amplifier in Figure 3(a) is

C
dVout(t)

dt
= F(Vin,Vout)− Ibias, (13)

where the function F is defined as

F(Vin,Vout) = K

2
(κVin(t)−Vout(t)−Vth)2, (14)

if M1 is in above-threshold saturation, and

F(Vin,Vout) = Ioe
(κVin(t)−Vout(t))/UT , (15)

if it is in subthreshold saturation. The parameter K depends
on transistor dimensions and doping and Vth is the threshold
voltage. Also, κ, Io, and UT have their usual meanings from
the EKV MOSFET model [10].

Note that Ibias = F(Vg,VS), where Vg and VS are the d.c.
bias-points of the gate and source of M1, respectively. Let us
define a characteristic voltage, Vc, as

Vc =

⎧⎪⎪⎨⎪⎪⎩
(
κVg −VS −Vth

)
2

, above threshold

UT, subthreshold.

(16)

Now, (13) can be nondimensionalized [9] by making the
substitutions

τ = Ibias

(CVc)
· t; u = κνin

Vc
; x = νout

Vc
, (17)

where νin and νout are the a.c. portions of Vin and Vout. This
gives the state-space equation of the source follower as

dx

dτ
= u− x +

(u− x)2

4
, (18)

for above threshold, and

dx

dτ
= u− x +

(u− x)2

2
, (19)

for the truncated Taylor expansion in subthreshold. The
point is that, regardless of region of operation of M1, the
nonlinear equation that describes the source follower has the
same functional form. Relating the source follower equations
to (3), we have g(z) ∼ z + z2 and h(x) = 0. As such, we
expect the harmonic distortion terms to have a band-pass-
like dependence on frequency. To show this, we will apply
regular perturbation to (18).

First, define u = εv, where the small parameter ε is a
scaled version of the input amplitude. That is, ε = Ain/Vc.
Also, taking x = εx1 + ε2x2 and z = u − x and equating like
powers of ε up to ε2, we have

ε1 : ẋ1 = v − x1, (20)

ε2 : ẋ2 = z2
1

4
− x2, (21)

as depicted in Figure 3(b). Assume a pure-tone input, v =
cos(ωt). Equation (20) is the linear portion of the amplifier.
Equation (21) is a linear filter with input z2

1/4. The squaring
produces a second-harmonic term as well as a d.c. offset. In
addition, since z1 = v − x1, the second harmonic generated
by the squaring is high-pass filtered. The overall effect is that
x2 is a band-pass filtered version of a second harmonic of v.
Figure 4 is a plot of experimental data that corroborates our
analysis. There is error in the second harmonic measurement
due to the small amplitudes involved.

6.2. Unity Gain Buffer. Consider the unity-gain buffer
depicted in Figure 5(a). It is formed by placing an operational
transconductance amplifier (OTA) in negative feedback. If
we operate the OTA above threshold, the describing equation
is

C
dVout

dt
=
√
κβIbias(Vin −Vout)

√√√√1− κβ(Vin −Vout)
2

4Ibias
,

(22)

while it is

C
dVout

dt
= Ibiastanh

(
κ(Vin −Vout)

2UT

)
, (23)

for subthreshold operation. Notice that we have ignored the
output conductance term, which is considered very small for
OTAs.



VLSI Design 5

−90

−80

−70

−60

−50

−40

−30

−20

G
ai

n
(d

B
)

100 101 102 103

Frequency (Hz)

Fundamental
2◦ harmonic

Figure 4: Magnitude-frequency response of source follower. Ana-
lytical prediction is in bold, and experimental data is plotted as
“x”s and “o”s. The fundamental harmonic is a low-pass filtered
version of the input. The second harmonic has a bandpass shape,
as predicted by perturbation analysis.

We can define a characteristic voltage, Vc, as

Vc =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2UT

κ
, subthreshold√

Ibias

κβ
, above threshold.

(24)

Then, with the following definitions

τ = Ibias

(CVc)
· t; u = νin

Vc
; x = νout

Vc
, (25)

the nondimensional form of the unity-gain buffer’s describ-
ing equations (taken to the first few Taylor series terms) is

dx

dτ
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(u− x)− (u− x)3

4
, above threshold

(u− x)− (u− x)3

3
, subthreshold.

(26)

Again, the functional form of the equations is identical,
regardless of region of operation.

To calculate distortion terms, assume u = εv is a pure-
tone signal and proceed as usual. For subthreshold, the
separated equations of ε are

ε1 : ẋ1 = v − x1, (27)

ε2 : ẋ2 = 0− x2, (28)

ε3 : ẋ3 = z3
1

3
− x3. (29)

These equations are depicted in the block diagram of
Figure 5(b). Equation (27) is the linear portion of the

Vin Vout

C

+

−

(a)

v ε

s

s + 1
−( )3

3

ε3
+ x1

s + 1

(b)

Figure 5: Unity gain buffer. (a) Circuit schematic. (b) Block
diagram representation of output. The fundamental harmonic is
a low-pass filtered version of the input. The third-order terms are
generated by high-pass filtering the input, cubing and then low pass
filtering. The total output is a power series of ε terms.
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Figure 6: Magnitude-frequency response of unity-gain buffer.
Analytical prediction is in bold, and experimental data is plotted
as “x”s and “o”s. The fundamental harmonic is a low-pass filtered
version of the input. The third harmonic has a bandpass shape, as
predicted by perturbation analysis.

amplifier. Equation (28) is a linear filter with 0 input; it
contributes no harmonics at steady state. Equation (29) is
a linear filter with input z3

1/3. The cubing produces a third-
harmonic term as well as a fundamental-frequency term (this
fundamental-frequency term will cause gain compression,
which is not discussed in this paper). Since z1 = v − x1, the
overall effect is that x3 is a band-pass filtered version of a third
harmonic of v, as shown in Figure 6.
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Figure 7: Compiled Circuit on an FPAA. Component terminals
can be connected or disconnected using the switch matrix. In this
illustration, connections are indicated by solder dots. The gain of
each amplifier is programable over a continuous range of values
over a few decades.

6.3. Note on Above-Threshold versus Subthreshold Operation.
The harmonic behavior of a circuit is similar for above-
and subthreshold operation. In absolute numbers, however,
above threshold operation yields less distortion. This is
because the parameter ε = Ain/Vc is much smaller for
above threshold than for subthreshold. Since the harmonics
are multiplied by εi, the smaller ε seen in above threshold
operation translates to lower distortion.

7. Field Programmable Analog Array

We have developed a field programmable analog array
(FPAA) that can be configured to synthesis and analyze
a vast variety of circuits [11]. Figure 7 depicts a simple,
second-order filter compiled on our FPAA. More complex
circuit configurations are possible, and would involve a larger
number of the over 400 components in the FPAA. In this part
of the paper we demonstrate the utility and versatility of the
FPAA in analyzing the dynamics of a number of fundamental
circuit blocks.

8. One-Dimensional Systems

8.1. Simple Current Mirror. Consider the simple current
mirror depicted in Figure 8(a). From Kirchhoff ’s Current
Law (KCL), it obeys the following differential equation:

C
dVg

dt
= Ib − f

(
Vg

)
, (30)

where f (Vg) is the drain current of transistor M1. Assuming
M1 and M2 are identical and are both saturated, we have
f (Vg) = Iout, which gives

C
dVg

dt
= Ib − Iout. (31)

For subthreshold operation in saturation, the current
through transistors M1 and M2 is [10]

f
(
Vg

)
= Iout = Ioe

(κVg−VS)/UT , (32)

where Io is a pre-exponential constant dependent on the
transistor’s size and on doping concentrations. Also, κ is the
body-effect coefficient and UT is the thermal voltage. VS is
the source voltage, which, for this case, is zero. Setting VS = 0
and taking the derivative of (32) with respect to time, we get

dIout

dt
= ∂

∂Vg

(
Ioe

κVg/UT

)dVg

dt
, (33)

= κ

UT
Iout

dVg

dt
, (34)

which allows us to rewrite (31) as

CUT

κIb

dIout

dt
= Iout

(
1− Iout

Ib

)
,

τ
dIout

dt
= Iout

(
1− Iout

Ib

)
.

(35)

The time constant is identified as τ = (CUT)/(κIb).
Equation (35) happens to be the logistic equation, a

simple model of population dynamics. It can be solved
exactly either by separation of variables followed by partial
fractions, or by solving it as Bernoulli’s equation. The
solution is

Iout(t) = Ibet/τ

et/τ − 1 + Ib/Iout0

, (36)

where Iout0 is the initial value of Iout. We are lucky to have an
exact solution to (35), given that it is a nonlinear differential
equation. Even so, it is difficult to discern much useful
information about Iout’s qualitative behavior from (36). For
instance, it is not clear how the behavior of Iout might change
with different initial conditions. To answer questions of this
sort, it is helpful to do geometric analysis on the system’s
corresponding vector field.

Since the simple current mirror is a one-dimensional
system, its vector field is represented as a flow on a line. The
direction and speed of the flow are dictated by the right hand
side (RHS) of (35). It is a quadratic, as shown in Figure 10.
The Iout-intercepts are 0 and Ib. There is a maximum at
Iout = Ib/2. The vector field is depicted as the arrows on
the Iout axis. For positive values of dIout/dt, Iout is increasing,
meaning the arrows point to the right. For negative values of
dIout/dt, Iout is decreasing, meaning the arrows point to the
left. When dIout/dt = 0, there is no change in Iout and the
circuit is said to be at equilibrium.

The vector field provides clear, qualitative information
about the behavior of Iout. There are two equilibrium points,
namely Iout = 0 and Iout = Ib. Note that the vector field flows
away from Iout = 0. This equilibrium point is unstable, since
the system will not recover from slight disturbances away
from it. The vector field flows towards Iout = Ib, implying
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Vector field derived from trajectory measurements. The origin is an unstable equilibrium point, while 5 is stable.
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Figure 9: Source Follower Amplifier Acting as a Simple Peak Detector. (a) Circuit that was compiled onto the FPAA. (b) Measured step
responses. (c) Vector field derived from step response measurements. The point (0, 0.7) is a stable fixed point.

that this is a stable equilibrium point. If the system is initially
at Iout = Ib and then experiences a small disturbance, it will
tend back to the Iout = Ib point.

The vector field in Figure 10 also gives information
about the acceleration of Iout as it approaches the Iout = Ib

equilibrium point. For 0 < Iout < Ib/2, the rate of change of
Iout increases until it reaches a peak at Iout = Ib/2. Between
Ib/2 and Ib, the system decelerates until the rate of change of
Iout eventually becomes zero. For Iout > Ib, the rate of change
of Iout steadily decreases until Iout = Ib. It is interesting to
note that, for Iout < Ib, the rate of change of Iout is limited to
a maximum of Ib/(4τ).

The geometric analysis predictions can be checked
against experimental measurements of a current mirror that
was compiled onto an FPAA. Figure 8(b) depicts various
trajectories, or solutions, of the system of (35) for different
initial conditions. Notice that trajectories that start at values
lower than Iout = Ib/2 have a sigmoidal shape, with the point
of inflection corresponding to the maximum rate of change
of current dIout/dt = Ib/(4τ). The parabolic shape of dIout/dt
can be extracted from these trajectories, and it is shown in
Figure 8(c).

8.2. Simple Peak Detector. Assuming subthreshold operation,
the KCL equation for the source follower amplifier of
Figure 9(a) is the following.

C
dVout

dt
= Ioe

(κVin−Vout)/UT − Ib. (37)

Note that

d

dt
eVout/UT = eVout/UT

UT

dVout

dt
, (38)

in which case, the solution to (37) is

Vout = κVin + UT log
(
Io

Ib
−
(
Io

Ib
− e(Vout0−κVin)/UT

)
e−t/τ

)
,

(39)

where τ = CUT/Ib and Vout0 is the initial value of Vout.
The time that it takes for Vout to be within 10% of its final

value is

t10 = τ log

∣∣∣∣∣ Io/Ib − e(Vout0−κVin)/UT

Io/Ib − e0.1κVin/UT

∣∣∣∣∣. (40)
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For a large positive step input, e(Vout0−κVin) ≈ 0, and (40)
is approximately

t10 = t10+ ≈ τ log
∣∣∣∣ Io

Io − Ibe0.1κVin/UT

∣∣∣∣. (41)

For a large negative step input, e(Vout0−κVin) � Io/Ib, and
(40) becomes

t10 = t10− ≈ τ log

∣∣∣∣∣ Ibe(Vout0−κVin)

Io − Ibe0.1κVin/UT

∣∣∣∣∣
= t10+ + τ

(
Vout0

UT
− κ

Vin

UT

)
log
(
Ib

Io

)
.

(42)

Equations (41) and (42) indicate that the response of the
peak detector is slower for a negative input step than it is
for a positive input step. We surmise that if the input is
continuously varying at a rate faster than 1/(t10−), then the
output will be a reasonable representation of the input’s peak
values. Explaining the peak detector’s behavior with (41) and
(42) is rigorous, but depends on having to manipulate the
expression of (39).

One way of avoiding the math is to employ intuitive
descriptions of the charging action of the active device (i.e.,
the transistor) versus the discharging action of the current
source [12]. A more rigorous approach is to apply nonlinear
geometric analysis to the problem. Consider the plot of
dVout/dt versus Vout shown in Figure 9(c). We constructed it
from a number of step response measurements (Figure 9(b))
that we took after compiling the source-follower amplifier
onto the FPAA. A large negative input step corresponds to
an initial value of Vout0 � Vin. The rate of growth of
Vout is bounded by Ib/C. For a large positive input step,
however, Vout0 � Vin, and the maximum rate at which
Vout approaches Vin can be much greater than Ib/C. The
maximum rate of approach in this case is limited only by
the initial value, Vout0 . As such, there is an asymmetry in
the speed of the circuit’s response to up-going versus down-
going movements on the input. The effect of this asymmetry
is that Vout tracks increasing Vin and not decreasing Vin,
which is the behavior of a peak detector.

9. A Two-Dimensional System

Figure 11 depicts Lyon and Mead’s classic second-order
section [13]. It is a Gm-C filter with two poles that can be
placed anywhere on the real/imaginary plane. We begin our
analysis by writing down the governing equations for the
circuit, assuming that the OTAs are based on subthreshold
MOS transistor differential pairs:

C1
dV2

dt
= I2

k
tanh

(
κ(V1 −V2)

2UT

)
,

C1
dV1

dt
= I1 tanh

(
κ(Vin −V1)

2UT

)
− I3 tanh

(
κ(V2 −V1)

2UT

)
,

(43)
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1
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Iout (A)

Figure 10: The vector field of the logistic equation is represented
as a flow on the Iout axis. For positive values of dIout/dt, Iout is
increasing and the flow is to the right. For negative values of
dIout/dt, Iout is decreasing and the flow is to the left.

Vin +

−
G1

C1

V1
G2

+

−

+

−
G3

V2

C2

Figure 11: Second-Order Section. Varying the bias currents of the
various amplifiers leads to interesting dynamics.

ẋ′ = −2r + 1
ẏ′ = −1− g + 2r

ẋ′ = 1 + 2r
ẏ′ = −1 + g − 2r

ẋ′ = 2r − 1
ẏ′ = 1 + g − 2r

ẋ′ = −1− 2r
ẏ′ = 1− g + 2r

(1, 0)

(a2/b2, 0)
x

y

a b

b a

Figure 12: Sketch of SOS Phase Plane for Large Signals.

where I1,2,3 are the bias currents of the OTAs. Also, k is the
ratio of the C2 to C1.

If we define

x = κ(V1 −Vin)
2UT

, y = κ(V2 −V1)
2UT

, (44)
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Figure 13: SOS Experimental Phase Plane Results for Various Values of r.

then (43) become

2UTC1

κ

dx

dt
= −I1 tanh(x)− I3tanh

(
y
)
,

2UTC1

κ

dy

dt
= I1 tanh(x) +

(
I3 − I2

k

)
tanh

(
y
)
.

(45)

Further defining

I1 = Ibias,

I2 = gkIbias,

I3 = 2rIbias,

t = τ · 2UTC1

κIbias
,

(46)

where g ≥ 0, we get the following dimensionless equation

dx

dτ
= −tanh(x)− 2r tanh

(
y
)
,

dy

dτ
= tanh(x) +

(
2r − g

)
tanh

(
y
)
.

(47)

9.1. Small Signal Analysis. We can linearize (47) by replacing
the RHS with its Jacobian, giving⎡⎣ẋ

ẏ

⎤⎦ ≈
⎡⎣−1 −2r

1 2r − g

⎤⎦⎡⎣x
y

⎤⎦. (48)

The origin is a fixed point. In fact, it is a unique fixed point,
since (from (47)) tanh(x) = −2r tanh(y) =⇒ x = y = 0. The
origin is stable for

r <
1 + g

2
, (49)

and unstable otherwise. It is a spiral for

1 + g

2
− √g < r <

1 + g

2
+
√
g, (50)

and a node otherwise.

9.2. Large Signal Analysis. For certain values of r and g,
the nonlinearities of the second-order section causes it to
suffer instability. In this region of parameter space, linear
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analysis accurately predicts that the circuit is small signal
stable, but completely fails to recognize that instability would
occur for large signals. Mead addresses this issue in [14],
but we will present a somewhat more thorough treatment
of the problem, using phase-plane analysis and experimental
verification with the FPAA.

For very large values of x and y, the tanh functions get
saturated, and can each be approximated with a signum
function. Equation (47) becomes

dx

dτ
= − sgn(x)− 2r sgn

(
y
)
,

dy

dτ
= sgn(x) +

(
2r − g

)
sgn
(
y
)
.

(51)

Figure 12 shows the phase plane (x versus y) that corre-
sponds to (51). The depicted motion is valid only if 1/2 <
r < 1. The gradient in the first and third quadrants is

a = 2r − 1 + g

1 + 2r
, (52)

and that in the second and fourth quadrants is

b = 2r − 1− g

1− 2r
. (53)

Observe that, with an initial condition of (1, 0), (51) predicts
that the positive x-axis will again be intercepted at (a2/b2, 0).
If a2/b2 > 1, then x and y will grow without bound. Stated in
terms of the r and g variables, there is large signal instability
if

r >
g +

√
g2 + 4

4
. (54)

Our analysis of the second-order section can readily be
verified experimentally. We compiled the filter on the FPAA,
as shown in Figure 7. The bias currents of all three OTAs
are user-programmable, and varying them corresponds to
varying the values of r and g. The FPAA thus allows us
to explore the parameter space of the filter, and to observe
changes in its qualitative behavior. It can effectively be used
for bifurcation analysis.

Figure 13 shows the filter’s phase plane plots for various
values of r, with g kept fixed. Just as we predicted, there is
a unique fixed point, which is initially stable, and gradually
changes from a node to a spiral (Figures 13(a) and 13(c)).
While linear analysis would predict these three responses
as damped, slightly underdamped, and very underdamped,
it fails to recognize the possibility of the fourth response,
which is large-signal instability. In the fourth panel, r meets
the criterion derived from nonlinear analysis, (54), and
we observe oscillation. Further analysis and exploration of
parameter space reveals that this second-order section is
capable of low-distortion sinusoidal oscillation [15]. Such
functionality is valuable in communication systems.

10. Conclusion

In this paper, we have introduced visual and graphical
techniques for analyzing nonlinear circuit dynamics. Our

approach to studying harmonic distortion yields informa-
tion about the various processing flows that are responsible
for each harmonic term. The FPAA was used to rapidly create
phase plane plots, which concisely encapsulate the nonlinear
dynamics of the circuit under study. We have provided
various examples of our techniques and have compared our
predictions to experimentally-measured data.
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